CN105852841B - 心率数据收集 - Google Patents

心率数据收集 Download PDF

Info

Publication number
CN105852841B
CN105852841B CN201610284612.7A CN201610284612A CN105852841B CN 105852841 B CN105852841 B CN 105852841B CN 201610284612 A CN201610284612 A CN 201610284612A CN 105852841 B CN105852841 B CN 105852841B
Authority
CN
China
Prior art keywords
sample
circuit
electric signal
signal
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610284612.7A
Other languages
English (en)
Other versions
CN105852841A (zh
Inventor
皮特·W·理查兹
托马斯·塞缪尔·埃利奥特
谢尔顿·杰骄·袁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feibit Co ltd
Original Assignee
Fitbit LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/290,884 external-priority patent/US9044149B2/en
Application filed by Fitbit LLC filed Critical Fitbit LLC
Publication of CN105852841A publication Critical patent/CN105852841A/zh
Application granted granted Critical
Publication of CN105852841B publication Critical patent/CN105852841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Obesity (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Amplifiers (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

在包含用于基于所接收光产生第一电信号的光检测器的电路中可以实施一个新颖方面。所述电路包含切换电路,所述切换电路具有第一及第二配置,经配置以基于所述第一电信号接收第一电压信号,且在所述第一配置与所述第二配置之间切换。所述电路包含分别用于在所述切换电路处于所述第一配置及第二配置时对所述第一电压信号的值进行取样的第一及第二取样电路。所述电路包含用于在所述第一切换电路处于所述第一配置时产生电流信号以抵消所述第一电信号的第一分量。

Description

心率数据收集
分案信息
本申请是申请日为2014年6月3日、发明名称为“心率数据收集”的第201410243180.6号发明专利申请的分案申请。
技术领域
背景技术
对个人健康的新近消费者关注已导致在市场上提供多种个人健康监视装置。直到近来,此些装置往往使用起来复杂且通常经设计用于一个活动,例如自行车旅行计算机。
传感器、电子器件及电源小型化之新近进展已允许个人健康监视装置(在本文中还称为“生物计量跟踪”或“生物计量监视”装置)的大小以先前不切实际的极小大小来提供。举例来说,Fitbit Ultra为约2英寸长、0.75英寸宽及0.5英寸深的生物计量监视装置;其具有封装在此小容积内的像素化显示器、电池、传感器、无线通信能力、电源及接口按钮,以及用于将所述装置附接到口袋或衣服的其它部分的集成夹片。
本文中论述生物计量监视装置及其中可使用的技术(且在一些情况下,在其它装置中不必提供生物计量跟踪功能性)的各种实施例。
发明内容
在附图及下文描述中阐述本说明书中描述的标的物的一或多个实施方案的细节。其它特征、方面及优点将自所述描述、图式及权利要求书而变得显而易见。注意,下图的相对尺寸可能并非按比例绘制,除非明确指示为按比例缩放的图式。
本发明中所描述的标的物的一个新颖方面可实施在电路中,且在一些实施方案中,实施在便携式监视装置内的电路中。在一些实施方案中,所述电路包含用于接收光且用于基于所接收光产生第一电信号的光检测器。所述电路还包含第一切换电路,其具有至少第一配置及第二配置。所述第一切换电路经配置以基于所述第一电信号接收第一电压信号,且还接收一或多个第一控制信号。所述第一切换电路经配置以基于所述一或多个第一控制信号在至少所述第一配置与所述第二配置之间切换。所述电路还包含第一取样电路,其用于在所述第一切换电路处于所述第一配置时对所述第一电压信号的值进行取样。所述电路还包含第二取样电路,其用于在所述第一切换电路处于所述第二配置时对所述第一电压信号的值进行取样。所述电路还包含环境光消除电路,其用于在所述第一切换电路处于所述第一配置时产生第一电流信号以至少部分地抵消所述第一电信号的第一分量。所述第一电流信号是基于一或多个第二控制信号及由所述第二取样电路取样的所述第一电压信号的所述值。
在一些实施方案中,所述电路还包含可调整增益电路,其用于在所述第一切换电路处于所述第一配置时设定第二电流信号以相对于所述第一电信号调整所述第一电压信号的增益。所述第二电流信号是基于一或多个第三控制信号及所述第一电信号。在一些实施方案中,所述第一电信号为电流信号。在一些此类实施方案中,所述电路进一步包含用于将所述第一电信号转换到第二电压信号的电流电压转换器。在此些实施方案中,所述第一电压信号是基于所述第二电压信号。而且,在此些实施方案中,所述可调整增益电路更具体来说在所述第一切换电路处于所述第一配置时设定所述第二电流信号以相对于所述第一电信号调整所述第二电压信号的增益,且所述第二电流信号更具体来说是基于一或多个第三控制信号及所述第二电压信号。此外,在一些此类实施方案中,所述环境光消除电路在所述第一切换电路处于所述第一配置时产生所述第一电流信号,使得所述第一电流信号具有与所述第一电信号相反的极性以至少部分地抵消所述第一电信号的所述第一分量。
在一些实施方案中,所述电流电压转换器及所述可调整增益电路形成跨阻抗放大器。在一些此类实施方案中,所述电流电压转换器包含具有第一输入端子、第二输入端子及输出端子的第一运算放大器。所述第一输入端子可与所述光检测器的第一端子及所述可调整增益电路的第一端子电耦合。所述第二输入端子可与参考电压电耦合。并且所述输出端子可与所述可调整增益电路的第二端子电耦合。所述输出端子输出所述第二电压信号。
在一些实施方案中,所述可调整增益电路在所述可调整增益电路的所述第一端子与所述可调整增益电路的所述第二端子之间包含可调整阻抗级,所述可调整阻抗级用于提供可调整阻抗以基于所述一或多个第三控制信号调整所述第二电流信号。在一些此类实施方案中,所述可调整阻抗级包含阻抗网络,所述阻抗网络至少具有拥有第一阻抗的第一阻抗路径及拥有第二阻抗的第二阻抗路径。所述可调整增益电路可进一步包含第二切换电路,所述第二切换电路用于基于所述一或多个第三控制信号在至少所述第一阻抗路径与所述第二阻抗路径当中进行选择。
在一些实施方案中,所述电路进一步包含用于缓冲所述第二电压信号以产生所述第一电压信号的缓冲器。在一些此类实施方案中,所述缓冲器包含具有第一输入端子、第二输入端子及输出端子的第二运算放大器。所述第二运算放大器的所述第一输入端子可与所述第一运算放大器的所述输出端子电耦合,而所述第二运算放大器的所述输出端子可与所述第二运算放大器的所述第二输入端子电耦合。在一些实施方案中,所述第一缓冲器进一步包含串联地电耦合在所述第二运算放大器的所述输出端子与所述第一切换电路之间的电阻器。
在一些实施方案中,所述环境光消除电路在所述环境光消除电路的第一端子与所述环境光消除电路的第二端子之间包含可调整阻抗级,所述可调整阻抗级用于提供可调整阻抗以基于所述一或多个第二控制信号调整所述第一电流信号。在一些此类实施方案中,所述可调整阻抗级包含阻抗网络,所述阻抗网络至少具有拥有第一阻抗的第一阻抗路径及拥有第二阻抗的第二阻抗路径。所述环境光消除电路可进一步包含第二切换电路,所述第二切换电路用于基于所述一或多个第二控制信号在至少所述第一阻抗路径与所述第二阻抗路径当中进行选择。
在一些实施方案中,所述第一取样电路包含第一取样及保持(S/H)路,所述第一取样及保持电路用于:接收所述第一电压信号;对所述第一电压信号的值进行取样;以及在连续样本之间的时间间隔中存储所述经取样值。在一些此类实施方案中,所述第一S/H电路包含具有第一端子及第二端子的第一电容器。所述第一端子接收所述第一电压信号,且所述第二端子可与例如接地等参考电压电耦合。所述第一电容器存储所述经取样值。
类似地,在一些实施方案中,所述第二取样电路包含第二取样及保持(S/H)路,所述第二取样及保持电路用于:接收所述第一电压信号;对所述第一电压信号的值进行取样;以及在连续样本之间的时间间隔中存储所述经取样值。在一些此类实施方案中,所述第二S/H电路包含具有第一端子及第二端子的第二电容器。所述第一端子接收所述第一电压信号,且所述第二端子可与例如接地等参考电压电耦合。所述第二电容器存储所述经取样值。
在一些实施方案中,所述电路进一步包含模/数转换器(ADC),所述模/数转换器用于基于由所述第一取样电路取样的所述第一电压信号产生数字电压信号。在一些此类实施方案中,所述电路进一步包含用于在由所述第一取样电路取样的所述第一电压信号被所述ADC接收之前缓冲所述第一电压信号的缓冲器。在一些此类实施方案中,所述缓冲器包含具有第一输入端子、第二输入端子及输出端子的第二运算放大器。所述第二运算放大器的所述第一输入端子可与所述第一取样电路的输出电耦合,且所述第二运算放大器的所述输出端子可与所述第二运算放大器的所述第二输入端子且与所述ADC电耦合。在一些实施方案中,所述数字电压信号表示用户的心跳。
在一些实施方案中,所述电路进一步包含用于在由所述第二取样电路取样的所述第一电压信号被所述环境光消除电路接收之前缓冲所述第一电压信号的缓冲器。在一些此类实施方案中,所述缓冲器经配置以仅当接收到启用信号时才将由所述第二取样电路取样的所述第一电压信号输出到所述环境光消除电路。在一些此类实施方案中,所述启用信号是至少当所述第一切换电路处于所述第一配置时被断言。在一些实施方案中,所述缓冲器包含具有第一输入端子、第二输入端子及输出端子的第二运算放大器。所述第二运算放大器的所述第一输入端子可与所述第二取样电路的输出电耦合,所述第二运算放大器的所述输出端子与所述第二运算放大器的所述第二输入端子且与所述环境光消除电路电耦合。
在一些实施方案中,所述电路进一步包含与所述光检测器耦合的第二切换电路。在一些实施方案中,所述光检测器的所述第一端子可与所述第二切换电路电耦合。在一些此类实施方案中,所述第二切换电路基于一或多个第二控制信号而将所述光检测器的所述第一端子电耦合到例如接地等电压参考。
在一些实施方案中,刚刚描述的所述电路可实施于例如便携式监视装置(例如,可佩戴手腕安裝式装置)等装置中。在此些实施方案中,所述装置进一步包含光发射器,其用于朝向用户的皮肤区发出光。所述装置还包含基于一或多个第二控制信号为所述光发射器供电的驱动器电路。在一些实施方案中,所述第二控制信号致使所述驱动器电路在所述第一切换电路处于所述第一配置时的时间间隔期间接通所述光发射器。在一些实施方案中,所述第二控制信号致使所述驱动器电路在所述第一取样电路已对所述第一电压信号进行取样之后且在所述第一切换电路切换到所述第二配置之前关掉所述光发射器。
在一些此类实施方案中,所述驱动器电路包含具有第一输入端子、第二输入端子及输出端子的第二运算放大器。所述驱动器电路还包含数/模转换器(DAC),所述数/模转换器与所述第二运算放大器的所述第一输入端子电耦合,用于将输入信号提供到所述第二运算放大器的所述第一输入端子。电力供应轨可将电力提供到所述光发射器的第一端子。在一些实施方案中,所述驱动器电路还包含具有栅极端子、漏极端子及源极端子的晶体管。所述栅极端子可与所述第二运算放大器的所述输出端子电耦合。所述漏极端子可与所述光发射器的第二端子电耦合。所述源极端子可与例如接地等参考电压电耦合。所述源极端子可进一步与所述第二运算放大器的所述第二输入端子电耦合,用于将反馈信号提供到所述第二运算放大器。在一些实施方案中,所述驱动器电路进一步包含电容器,所述电容器电耦合于所述第二运算放大器的所述输出端子与所述第二运算放大器的所述第二输入端子之间。所述驱动器电路还可包含电耦合于所述源极端子与所述参考电压之间的电阻器。在此些实施方案中,所述第二运算放大器可经配置以以基于所述电路的操作期间的所述反馈信号而跨越所述电阻器维持大体上恒定的电压。
在另一方面中,一种方法包含通过控制器关掉或停用光发射器。所述方法还包含通过所述控制器致使切换电路从第一配置转变到第二配置以停用第一取样电路且启用第二取样电路以对第一检测信号进行取样。所述方法还包含通过光检测器检测环境光信号。所述方法还包含通过所述光检测器基于所述环境光信号产生所述第一检测信号。所述方法还包含通过所述第二取样电路对所述第一检测信号进行取样。所述方法还包含通过所述第二取样电路存储与所述经取样第一检测信号成比例的电荷。所述方法还包含通过所述控制器接通或启用所述光发射器以发出所发射光信号。所述方法还包含通过所述控制器致使所述切换电路从所述第二配置转变到所述第一配置以启用所述第一取样电路以对第二检测信号进行取样。所述方法还包含通过所述光检测器检测包含来自所述所发射光信号的发射分量及来自所述环境光信号的环境分量的入射光信号。所述方法还包含通过所述光检测器基于所述入射光信号产生所述第二检测信号。所述方法还包含通过所述控制器致使所述第二取样电路将所述所存储电荷传送到环境光消除电路。所述方法还包含通过所述环境光消除电路基于从所述第二取样电路接收的所述电荷产生抵消信号以抵消所述第二检测信号的环境分量的至少一部分。所述方法还包含通过所述第二取样电路在所述环境分量被抵消时对所述第二检测信号进行取样。所述方法还包含基于所述经取样第二检测信号输出输出信号。
在一些实施方案中,所述方法进一步包含通过所述第二取样电路存储所述经取样第二检测信号。在一些实施方案中,所述方法进一步包含通过模/数转换器数字化所述经取样第二检测信号以输出所述输出信号。在一些实施方案中,所述方法进一步包含通过所述控制器致使可调整增益电路调整或选择阻抗,且产生增益调整信号以调整所述第二检测信号的增益。在一些实施方案中,所述方法进一步包含使所述光检测器从参考电压去耦以使得所述光检测器能够产生所述第二检测信号。在一些实施方案中,所述方法进一步包含将所述光检测器耦合到参考电压,使得原本将归因于环境光而累积在所述光检测器中的电荷可被排尽。
参考图式及下文的详细描述进一步详细描述这些及其它实施方案。
在一些实施方案中,一种电路包括:光检测器,其用于接收光且基于所述接收光产生第一电信号;第一切换电路,其具有至少第一配置及第二配置,所述第一切换电路用于:基于所述第一电信号接收第一电压信号,接收一或多个第一控制信号;基于所述一或多个第一控制信号在至少所述第一配置与所述第二配置之间切换;第一取样电路,其用于在所述第一切换电路处于所述第一配置时对所述第一电压信号的值进行取样;第二取样电路,其用于在所述第一切换电路处于所述第二配置时对所述第一电压信号的值进行取样;以及环境光消除电路,其用于在所述第一切换电路处于所述第一配置时产生第一电流信号以至少部分地抵消所述第一电信号的第一分量,所述第一电流信号是基于一或多个第二控制信号及由所述第二取样电路取样的所述第一电压信号的所述值。
在一些实施方案中,所述电路进一步包含:可调整增益电路,所述可调整增益电路用于在所述第一切换电路处于所述第一配置时设定第二电流信号以相对于所述第一电信号调整所述第一电压信号的增益,所述第二电流信号是基于一或多个第三控制信号及所述第一电信号。
在一些实施方案中,所述第一电信号为电流信号;所述电路进一步包含用于将所述第一电信号转换为第二电压信号的电流电压转换器;所述第一电压信号是基于所述第二电压信号;所述可调整增益电路在所述第一切换电路处于所述第一配置时设定所述第二电流信号以相对于所述第一电信号调整所述第二电压信号的增益,所述第二电流信号是基于所述一或多个第三控制信号及所述第二电压信号;以及所述环境光消除电路在所述第一切换电路处于所述第一配置时产生所述第一电流信号,使得所述第一电流信号具有与所述第一电信号相反的极性以至少部分地抵消所述第一电信号的所述第一分量。
在一些实施方案中,所述电流电压转换器及所述可调整增益电路形成跨阻抗放大器。
在一些实施方案中,所述电流电压转换器包含具有第一输入端子、第二输入端子及输出端子的第一运算放大器;所述第一输入端子与所述光检测器的第一端子及所述可调整增益电路的第一端子电耦合;所述第二输入端子与参考电压电耦合,所述输出端子与所述可调整增益电路的第二端子电耦合,所述输出端子还用于输出所述第二电压信号。
在一些实施方案中,所述可调整增益电路在所述可调整增益电路的所述第一端子与所述可调整增益电路的所述第二端子之间包含可调整阻抗级,所述可调整阻抗级用于提供可调整阻抗以基于所述一或多个第三控制信号调整所述第二电流信号。
在一些实施方案中,所述可调整阻抗级包含阻抗网络,所述阻抗网络至少具有拥有第一阻抗的第一阻抗路径及拥有第二阻抗的第二阻抗路径;以及所述可调整增益电路进一步包含第二切换电路,所述第二切换电路用于基于所述一或多个第三控制信号在至少所述第一阻抗路径与所述第二阻抗路径之间进行选择。
在一些实施方案中,所述电路进一步包含用于缓冲所述第二电压信号以产生所述第一电压信号的缓冲器。
在一些实施方案中,所述缓冲器包含具有第一输入端子、第二输入端子及输出端子的第二运算放大器;所述第二运算放大器的所述第一输入端子与所述第一运算放大器的所述输出端子电耦合,所述第二运算放大器的所述输出端子与所述第二运算放大器的所述第二输入端子电耦合。
在一些实施方案中,所述第一缓冲器进一步包含串联地电耦合在所述第二运算放大器的所述输出端子与所述第一切换电路之间的电阻器。
在一些实施方案中,所述环境光消除电路在所述环境光消除电路的第一端子与所述环境光消除电路的第二端子之间包含可调整阻抗级,所述可调整阻抗级用于提供可调整阻抗以基于所述一或多个第二控制信号调整所述第一电流信号。
在一些实施方案中,所述可调整阻抗级包含阻抗网络,所述阻抗网络至少具有拥有第一阻抗的第一阻抗路径及拥有第二阻抗的第二阻抗路径;以及所述环境光消除电路进一步包含第二切换电路,所述第二切换电路用于基于所述一或多个第二控制信号在至少所述第一阻抗路径与所述第二阻抗路径之间进行选择。
在一些实施方案中,所述第一取样电路包含第一取样及保持(S/H)电路,所述第一取样及保持电路用于:接收所述第一电压信号;对所述第一电压信号的值进行取样;以及在连续样本之间的时间间隔中存储所述经取样值。
在一些实施方案中,所述第一S/H电路包含:具有第一端子及第二端子的第一电容器,所述第一端子用于接收所述第一电压信号,所述第二端子与参考电压电耦合,所述第一电容器用于存储所述经取样值。
在一些实施方案中,所述第二取样电路包含第二取样及保持(S/H)电路,所述第二取样及保持电路用于:接收所述第一电压信号;对所述第一电压信号的值进行取样;以及在连续样本之间的时间间隔中存储所述经取样值。
在一些实施方案中,所述第二S/H电路包含:具有第一端子及第二端子的第二电容器,所述第一端子用于接收所述第一电压信号,所述第二端子与参考电压电耦合,所述第二电容器用于存储所述经取样值。
在一些实施方案中,所述电路进一步包含用于基于由所述第一取样电路取样的所述第一电压信号产生数字电压信号的模/数转换器(ADC)。
在一些实施方案中,所述电路进一步包含用于在由所述第一取样电路取样的所述第一电压信号被所述ADC接收之前缓冲所述第一电压信号的缓冲器。
在一些实施方案中,所述缓冲器包含具有第一输入端子、第二输入端子及输出端子的第二运算放大器;所述第二运算放大器的所述第一输入端子与所述第一取样电路的输出电耦合,所述第二运算放大器的所述输出端子与所述第二运算放大器的所述第二输入端子且与所述ADC电耦合。
在一些实施方案中,所述数字电压信号表示用户的心跳。
在一些实施方案中,所述电路进一步包含用于在由所述第二取样电路取样的所述第一电压信号被所述环境光消除电路接收之前缓冲所述第一电压信号的缓冲器。
在一些实施方案中,所述缓冲器经配置以仅当接收到启用信号时才将由所述第二取样电路取样的所述第一电压信号输出到所述环境光消除电路,所述启用信号是至少当所述第一切换电路处于所述第一配置时被断言。
在一些实施方案中,所述缓冲器包含具有第一输入端子、第二输入端子及输出端子的第二运算放大器,所述第二运算放大器的所述第一输入端子与所述第二取样电路的输出电耦合,所述第二运算放大器的所述输出端子与所述第二运算放大器的所述第二输入端子且与所述环境光消除电路电耦合。
在一些实施方案中,所述电路进一步包含第二切换电路,所述光检测器的所述第一端子与所述第二切换电路电耦合,所述第二切换电路用于基于一或多个第三控制信号而将所述光检测器的所述第一端子耦合到电压参考。
在一些实施方案中,所述电路进一步包含产生所述第一控制信号及所述第二控制信号的微控制器。
在一些实施方案中,一种装置包括:根据技术方案1所述的电路,以及光发射器,其用于朝向用户的皮肤区发出光。
在一些实施方案中,所述装置进一步包含:基于一或多个第二控制信号为所述光发射器供电的驱动器电路。
在一些实施方案中,所述第二控制信号致使所述驱动器电路在所述第一切换电路处于所述第一配置时的时间间隔期间接通所述光发射器。
在一些实施方案中,所述第二控制信号致使所述驱动器电路在所述第一取样电路已对所述第一电压信号进行取样之后且在所述第一切换电路切换到所述第二配置之前关掉所述光发射器。
在一些实施方案中,所述驱动器电路包含:第二运算放大器,其具有第一输入端子、第二输入端子及输出端子;数/模转换器(DAC),其与所述第二运算放大器的所述第一输入端子电耦合,用于将输入信号提供到所述第二运算放大器的所述第一输入端子;电力供应轨,其用于将电力提供到所述光发射器的第一端子;晶体管,其具有栅极端子、漏极端子及源极端子,所述栅极端子与所述第二运算放大器的所述输出端子电耦合,所述漏极端子与所述光发射器的第二端子电耦合,且所述源极端子与参考电压电耦合,所述源极端子进一步与所述第二运算放大器的所述第二输入端子电耦合以用于将反馈信号提供到所述第二运算放大器;电容器,其电耦合于所述第二运算放大器的所述输出端子与所述第二运算放大器的所述第二输入端子之间;以及电阻器,其电耦合于所述源极端子与所述参考电压之间,其中所述第二运算放大器经配置以基于所述电路的操作期间的所述反馈信号而维持跨越所述电阻器的大体上恒定的电压。
在一些实施方案中,所述光发射器及根据技术方案1所述的电路至少部分地布置在可由用户佩戴的外壳内。
在一些实施方案中,一种方法包括:通过控制器关掉或停用光发射器;通过所述控制器致使切换电路从第一配置转变到第二配置,以停用第一取样电路且启用第二取样电路以对第一检测信号进行取样;通过光检测器检测环境光信号;通过所述光检测器基于所述环境光信号产生所述第一检测信号;通过所述第二取样电路对所述第一检测信号进行取样;通过所述第二取样电路存储与所述经取样第一检测信号成比例的电荷;通过所述控制器接通或启用所述光发射器以发出所发射光信号;通过所述控制器致使所述切换电路从所述第二配置转变到所述第一配置,以启用所述第一取样电路以对第二检测信号进行取样;通过所述光检测器检测包含来自所述所发射光信号的发射分量及来自所述环境光信号的环境分量的入射光信号;通过所述光检测器基于所述入射光信号产生所述第二检测信号;通过所述控制器致使所述第二取样电路将所述所存储电荷传送到环境光消除电路;通过所述环境光消除电路基于从所述第二取样电路接收的所述电荷产生抵消信号,以抵消所述第二检测信号的环境分量的至少一部分;通过所述第二取样电路在所述环境分量被抵消时对所述第二检测信号进行取样;以及基于所述经取样第二检测信号输出输出信号。
在一些实施方案中,所述方法进一步包含:通过所述第二取样电路存储所述经取样第二检测信号;通过模/数转换器数字化所述经取样第二检测信号以输出所述输出信号。
在一些实施方案中,所述方法进一步包含:通过所述控制器致使可调整增益电路:调整或选择阻抗;以及产生增益调整信号以调整所述第二检测信号的增益。
在一些实施方案中,所述方法进一步包含:使所述光检测器从参考电压去耦以使得所述光检测器能够产生所述第二检测信号。
在一些实施方案中,所述方法进一步包含:将所述光检测器耦合到参考电压,使得原本将归因于环境光而累积在所述光检测器中的电荷可被排尽。
附图说明
本文所揭示的各种实施方案在附图的图中作为实例而非限制来加以说明,在附图中,相似参考数字可指代类似元件。
图1说明实现经由用户接口的用户交互的实例便携式监视装置。
图2A说明可经由使用带子而紧固到用户的实例便携式监视装置。
图2B提供图2A的实例便携式监视装置的视图,其展示所述装置的面向皮肤的部分。
图2C提供图2A的便携式监视装置的横截面图。
图3A提供实例便携式监视装置的传感器突起的横截面图。
图3B描绘实例便携式监视装置的传感器突起的横截面图;此突起类似于图3A中所呈现的突起,只是光源及光电检测器放置在平坦及/或硬质的PCB上。
图3C提供实例PPG传感器实施方案的另一横截面图。
图4A说明一个潜在PPG光源及光电检测器几何形状的实例。
图4B及4C说明具有光电检测器及两个LED光源的PPG传感器的实例。
图5说明具有突起的经优化PPG检测器的实例,所述突起具有弯曲侧面以免使用户感到不适。
图6A说明具有带子的便携式监视装置的实例;光学传感器及光发射器可放置在所述带子上。
图6B说明具有显示器及腕带的便携式生物计量监视装置的实例。此外,光学PPG(例如,心率)检测传感器及/或发射器可位于生物计量监视装置的侧面上。在一个实施例中,这些各者可位于侧面安裝式按钮中。
图7描绘用户按压便携式生物计量监视装置的侧面以从侧面安裝式光学心率检测传感器进行心率测量。生物计量监视装置的显示器可展示是否已检测到心率及/或显示用户的心率。
图8说明实例生物计量监视装置智能报警特征的功能性。
图9说明基于生物计量监视装置所经历的移动程度而改变其检测用户心率的方式的便携式生物计量监视装置的实例。
图10说明其上具有自行车应用程序的便携式生物计量监视装置的实例,所述自行车应用程序可显示自行车速度及/或踩踏板的步调以及其它度量。
图11A说明PPG传感器的实例框图,所述PPG传感器具有光源、光检测器、ADC、处理器、DAC/GPIO,及光源强度及开/关控件。
图11B说明类似于图11A的PPG传感器的PPG传感器的实例框图,所述PPG传感器额外使用取样及保持电路以及模拟信号调节。
图11C说明类似于图11A的PPG传感器的PPG传感器的实例框图,所述PPG传感器额外使用取样及保持电路。
图11D说明具有多个可切换光源及检测器、光源强度/开关控件以及信号调节电路的PPG传感器的实例框图。
图11E说明使用同步检测的PPG传感器的实例框图。为执行此类型的PPG检测,其具有解调器。
图11F说明PPG传感器的实例框图,所述PPG传感器除图11A中说明的传感器的特征之外还具有差分放大器。
图11G说明PPG传感器的实例框图,所述PPG传感器具有图11A到11F中所示的PPG传感器的特征。
图12A说明具有心率或PPG传感器、运动传感器、显示器、振动马达及连接到处理器的通信电路的便携式生物计量监视装置的实例。
图12B说明具有心率或PPG传感器、运动传感器、显示器、振动马达、位置传感器、海拔高度传感器、皮肤电导率/湿度传感器及连接到处理器的通信电路的便携式生物计量监视装置的实例。
图12C说明具有生理传感器、环境传感器及连接到处理器的位置传感器的便携式生物计量监视装置的实例。
图13A说明使用运动信号及光学PPG信号来测量心率的实例。
图13B说明使用运动信号及光学PPG信号来测量心率的另一实例。
图14A说明具有到传感器处理器的模拟连接的传感器的实例。
图14B说明具有到传感器处理器的模拟连接的传感器的实例,所述传感器处理器又具有到应用程序处理器的数字连接。
图14C说明具有连接到应用程序处理器的一个或多个传感器的传感器装置的实例。
图14D说明具有连接到传感器处理器的一个或多个传感器的传感器装置的实例,所述传感器处理器又连接到应用程序处理器。
图15A说明使用顺序算法流程的游泳检测算法的实例。
图15B说明使用并行算法流程的游泳检测算法的实例。
图15C说明使用顺序与并行算法流程的混合的游泳检测算法的实例。
图15D说明使用顺序与并行算法流程的混合的游泳检测算法的实例。
图16A说明可用于PPG感测的取样及保持电路以及差分/仪表放大器的实例示意图。
图16B说明用于PPG传感器的使用受控电流源来在跨阻抗放大器之前补偿“偏置”电流的电路的实例示意图。
图16C说明用于PPG传感器的使用取样及保持电路用于施加到光电二极管(在跨阻抗放大器之前)的电流反馈的电路的实例示意图。
图16D说明用于PPG传感器的使用具有环境光消除功能性的差分/仪表放大器的电路的实例示意图。
图16E说明用于PPG传感器的使用光电二极管补偿由DAC动态地产生的电流的电路的实例示意图。
图16F说明用于PPG传感器的使用光电二极管补偿由受控电压源动态地产生的电流的电路的实例示意图。
图16G说明用于PPG传感器的包含使用“开关电容器”方法的环境光移除功能性的电路的实例示意图。
图16H说明用于PPG传感器的使用光电二极管补偿由恒定电流源产生的电流(此还可使用恒定电压源及电阻器来完成)的电路的实例示意图。
图16I说明用于PPG传感器的包含环境光移除功能性及连续样本之间的差分化的电路的实例示意图。
图16J说明用于环境光移除及连续样本之间的差分化的电路的实例示意图。
图17展示根据一些实施方案的用于驱动光发射器发出光信号LE到用户的皮肤区域上的实例光发射驱动器电路。
图18展示根据一些实施方案的用于检测散射光信号LS且用于基于所述散射光信号LS输出输出信号OUT的实例光检测电路的框图。
图19展示根据一些实施方案的用于实施图18的光检测电路的实例电路。
具体实施方式
本发明是针对生物计量监视装置(其在本文以及以引用的方式并入的任何参考案中还可称为“生物计量跟踪装置”、“个人健康监视装置”、“便携式监视装置”、“便携式生物计量监视装置”、“生物计量监视装置”,等等),其通常可描述为可佩戴装置,通常具有小的大小,经设计以由人们相对连续地佩戴。在佩戴时,此些生物计量监视装置搜集关于穿戴者所执行的活动或佩戴者的生理状态的数据。此数据可包含表示佩戴者周围的周围环境或佩戴者与环境的交互的数据,例如,关于佩戴者的移动的运动数据、环境光、环境噪声、空气质量,等,以及通过测量佩戴者的各种生理特性而获得的生理数据,例如心率、排汗水平,等。
如上文所提及,生物计量监视装置在大小上通常为小的以使佩戴者不引人注目。Fitbit提供全部都非常小且非常轻的若干种生物计量监视装置,例如,Fitbit Flex为一种腕带,其具有可插入式生物计量监视装置,其约0.5英寸宽乘1.3英寸长乘0.25英寸厚。生物计量监视装置通常经设计以能够在没有不适感的情况下佩戴长时间周期,且不干扰正常的日常活动。
在一些情况下,生物计量监视装置可利用在生物计量监视装置外部的其它装置,例如,呈胸带上的EKG传感器形式的外部心率监视器可用以获得心率数据,或智能电话中的GPS接收器可用以获得位置数据。在此些情况下,生物计量监视装置可使用有线或无线通信连接与这些外部装置通信。本文中所揭示及论述的概念可应用于独立生物计量监视装置以及利用提供于外部装置中的传感器或功能性(例如,外部传感器、由智能电话提供的传感器或功能性,等)的生物计量监视装置两者。
一般来说,本文中论述的概念可实施于独立生物计量监视装置以及(在适当时)利用外部装置的生物计量监视装置中。
应理解,尽管本文中所包含的概念及论述是在生物计量监视装置的上下文中呈现,但如果适当硬件可用,那么这些概念还可同样应用于其它上下文中。举例来说,许多现代智能电话包含通常包含于生物计量监视装置中的例如加速度计等运动传感器,且如果适当硬件可用于装置中,那么本文中论述的概念可实施于该装置中。在效果上,此可看作将智能电话转变为某一形式的生物计量监视装置(但为大于典型生物计量监视装置且可能不以相同方式佩戴的生物计量监视装置)。此些实施方案也应理解为处于本发明的范围内。
本文中论述的功能性可使用数种不同方法来提供。举例来说,在一些实施方案中,处理器可由存储在存储器中的计算机可执行指令控制以便提供如本文所述的功能性。在其它实施方案中,此功能性可以电路的形式来提供。在又其它实施方案中,此功能性可由受存储在与一或多个专门设计的电路耦合的存储器中的计算机可执行指令控制的一或多个处理器来提供。可用以实施本文中概述的概念的硬件的各种实例包含但不限于专用集成电路(ASIC)、现场可编程门阵列(FPGA),及与存储用于控制通用微处理器的可执行指令的存储器耦合的通用微处理器。
独立生物计量监视装置可以数个形状因数来提供,且可经设计而以多种方式佩戴。在一些实施方案中,生物计量监视装置可经设计以可插入到一可佩戴壳体中或可插入到多个不同的可佩戴壳体中,例如,腕带壳体、带夹壳体(belt-clip case)、挂件壳体、经配置以附接到例如自行车等一件锻炼设备的壳体,等。此些实施方案更详细地描述于例如2013年9月17日申请的第14/029,764号美国专利申请案中,所述美国专利申请案为此目的特此以引用的方式并入。在其它实施方案中,生物计量监视装置可经设计以仅按一种方式佩戴,例如,以不可移除方式集成到腕带中的生物计量监视装置可既定仅佩戴在人的手腕(或可能脚踝)上。
根据本文所述的实施例及实施方案的便携式生物计量监视装置可具有适于耦合到(例如,紧固到、佩戴、被支承,等)用户的身体或衣服的形状及大小。便携式生物计量监视装置的实例展示于图1中;所述实例便携式监视装置可具有用户接口、处理器、生物计量传感器、存储器、环境传感器及/或可与客户端及/或服务器通信的无线收发器。手腕佩戴型便携式生物计量监视装置的实例展示于图2A到2C中。此装置可具有显示器、按钮、电子器件封装,及/或附接带。附接带可经由使用钩环(例如,Velcro)、卡扣及/或具有为其形状的存储器的带子(例如,经由使用弹簧金属带)而紧固到用户。在图2B中,可看到用于配合充电器及/或数据发射缆线的传感器突起及凹部。在图2C中,展示穿过电子器件封装的横截面。值得注意的是传感器突起、主PCB板,及显示器。
便携式生物计量监视装置可从嵌入式传感器及/或外部装置收集一或多个类型的生理及/或环境数据,且将此信息传达或中继到其它装置(包含能够充当可接入因特网的数据源的装置),因而准许例如使用网络浏览器或基于网络的应用程序来检视所收集的数据。举例来说,当用户佩戴着生物计量监视装置时,生物计量监视装置可使用一或多个生物计量传感器(例如,使用一或多个加速度计、陀螺仪及/或其它运动传感器)计算并存储用户的步数。生物计量监视装置可接着将表示用户的步数的数据发射到网络服务(例如,www.fitbit.com)上的账户、计算机、移动电话,或其中可存储、处理且由用户观测数据的保健站。实际上,生物计量监视装置除用户的步数之外或代替用户的步数还可测量或计算多个其它生理度量。这些生理度量包含但不限于能量消耗,例如,卡路里燃烧值、爬上及/或爬下的楼层数、心率、心率变化、心率恢复、位置及/或走向(例如经由GPS、GLONASS或类似系统)、上升、走动速度及/或行进距离、游泳单程计数、泳姿类型及检测到的计数、自行车距离及/或速度、血压、血糖、皮肤传导、皮肤及/或身体温度、经由肌电描记术测量的肌肉状态、通过脑电图描记术测量的大脑活动、体重、身体脂肪、卡路里摄入、从食物的营养摄入、药物摄入、睡眠周期,例如时钟时间、睡眠阶段、睡眠质量及/或持续时间、pH值水平、水合作用水平、呼吸速率,及其它生理度量。生物计量监视装置还可以测量或计算与用户周围的环境有关的度量,例如大气压力、天气条件(例如,温度、湿度、花粉计数、空气质量、雨/雪条件、风速)、光暴露(例如,环境光、UV光暴露、在黑暗中花费的时间及/或持续时间)、噪音暴露、辐射暴露,及磁场。此外,从生物计量监视装置收集数据流的生物计量监视装置或系统可计算从此数据导出的度量。举例来说,装置或系统可经由心率变化、皮肤传导、噪音污染及睡眠质量的组合来计算用户的紧张及/或放松水平。在另一实例中,装置或系统可经由药物摄入、睡眠数据及/或活动数据的组合来确定医疗干预(例如药物)的功效。在又一实例中,生物计量监视装置或系统可经由花粉数据、药物摄入、睡眠及/或活动数据的组合来确定过敏药物的功效。提供这些实例仅为了说明,且并不希望为限制性的或详尽的。传感器装置的进一步实施例及实施方案可见于2011年6月8日申请的标题为“便携式生物计量监视装置及其操作方法(Portable Biometric Monitoring Devices and Methods of OperatingSame)”的美国专利申请案13/156,304及2012年8月6日申请的标题为“Fitbit跟踪器(Fitbit Tracker)”的美国专利申请案61/680,230中,所述美国专利申请案两者的全文特此以引用的方式并入本文中。
生理传感器
本文中论述的生物计量监视装置可使用一个、一些或所有以下传感器来获取生理数据,包含但不限于下表中概述的生理数据。生理传感器及/或生理数据的所有组合及排列既定落入本发明的范围内。生物计量监视装置可包含但不限于以下指定用于获取对应生理数据的一个、一些或所有传感器的类型;实际上,还可或替代地使用其它类型的传感器来获取对应生理数据,且此些其它类型的传感器也既定落入本发明的范围内。此外,生物计量监视装置可从对应传感器输出数据导出生理数据,包含但不限于其可从所述传感器导出的生理数据的数目或类型。
在一个实例实施例中,生物计量监视装置可包含光学传感器以检测、感测、取样及/或产生可用以确定表示例如用户的紧张(或其水平)、血压及/或心率的信息的数据。(见,例如图2A到3C及11A到11G)。在此些实施例中,生物计量监视装置可包含光学传感器,其具有一或多个光源(LED、激光,等)以发出或输出光到用户的身体,以及光检测器(光电二极管、光晶体管,等)以取样、测量及/或检测此光从用户身体的响应或反射且提供用以确定表示用户的紧张(或其水平)、血压及/或心率(例如,例如通过使用光电容积图)的数据的数据。
在一个实例实施例中,用户的心率测量可由通过一或多个传感器(或连接到其的处理电路)确定的准则而触发。举例来说,当来自运动传感器的数据指示静止或具有极少运动的周期时,生物计量监视装置可触发、获取及/或获得心率测量或数据。(见,例如图9、12A及12B)。
图12A说明具有心率或PPG传感器、运动传感器、显示器、振动马达及连接到处理器的通信电路的便携式生物计量监视装置的实例。图12B说明具有心率或PPG传感器、运动传感器、显示器、振动马达、位置传感器、海拔高度传感器、皮肤电导率/湿度传感器及连接到处理器的通信电路的便携式生物计量监视装置的实例。
在一个实施例中,当运动传感器指示用户活动或运动(例如,对于触发、获取及/或获得所需心率测量或数据(例如,用以确定用户的静息心率的数据)不合适或并非最佳的运动)时,用以获取及/或获得所需心率测量或数据的生物计量监视装置及/或传感器可置于或保持于低功率状态中。因为在运动期间进行的心率测量可能不太可靠且可能被运动假象破坏,所以当生物计量监视装置在运动中时,可能需要减小收集心率数据样本的频率(因而减小功率使用)。
在另一实施例中,生物计量监视装置可使用指示用户活动或运动的数据(例如,来自一或多个运动传感器)来调整或修改触发、获取及/或获得所需心率测量或数据的特性(例如,以改善对运动假象的稳健性)。举例来说,如果生物计量监视装置接收到指示用户活动或运动的数据,那么生物计量监视装置可调整或修改用以获取心率数据的传感器的取样率及/或分辨率模式(例如,在用户运动量超过某一阈值的情况下,生物计量监视装置可增大取样率及/或增大用以获取心率测量或数据的传感器的取样分辨率模式)。此外,生物计量监视装置可在用户活动或运动的此些周期(例如,用户运动量超过某一阈值的周期)期间调整或修改运动传感器的取样率及/或分辨率模式。以此方式,当生物计量监视装置确定或检测到此用户活动或运动时,生物计量监视装置可将运动传感器置于较高取样率及/或较高取样分辨率模式以例如实现心率信号的更准确的自适应滤波。(见,例如,图9)。
图9说明基于生物计量监视装置所经历的移动程度而改变其检测用户心率的方式的便携式生物计量监视装置的实例。在其中检测到运动(例如,经由使用加速度计)的情况下,用户可被生物计量监视装置认为是在“活动”,且高取样率心率检测可发生以减小心率测量中的运动假象。可保存及/或显示此数据。在生物计量监视装置确定用户不移动(或相对久坐)的情况下,低取样率心率检测(其不消耗那么多功率)对于测量心率可为适当的且因而可被使用。
值得注意的是,在生物计量监视装置使用光学技术来例如通过使用光电容积图获取心率测量或数据的情况下,可使用运动信号来确定或建立通过心率传感器进行数据获取或测量(例如,同步检测而不是非振幅调制方法)及/或其分析的特定方法或技术。(见,例如图11E)。以此方式,指示用户运动或活动量的数据可致使生物计量监视装置建立或调整由一或多个光学心率传感器使用的数据获取或测量的类型或技术。
举例来说,在一个实施例中,当运动检测器电路检测到或确定生物计量监视装置佩戴者的运动低于阈值时(例如,如果生物计量监视装置确定用户久坐或睡着),生物计量监视装置(或如本文所揭示的心率测量技术)可调整及/或减小光学心率取样的取样率。(见,例如,图9)。以此方式,生物计量监视装置可控制其功率消耗。举例来说,生物计量监视装置可通过减小传感器取样率而减小功率消耗,例如,生物计量监视装置可每10分钟一次或每1分钟10秒地对心率进行取样(经由心率传感器)。值得注意的是,另外或替代地,生物计量监视装置可经由根据运动检测控制数据处理电路分析及/或数据分析技术而控制功率消耗。由此,用户的运动可能影响心率数据获取参数及/或数据分析或其处理。
心率传感器中的运动假象抑制
如上文所论述,可通过使用一或多个算法以移除运动假象来改善由PPG传感器测量的原始心率信号。可使用传感器测量用户的移动(用于确定运动假象),所述传感器包含但不限于加速度计、陀螺仪、接近度检测器、磁力计,等。此些算法的目标是使用从作为指导的其它传感器俘获的移动信号来移除PPG信号的可归因于移动的分量(移动假象)。在一个实施例中,可使用自适应滤波器基于混合卡尔曼滤波器(Kalman filter)及最小均方滤波器或递归最小平方滤波器来移除PPG信号中的移动假象。可接着使用峰值计数算法或功率谱密度估计算法从清洁/经滤波信号提取心率。或者,可使用卡尔曼滤波器或粒子滤波器来移除此些移动假象。
可用以计算心率频率的另一方法是将心率信号模型创建为Y=Ydc+∑ak*coskθ+bk*sinkθ,其中k为谐波分量的阶数,且θ为用于心率的模型参数。此模型可接着使用扩展卡尔曼滤波器或粒子滤波器而拟合到信号。此模型利用以下事实:信号并非正弦的,因此在基本谐波以及多个额外谐波两者处含有功率。
或者,可将信号建模为Y=Ydc+∑ak*sin(k*wmotiont+θ)+∑bk*sin(k*wHRt+φ),其中wmotion直接从加速度计信号(或另一运动传感器信号)估计。
环境光及肤色
环境光及肤色可能使得难以从PPG信号提取用户的心率。可通过从PPG光源打开时的所接收检测光信号的值减去PPG光源关闭时的所接收检测光信号的值而减小环境光的影响(假定两个信号是在彼此紧密接近的时间获得)。
可通过改变PPG光源的强度、从光源发出的光的波长及/或通过使用对应于两个不同波长的所接收信号的比率或差而减小肤色的影响。可通过使用用户输入(例如,用户键入其肤色)、人面部的图像等来确定肤色,且可随后接着使用肤色来校准算法、光源亮度、光源波长及接收器增益。还可通过将具有已知振幅的信号发送到光源且接着测量从光电检测器接收到的信号来测量肤色(及用户佩戴装置的紧密性)对原始PPG信号的影响。此类信号可发送达延长的时间周期(以便经由多个预期心跳俘获数据)且接着求平均以产生不取决于心率的稳定状态数据组。可接着将此振幅与存储在表中的一组值相比以确定算法校准、发射器振幅及接收器增益。
使用试探法的心率估计改善
在获得心率的初始估计(例如,通过功率谱密度估计的峰值计数)之后,其可用于对心率的可允许速率施加界限。可对于每个用户优化这些界限,因为每一用户将具有唯一的心率概况。举例来说,可在每一用户固定不动时估计其久坐心率,且此可用作用户步行时的下限。类似地,如从步数计计算的步行频率的二分之一可充当用于预期心率的良好下限。
心率算法可针对每一用户定制,且可学习用户的心率概况并适于用户的行为及/或特性以便随时间推移表现地更好。举例来说,所述算法可基于来自用户的历史数据而对特定身体活动期间的心率或步行速率设定界限。此可在心率数据被噪音及/或运动假象破坏时提供更好的结果。
HR质量度量
在另一实例实施例中,心率/PPG信号的信号质量度量可用以提供所产生信号的准确度/精确度的量化。取决于此度量的值,确定用户的心率(或例如呼吸等其它PPG导出度量)的算法可采取某些动作,包含让用户拉紧表带、忽略所收集心率数据的某些部分(例如,具有低质量度量的数据段),及对心率数据的某些部分进行加权(例如,具有较高质量度量的数据可在计算心率时给予更大权重)。
在一个实施例中,可如下导出信号质量度量:绘制散布图,其中x轴为时间,且y轴为在那一给定时刻的PPG信号中的峰值的频率。使用此策略待克服的问题是在给定时刻可能存在多个及/或零个峰值。最佳拟合线在此散布图中俘获线性关系。高质量信号应具有良好地拟合到线(在短时间跨度内)的一组峰值,而不良信号将具有不能由线良好地描述的一组峰值。因此,到线的拟合质量提供PPG信号自身的质量的良好度量。
久坐、睡眠及活动分类度量
在又一实例实施例中,当装置确定用户久坐或睡着时,生物计量监视装置可使用传感器来计算心率变化。此处,生物计量监视装置可以较高速率取样模式(相对于非久坐周期或超出预定阈值的用户活动周期)操作传感器以计算心率变化。生物计量监视装置(或外部装置)可使用心率变化作为心脏健康或紧张的指示符。
实际上,在一些实施例中,生物计量监视装置可在用户久坐及/或睡着(例如,如由生物计量监视装置检测及/或确定)时测量及/或确定用户的紧张水平及/或心脏健康。本发明的生物计量监视装置的一些实施例可使用指示心率变化、皮肤电响应、皮肤温度、体温及/或心率的传感器数据来确定用户的紧张水平、健康状态(例如,发烧或感冒的风险、发作,或进展),及/或心脏健康。以此方式,生物计量监视装置的处理电路可确定及/或跟踪随时间推移的用户的“基线”紧张水平及/或随时间推移的心脏“健康”。在另一实施例中,所述装置可在其中用户无运动(或用户的运动低于预定阈值,例如当用户正坐着、躺下、睡着或处于睡眠阶段(例如,深睡眠)时)的一或多个周期期间测量用户的生理参数。此数据还可由生物计量监视装置用作用于紧张相关参数、健康相关参数(例如,发烧或感冒的风险或发作)、心脏健康、心率变化、皮肤电响应、皮肤温度、体温及/或心率的“基线”。
睡眠监视
在一些实施例中,生物计量监视装置可自动地检测或确定用户正试图入睡、正在入睡、睡着及/或从睡眠周期醒来。在此些实施例中,生物计量监视装置可使用生理传感器来获取数据,且生物计量监视装置的数据处理电路可使从生物计量监视装置的传感器收集的心率、心率变化、呼吸速率、皮肤电响应、运动、皮肤温度及/或体温数据的组合相关以检测或确定用户是否正试图入睡、正在入睡、睡着及/或从睡眠周期醒来。作为响应,生物计量监视装置可例如获取生理数据(如本文所描述的类型且以如本文所描述的方式)及/或确定用户的生理条件(如本文所描述的类型且以如本文所描述的方式)。举例来说,用户运动的减少或停止结合用户心率及/或心率变化的改变的减小可指示用户已睡着。心率变化及皮肤电响应的后续改变可接着由生物计量监视装置用以确定用户的睡眠状态在两个或两个以上睡眠阶段之间的转变(例如,转变为较浅及/或较深的睡眠阶段)。用户的运动及/或升高的心率及/或心率变化的改变可由生物计量监视装置用以确定用户已醒来。
实时、开窗或批处理可用以确定在醒着、睡眠与睡眠阶段之间的转变。举例来说,可在时间窗(心率在所述窗的开始处升高且在所述窗的中间(及/或结束)时减小)中测量心率的减小。觉醒与睡眠阶段可由隐式马尔可夫模型使用运动信号(例如,减小的运动强度)、心率、心率变化、皮肤温度、皮肤电响应及/或环境光水平的改变来加以分类。可通过改变点算法(例如,贝叶斯改变点分析)来确定转变点。可通过观测其中用户的心率在预定持续时间内减小至少某一阈值但处于用户的静息心率(其例如观测为用户在睡眠时的最小心率)的预定边限内的周期来确定觉醒与睡眠之间的转变。类似地,可通过观测用户的心率增大到高于用户的静息心率的预定阈值之上而确定睡眠与觉醒之间的转变。
在一些实施例中,生物计量监视装置可为用于监视睡眠的系统的一个组件,其中所述系统包含经配置以与生物计量监视装置通信且适于放置在睡眠者附近的辅助装置(例如,闹钟)。在一些实施方案中,所述辅助装置具有用以受纳生物计量监视装置以进行安全保管、通信及/或充电的形状以及机械及/或磁性接口。然而,所述辅助装置还可通用于生物计量监视装置,例如未经特定设计以与生物计量监视装置物理地介接的智能电话。可经由有线通信接口或经由无线通信接口及例如蓝牙(包含例如蓝牙4.0及蓝牙低能量协议)、RFID、NFC或WLAN等协议来提供生物计量监视装置与辅助装置之间的通信。辅助装置可包含用以辅助睡眠监视或环境监视的传感器,例如测量环境光、噪音及/或声音(例如,以检测打鼾)、温度、湿度及空气质量(花粉、灰尘、CO2,等)的传感器。在一个实施例中,辅助装置可与例如www.fitbit.com等的外部服务或服务器(例如,个人计算机)通信。可经由有线(例如,以太网、USB)或无线(例如,WLAN、蓝牙、RFID、NFC、蜂窝式)电路及用以传送数据到辅助装置及/或从辅助装置传送数据的协议来实现与辅助装置的通信。辅助装置还可充当用以将数据从例如www.fitbit.com或其它服务(例如,例如新闻、社交网络更新、电子邮件、日历通知等数据)等外部服务或服务器(例如,个人计算机、移动电话、平板计算机)传送到生物计量监视装置及/或将数据从生物计量监视装置传送到所述外部服务或服务器的中继器。可使用来自一个或两个装置的数据在一个或两个装置或外部服务(例如,云服务器)上执行用户睡眠数据的计算。
辅助装置可配备有显示器以显示由辅助装置获得的数据或由生物计量监视装置、外部服务传送到其的数据或来自生物计量监视装置、辅助装置及/或外部服务的数据的组合。举例来说,辅助装置可显示指示用户的心率、当天的总步数、活动及/或睡眠目标实现、当天的天气(由辅助装置测量或由外部服务针对一位置而报告)等的数据。在另一实例中,辅助装置可显示与用户相对于其他用户的排名有关的数据,例如总的周步数。在又一实施例中,生物计量监视装置可配备有显示器以显示由生物计量监视装置、辅助装置、外部服务或所述三个源的组合获得的数据。在其中第一装置配备有唤醒报警(例如,振动马达、扬声器)的实施例中,辅助装置可充当备用报警器(例如,使用音频扬声器)。辅助装置还可具有接口(例如,显示器及按钮或触摸屏)以创建、删除、修改或启用第一及/或辅助装置上的报警器。
基于传感器的待用模式
在另一实施例中,生物计量监视装置可自动地检测或确定其是否附接到用户、安置在用户身上及/或由用户佩戴。响应于检测或确定生物计量监视装置并未附接到用户、安置在用户身上及/或由用户佩戴,生物计量监视装置(或其所选部分)可实施或置于低功率操作模式,例如,光学心率传感器及/或电路可置于较低功率或睡眠模式。举例来说,在一个实施例中,生物计量监视装置可包含一或多个光检测器(光电二极管、光晶体管,等)。如果在给定光强度设定(例如,相对于由为生物计量监视装置的部分的光源发出的光)下,一或多个光检测器提供低返回信号,那么生物计量监视装置可将数据解释为指示装置未被佩戴。在此类确定之后,装置可即刻减小其功率消耗,例如通过除其它装置电路或显示器之外还“停用”或调整紧张及/或心率检测传感器及/或电路的操作条件(例如,通过减小光源及/或检测器的工作循环或停用光源及/或检测器、关掉装置显示器,及/或停用或衰减相关联电路或其部分)。此外,生物计量监视装置可周期性地确定(例如,每秒一次)是否应将紧张及/或心率检测传感器及/或相关联电路的操作条件恢复到正常操作条件(例如,光源、检测器及/或相关联电路应返回到正常操作模式用于进行心率检测)。在另一实施例中,生物计量监视装置可在检测到可触发事件之后(例如,在检测到装置的运动(例如,基于来自一或多个运动传感器的数据)及/或检测到经由用户接口的用户输入(例如,与生物计量监视装置的触按、碰撞或拨动交互)之后)即刻恢复紧张及/或心率检测传感器及/或相关联电路的操作条件。在一些相关实施例中,出于功率节省目的,生物计量监视装置可在用户活动度不高时将其心率测量收集的默认速率减小到例如每分钟一次测量,且用户可具有例如通过推动按钮而将装置置于按需求或以更快速率(例如,每秒一次)产生测量的操作模式。
光学传感器
在一个实施例中,光学传感器(源及/或检测器)可安置在生物计量监视装置的内部或皮肤侧(即,生物计量监视装置的接触、触碰及/或面向用户皮肤的侧面(下文中称为“皮肤侧”))上。(见,例如,图2A到3C)。在另一实施例中,光学传感器可安置在装置的一或多个侧面上,包含皮肤侧及装置的面向或暴露于周围环境的一或多个侧面(环境侧)。(见,例如,图6A到7)。
图6A说明具有带子的便携式监视装置的实例;光学传感器及光发射器可放置在所述带子上。图6B说明具有显示器及腕带的便携式生物计量监视装置的实例。此外,光学PPG(例如,心率)检测传感器及/或发射器可位于生物计量监视装置的侧面上。在一个实施例中,这些各者可位于侧面安裝式按钮中。
图7描绘用户按压便携式生物计量监视装置的侧面以从侧面安裝式光学心率检测传感器进行心率测量。生物计量监视装置的显示器可展示是否已检测到心率及/或显示用户的心率。
值得注意的是,来自此些光学传感器的数据可表示生理数据及/或环境数据。实际上,在一个实施例中,光学传感器提供、获取及/或检测来自生物计量监视装置的多个侧面的信息,而不管传感器是否安置在所述多个侧面中的一或多者上。举例来说,光学传感器可获得与环境的环境光条件有关的数据。
在光学传感器安置或布置在生物计量监视装置的皮肤侧上的情况下,在操作中,生物计量监视装置中的光源可在用户的皮肤上发光,且作为响应,生物计量监视装置中的光检测器可取样、获取及/或检测来自皮肤(及来自身体内部)的对应反射及/或发出的光。一或多个光源及光检测器可按增强或优化信噪比及/或用以减小或最小化所述光源及光检测器的功率消耗的阵列或模式来布置。这些光学传感器可取样、获取及/或检测生理数据,所述生理数据可接着经处理或分析(例如,通过常驻处理电路)以获得表示例如用户的心率、呼吸、心率变化、氧饱和度(SpO2)、血容量、血糖、皮肤湿气及/或皮肤色素沉着水平的数据。
光源可发出具有特定于或针对于待收集的生理数据的类型的一或多个波长的光。类似地,光学检测器可取样、测量及/或检测也特定于或针对于待收集的生理数据的类型及/或待评估或确定的(用户的)生理参数的一或多个波长。举例来说,在一个实施例中,发出具有在绿光谱中的波长的光的光源(例如,发出具有对应于绿光谱的波长的光的LED)及经定位以取样、测量及/或检测与此光对应的响应或反射的光电二极管可提供可用以确定或检测心率的数据。相比之下,发出具有在红光谱中的波长的光的光源(例如,发出具有对应于红光谱的波长的光的LED)及发出具有在红外线光谱中的波长的光的光源(例如,发出具有对应于IR光谱的波长的光的LED)以及经定位以取样、测量及/或检测此光的响应或反射的光电二极管可提供可用以确定或检测SpO2的数据。
实际上,在一些实施例中,由光源(例如LED(或一组LED))发出的光的色彩或波长可根据所获取的生理数据的预定类型或操作条件而加以修改、调整及/或控制。此处,可调整及/或控制由光源发出的光的波长以优化及/或增强由检测器获得及/或取样的生理数据的“质量”。举例来说,当用户的皮肤温度或环境温度较低时,由LED发出的光的色彩可从红外线切换到绿以便增强对应于心脏活动的信号。(见,例如图11D)。
在一些实施例中,生物计量监视装置可在外壳中包含窗口(例如,用以临时审查、不透明的窗口)以促进在光学传感器与用户之间的光发射。此处,所述窗口可准许例如一或多个LED将光(例如,具有所选波长)发出到用户的皮肤上且准许光的响应或反射经由所述窗口向回通过以由例如一或多个光电二极管进行取样、测量及/或检测。在一个实施例中,与发出及接收光有关的电路可安置在装置外壳的内部且在塑料或玻璃层(例如,喷涂有红外线墨水)或红外线透镜或滤波器(其准许红外光通过但不准许在人视觉光谱中的光通过)的下方或后方。以此方式,所述窗口的光透射不可由人眼所见。
生物计量监视装置可使用光管或其它透光结构以促进光从光源发射到用户的身体及皮肤。(见,例如,图4A到5)。就此而言,在一些实施例中,光可经由此些光管或其它透光结构从光源导向用户的皮肤。来自用户身体的散射光可经由相同或类似结构向回导向生物计量监视装置中的光学电路。实际上,所述透光结构可使用促进低光损失的材料及/或光学设计(例如,透光结构可包含促进光收集的透镜,且透光结构的部分可用反射材料涂布或邻近于反射材料以促进光在透光结构内的内反射),由此改善光检测器的信噪比及/或促进减小光源及/或光检测器的功率消耗。在一些实施例中,光管或其它透光结构可包含选择性地发射具有一或多个特定或预定波长的光(发射效率比具有其它波长的光的发射效率高)的材料,由此充当带通滤波器。此类带通滤波器可经调谐以改善特定生理数据类型的信号。举例来说,在一个实施例中,可实施模内贴标或“IML”透光结构,其中所述透光结构使用具有预定或所需光学特性的材料来创建特定带通特性,以便例如使红外光的通过效率高于具有其它波长的光(例如,具有在人可见光谱中的波长的光)。在另一实施例中,生物计量监视装置可使用具有光学不透明部分(包含某些光学特性)及光学透明部分(包含不同于光学不透明部分的光学特性)的透光结构。此类透光结构可经由双注射或两步模制工艺来提供,其中将光学不透明材料与光学透明材料单独地注入到模具中。实施此类透光结构的生物计量监视装置可取决于穿过透光结构的光行进方向而针对不同波长包含不同光透射特性。举例来说,在一个实施例中,光学不透明材料可反射特定波长范围以便更高效地将光从用户的身体发射回到光检测器(其可具有相对于所发出光的波长的不同波长)。
在另一实施例中,反射结构可放置在光发射器及/或光检测器的视野中。举例来说,具有将光从光发射器引导到用户的皮肤及/或从用户的皮肤引导到光检测器的孔(或经由执行此取道行进的透光结构)的侧面可覆盖在反射材料(例如,镀铬)中以促进光透射。反射材料可增大将光从光源传输到皮肤且接着从皮肤传输回到检测器的效率。可用光学环氧树脂或其它透明材料填充反射性涂布孔以防止液体进入装置主体同时仍允许以低透射损失透射光。
在实施透光结构(例如,经由IML创建或形成的结构)的另一实施例中,此些透光结构可包含由不透明材料组成的掩模,所述不透明材料限制一个、一些或所有光源及/或检测器的孔径。以此方式,透光结构可选择性地“界定”将光发射到或从其检测光的用户身体的优选体积。值得注意的是,可结合本文中描述及/或说明的概念使用或实施其它掩模配置;用以例如改善光电容积图信号且结合本文中所描述及/或说明的概念实施的所有此些遮蔽配置既定落入本发明的范围内。
在另一实施例中,光发射器及/或检测器可经配置以经由装置外部中的孔或一系列孔发射光。可用透光环氧树脂(例如光学环氧树脂)填充此孔或此系列孔。环氧树脂可形成导光柱,其允许光从光发射器发射到皮肤以及从皮肤发射回到光检测器。此技术还具有以下优点:环氧树脂可形成防水密封,从而防止水、汗液或其它液体通过装置外部上的孔进入装置主体,所述孔允许光发射器及检测器将光发射到生物计量监视装置主体外部以及从生物计量监视装置主体外部接收光。具有高热导率的环氧树脂可用以帮助防止光源(例如,LED)过热。
在本文所述的透光结构中的任一者中,光学器件(透光结构)或装置主体的暴露表面可包含硬涂漆、硬浸涂物或光学涂层(例如抗反射、抗刮擦、防雾及/或波长带阻挡(例如紫外光阻挡)涂层)。此些特性或材料可改善生物计量监视装置的操作、准确度及/或耐久性。
图4A说明一个潜在PPG光源及光电检测器几何形状的实例。在此实施例中,两个光源放置在光电检测器的任一侧面上。这三个装置位于腕带型生物计量监视装置(其侧面面向用户的皮肤)的背面上的突起中。
图4B及4C说明具有光电检测器及两个LED光源的PPG传感器的实例。这些组件放置于在背侧上具有突起的生物计量监视装置中。光管光学连接LED及光电检测器与用户皮肤的表面。在皮肤下方,来自光源的光从身体中的血液散射,其中的一些可散射或反射回到光电检测器中。
图5说明具有拥有突起的经优化PPG检测器的生物计量监视装置的实例,所述突起具有弯曲侧面以免使用户感到不适。此外,将光电检测器及LED光学耦合到佩戴者的皮肤的光管的表面为波状以最大化LED及光电检测器与光管之间的光通量耦合。光管的面向用户皮肤的末端也为波状。此轮廓可使光聚焦或散焦以优化PPG信号。举例来说,所述轮廓可使所发射光聚焦到符合可能发生血液流动的区域的某一深度及位置。这些焦点的顶点可重叠在一起或极为接近以使得光电检测器接收最大可能量的散射光。
在一些实施例中,生物计量监视装置在装置的皮肤侧上可包含凹面或凸面形状(例如透镜),以使光朝向皮肤中的特定深度处的特定体积聚焦且增大将光从所述点收集到光电检测器的效率。(见,例如,图4A到5)。在此类生物计量监视装置也使用光管以选择性地且可控制地路由光的情况下,对导光柱的末端进行塑形而使其具有一定程度的圆柱度(例如,导光柱的末端可为由名义上平行于皮肤侧的圆柱体轴线界定的圆柱形表面(或其部分))可为有利的(例如,替代使用轴向对称的透镜)。举例来说,在腕带式生物计量监视装置中,此类圆柱形透镜可经定向而使得圆柱体轴线名义上平行于佩戴者的前臂,此举可具有限制从平行于人的前臂的方向进入此类透镜的光的量且增大从垂直于人的前臂的方向进入此类透镜的光的量的效果,因为与被绑带遮蔽的方向(即,垂直于用户的前臂)相比,环境光更可能从未被生物计量监视装置的绑带遮蔽的方向(即沿着用户的前臂轴线)到达传感器检测区域,此类配置可通过增大将光从发射器传送到用户皮肤上或其中的效率同时减少由光电检测器检测或收集的“杂散”光而改善信噪比。以此方式,由光电检测器取样、测量及/或检测的信号由较少的杂散光及对此所发射光的较多的用户皮肤/身体响应(表示对所发射光的响应的信号或数据)组成。
在另一实施例中,透光环氧树脂可模制成凹面或凸面形状以便也为传感器提供有益的光学特性。举例来说,在涂覆透光环氧树脂期间,由所述环氧树脂形成的透光结构的顶部可经塑形为凹面表面以使得光更有效地耦合到透光结构。
在一个实施例中,光学传感器的组件可定位在装置的皮肤侧上,且经布置或定位以减小或最小化(i)光源及/或相关联检测器与(ii)用户皮肤之间的距离。见例如图3A,其提供实例便携式监视装置的传感器突起的横截面图。在图3A中,两个光源(例如,LED)放置在光电检测器的任一侧面上以实现PPG感测。挡光材料放置在光源与光电检测器之间以防止来自光源的任何光到达光电检测器而不首先退出生物计量监视装置的主体。柔性透明层可放置在传感器突起的下部表面上以形成密封。此透明层可服务于其它功能,例如防止液体在放置光源或光电检测器的位置处进入装置。可经由模内贴标或“IML”形成此透明层。光源及光电检测器可放置在柔性PCB上。
此类配置可改善光学传感器的组件与用户身体之间的光通量耦合效率。举例来说,在一个实施例中,光源及/或相关联检测器可安置在柔性或可弯曲衬底上,所述柔性或可弯曲衬底可挠曲,从而允许生物计量监视装置的皮肤侧(其可由顺应性材料制成)符合(例如,无需额外处理)或能够经塑形(或顺应性的)以符合生物计量监视装置在正常操作期间耦合到或附接到的身体部分(例如,用户的手腕、手臂、脚踝及/或腿)的形状,以使得光源及/或相关联检测器接近于用户的皮肤(即,在装置的皮肤侧与用户皮肤的邻近表面之间几乎无间隙)。见例如图6A。在一个实施例中,光源及/或相关联检测器可安置在平坦柔性缆线(Flat Flex Cable)或“FFC”或柔性PCB上。在此实施例中,柔性或可弯曲衬底(例如,FFC或柔性PCB)可连接到装置内的其上安置有其它组件(例如,数据处理电路)的第二衬底(例如,PCB)。不同高度的光学组件可安裝到柔性衬底的不同“指形件”且经按压或紧固到外壳表面,使得光学组件与外壳表面齐平。在一个实施例中,第二衬底可为相对无柔性或不可弯曲衬底,固定在装置内,其上安置有其它电路及组件(无源及/或有源)。
图3B描绘实例便携式监视装置的传感器突起的横截面图;此突起类似于图3A中所呈现的突起,只是光源及光电检测器放置在平坦及/或硬质的PCB上。图3C提供实例PPG传感器实施方案的另一横截面图。值得注意的是,此PPG传感器中没有突起。此外,液体垫圈及/或压敏粘合剂用以防止液体进入生物计量监视装置主体。
生物计量监视装置的一些实施例可适于佩戴或携带在用户身体上。在包含光学心率监视器的一些实施例中,装置可为例如手表或手镯等手腕佩戴式或手臂安装式装饰品。(见,例如,图2A到7)。在一个实施例中,光学心率监视器的光学元件可位于生物计量监视装置的内部或皮肤侧上,例如在生物计量监视装置佩戴在手腕上时面向手腕的顶部(即,光学心率监视器可邻近于且面向手腕)。(见,例如,图2A到3C)。
在另一实施例中,光学心率监视器可位于生物计量监视装置的一或多个外部或环境侧表面上。(见,例如,图6B及7)。在此些实施例中,用户可用相反手的手指触碰光学窗口(光学心率监视器的光学元件位于其后方)以起始心率测量(及/或与心率有关的其它度量,例如心率变化)及/或收集可用以确定用户的心率(及/或与心率有关的其它度量)的数据。(见,例如,图6B)。在一个实施例中,生物计量监视装置可通过检测光电二极管上的入射光的(突然)下降而触发或起始测量,例如,当用户的手指放置在光学窗口上时。另外或替代地,可由基于红外线的接近度检测器及/或电容式触碰/接近度检测器(其可与其它检测器分开)来触发心率测量(或其它此类度量)。此种基于红外线的接近度检测器及/或电容式触碰/接近度检测器可安置在光学窗口中或其上及/或功能上、电及/或物理地耦合到光学窗口以检测或确定例如用户手指的存在。
在又一实施例中,生物计量监视装置可包含按钮,所述按钮在被按下时触发或起始心率测量(及/或与心率有关的其它度量)。所述按钮可安置在极接近光学窗口处以在手指放在光学窗口上时方便用户按压按钮。(见,例如,图7)。在一个实施例中,光学窗口可嵌入在推动按钮中。因而,当用户按压按钮时,其可触发对按下按钮的手指的测量。实际上,可赋予按钮某种形状及/或按压阻力,其增强或优化按钮抵抗手指的压力分布以在测量或数据获取期间提供高信噪比。在其它实施例中(未说明),生物计量监视装置可呈夹片、光滑对象、挂件、脚镯、带等适于佩戴在身体上、夹到或安裝到一件衣服、存放在衣服中(例如,口袋中)或存放在装饰品(例如,手提包)中的形式。
在一个特定实施例中,生物计量监视装置可在装置的皮肤侧或内侧上包含突起。(见,图2A到6A)。当耦合到用户时,所述突起可比周围装置主体用更大力啮合皮肤。在此实施例中,光学窗口或透光结构(其两者皆在上文详细论述)可形成突起的一部分或并入在突起中。光学传感器的光发射器及/或检测器可在窗口或透光结构附近安置或布置在突起中。(见,例如,图2B及6A)。由此,当附接到用户的身体时,生物计量监视装置的突起的窗口部分可比周围装置主体用更大力啮合用户的皮肤,由此在用户的皮肤与光学窗口之间提供更牢固的物理(及光学)耦合。即,所述突起可在生物计量监视装置与用户的皮肤之间引起持久接触,其可减少由光电检测器测量的杂散光的量、减小生物计量监视装置与用户之间的相对运动,及/或提供对用户皮肤的改善的局部压力;所有这些可提高所关注的心脏信号的质量。值得注意的是,所述突起可含有受益于与用户皮肤的紧密接近及/或牢固接触的其它传感器。这些传感器可除了心率传感器之外或替代心率传感器而包含在内,且包含例如皮肤温度传感器(例如,利用通过热环氧树脂接合到突起的外表面的光学窗口或热敏电阻器的非接触式热电堆)、脉搏血氧定量计、血压传感器、EMG或皮肤电响应(GSR)传感器等传感器。
另外或替代地,生物计量监视装置的皮肤侧的一部分可包含摩擦增强机构或材料。举例来说,生物计量监视装置的皮肤侧可包含多个凸起或凹陷的区或部分(例如,小凸块、隆脊、凹槽及/或麻点)。此外,摩擦增强材料(例如,例如硅氧烷等凝胶样材料或其它弹性材料)可安置在皮肤侧上。实际上,由凝胶制成的装置背面也可提供摩擦,同时也改善用户舒适度且防止杂散光进入。如上文所指出,摩擦增强机构或材料可单独地或结合如本文所描述的具有突起的生物计量监视装置来使用。就此而言,生物计量监视装置可在装置的突起部分中或上包含多个凸起或凹陷的区或部分(例如,小凸块、隆脊、凹槽及/或麻点)。实际上,此些凸起或凹陷的区或部分可并入/嵌入到突起的窗口部分中或上。另外或替代地,突起部分可由摩擦增强材料(例如,例如硅氧烷等凝胶样材料)组成或用所述摩擦增强材料涂布。值得注意的是,突起及/或摩擦的使用可通过减小生物计量监视装置(且因而传感器)在操作过程中(尤其是用户正在运动时)相对于用户的皮肤的运动而改善对应于某些参数(例如,心率、心率变化、皮肤电响应、皮肤温度、皮肤着色、热通量、血压、血糖等)的数据获取的测量准确度。
生物计量监视装置的内部或皮肤侧外壳的一些或全部还可由金属材料(例如,钢,不锈钢,铝,镁或钛)组成。此类配置可提供结构硬度。(见,例如,图2B)。在此类实施例中,装置主体可经设计以通过使用低致敏性“无镍”不锈钢而为低致敏性的。值得注意的是,使用(至少在某些位置中)至少略含二价铁的某类型的金属(例如,为二价铁的不锈钢等级)可为有利的。在此些实施例中,生物计量监视装置(其中其包含可再充电的能量源(例如,可再充电电池))可经由连接器与充电器互连,所述连接器使用耦合到二价铁材料的磁体而将自身紧固到生物计量监视装置。此外,生物计量监视装置还可使用此磁性特性啮合底座或扩展坞以促进数据传送。此外,此类外壳可提供增强型电磁屏蔽,其将增强光学心率传感器及心率数据获取过程/操作的完整性及可靠性。此外,皮肤温度传感器可例如通过热环氧树脂物理耦合且热耦合到金属主体以感测用户的温度。在包含突起的实施例中,传感器可定位在突起附近或突起中以提供到用户皮肤的牢固接触及局部化的热耦合。
在优选实施例中,光学传感器的一或多个组件(在一个实施例中,其可位于突起中,及/或在另一实施例中,其可安置或放置地与生物计量监视装置的表面齐平)经由不漏液密封(即,防止液体进入生物计量监视装置的主体中的方法/机构)而附接、固定、包含及/或紧固到生物计量监视装置。例如,在一个实施例中,由金属(例如但不限于不锈钢、铝、镁或钛)或硬质塑料制成的装置背面可提供足够坚硬以维持装置的结构完整性同时适应传感器封装的不漏水密封的结构。(见,例如,图2B到3C)。
在优选实施例中,光学传感器的封装或模块可通过压敏粘着剂及液体垫圈连接到装置。见例如图3C,其提供PPG传感器实施方案的另一横截面图。值得注意的是,此PPG传感器中没有突起。此外,液体垫圈及/或压敏粘合剂用以防止液体进入装置主体。举例来说,如果在光学传感器封装/模块与装置主体之间需要更坚固或更耐久的连接,那么还可使用螺钉、铆钉等等。值得注意的是,本实施例还可使用例如戈尔特斯(Gore-Tex)、o形环、密封剂、油脂或环氧树脂等防水胶、疏水性隔膜来将光学传感器封装/模块紧固或附接到生物计量监视装置主体。
如上文所论述,生物计量监视装置可包含安置在皮肤侧或内侧上的包含高反射率特性的材料,例如经抛光不锈钢、反射性油漆及经抛光塑料。以此方式,从装置的皮肤侧散射的光可反射回到皮肤以便例如改善光学心率传感器的信噪比。实际上,与非反射性(或较小反射性)的装置主体背面相比,此有效地增大输入光信号。值得注意的是,在一个实施例中,生物计量监视装置的皮肤侧或内侧的色彩可经选择以提供某些光学特性(例如,反射特定或预定波长的光),以便改善关于某些生理数据类型的信号。举例来说,在生物计量监视装置的皮肤侧或内侧为绿色的情况下,可归因于对应于绿光谱的波长的光的优选发射而增强心率的测量。在生物计量监视装置的皮肤侧或内侧为红色的情况下,可归因于对应于红光谱的波长的光的优选发射而增强SpO2的测量。在一个实施例中,可根据所获取的生理数据的预定类型而修改、调整及/或控制生物计量监视装置的皮肤侧或内侧的色彩。
图11A描绘光学心率传感器的实例示意性框图,其中光从光源朝向用户的皮肤发出,且此光从用户的皮肤/身体内部的反射由光检测器感测,来自光检测器的信号随后通过模/数转换器(ADC)数字化。可修改光源的强度(例如,经由光源强度控制模块)以维持合乎需要的反射信号强度。举例来说,可减小光源强度以避免来自光检测器的输出信号饱和。作为另一实例,可增大光源强度以将来自光检测器的输出信号维持在所需输出值范围内。值得注意的是,系统的主动控制可经由线性或非线性控制方法(例如,比例-积分-微分(PID)控制、固定步长控制、预测性控制、神经网络、滞后,等等)来实现,且还可使用从装置中的其它传感器导出的信息(例如运动、皮肤电响应,等)。提供图11A用于说明而非将此些系统的实施方案限于例如集成在MCU内的ADC或在这方面使用MCU。其它可能实施方案包含使用一或多个内部或外部ADC、FPGA、ASIC,等。
在另一实施例中,具有光学心率传感器的系统可并入取样及保持电路(或等效物)的使用以在关断或衰减光源以节省功率时维持光检测器的输出。在其中光检测器输出的相对改变至关重要的实施例(例如,心率测量)中,取样及保持电路可不必维持光检测器的输出的准确复制。在此些情况下,取样及保持可精简为例如二极管(例如,肖特基二极管)及电容器。取样及保持电路的输出可呈现给模拟信号调节电路(例如,萨林-基(Sallen-Key)带通滤波器、电平移位器,及/或增益电路)以调节并放大所关注频带内的信号(例如,对于心脏或呼吸功能,0.1Hz到10Hz),其可接着通过ADC数字化。见例如图11B。
在操作中,例如那些已经在本文所述的电路拓扑(例如取样及保持电路)的电路拓扑移除信号的DC及低频分量,且帮助解析与心率及/或呼吸有关的AC分量。实施例还可包含针对可变增益设定的模拟信号调节电路,其可经控制以提供合适的信号(例如,不饱和)。光源、光检测器及/或取样及保持的性能特性(例如,爬升率及/或增益带宽乘积)及功率消耗可显著高于模拟信号调节电路以实现光源的快速工作循环。在一些实施例中,提供给光源及光检测器的功率可与提供给模拟信号调节电路的功率单独地控制以提供额外功率节省。替代地或另外,电路可使用例如启用、停用及/或关机等功能性来实现功率节省。在另一实施例中,光检测器及/或取样及保持电路的输出可除了模拟信号调节电路之外或替代模拟信号调节电路而由ADC进行取样以控制光源的光强度或测量所关注的生理参数(例如,当模拟信号调节电路在改变光强度设定之后尚未稳定时)。值得注意的是,因为所关注的生理信号通常相对于ADC的固有分辨率小,因此在一些实施例中,可调整ADC的参考电压及/或增益以增强信号质量及/或可对ADC进行过取样。在又一实施例中,装置可通过例如过取样、调整ADC的参考电压及/或增益或使用高分辨率ADC而仅数字化取样及保持电路的输出。见例如图11C。
PPG DC偏移移除技术
在另一实施例中,传感器装置可并入差分放大器以放大光检测器的输出的相对改变。见例如图11F。在一些实施例中,可从光检测器的输出减去数字平均或数字低通滤波信号。此经修改信号可接着被放大,随后其被ADC数字化。在另一实施例中,可经由例如使用取样及保持电路及模拟信号调节电路而从光检测器的输出减去模拟平均或模拟低通滤波信号。提供给光源、光检测器及差分放大器的功率可与提供给模拟信号调节电路的功率单独地控制以改善功率节省。
在另一实施例中,可从原始PPG信号减去一信号(电压或电流,取决于特定传感器实施方案)以移除原始PPG信号中的任何偏置,且因此增大含有心率(或其它循环参数,例如心率变化)信息的PPG信号的增益或放大所述PPG信号。此信号可在工厂中设定到默认值,基于用户的特定皮肤反射性、吸收及/或颜色而设定到一值,及/或可取决于来自环境光传感器的反馈或取决于PPG信号自身的分析而改变。举例来说,如果确定PPG信号具有大DC偏移,那么可从PPG信号减去恒定电压以移除DC偏移且实现较大增益,因此改善PPG信号质量。在此实例中,DC偏移可起因于从PPG光源到达光电检测器的环境光(例如,来自太阳或来自室内照明)或从PPG光源反射的光。
在另一实施例中,差分放大器可用以测量当前与先前样本之间的差而非每一信号的量值。因为每一样本的量值通常比每一样本之间的差大得多,所以可将较大增益应用于每一测量,因此改善PPG信号质量。可接着整合所述信号以获得原始时域信号。
在另一实施例中,光检测器模块可并入具有可变增益的跨阻抗放大器级。此类配置可避免或最小化因明亮的环境光及/或从光源发射的明亮光而饱和。举例来说,跨阻抗放大器的增益可通过跨阻抗放大器的负反馈路径中的可变电阻器及/或一组多路复用电阻器而自动地减小。在一些实施例中,装置可通过对光源的强度进行振幅调制且接着对光检测器的输出进行解调(例如,同步检测)而并入来自环境光的极少光学屏蔽。见例如图11E。在其它方面中,如果环境光具有足够亮度以获得心率信号,那么光源可减小亮度及/或完全关掉。
在又一实施例中,可组合地使用前述处理技术以光学地测量用户的生理参数。见例如图11G。此拓扑可允许系统以低功率测量状态及电路拓扑(在适用时)操作且视需要而适于较高功率测量状态及电路拓扑。举例来说,系统可在用户固定不动或久坐时使用模拟信号调节电路测量所关注的生理参数(例如,心率)以减小功率消耗,但在用户活动时直接切换到对光检测器输出的过取样式取样。
在其中生物计量监视装置包含心率监视器的实施例中,处理信号以获得心率测量可包含滤波及/或信号调节,例如带通滤波(例如,巴特沃斯(Butterworth)滤波)。为抵消信号中可能发生的大的瞬变及/或改善所述滤波的收敛,可使用例如神经网络或爬升率限制等非线性方法。来自装置上的传感器的数据(例如运动、皮肤电响应、皮肤温度等)可用以调整所使用的信号调节方法。在特定操作条件下,可通过对时间窗内的信号峰值的数目进行计数或通过利用信号的基本频率或第二谐波(例如,经由快速傅立叶变换(FFT))而测量用户的心率。在其它情况下,例如在用户运动时获取的心率数据,可对所提取的信号及频谱峰值执行FFT,其可接着随后由多目标跟踪器(其开始、继续、合并及删除对所述频谱的跟踪)加以处理。在一些实施例中,可对运动信号执行一组类似操作,且输出可用以进行活动鉴别(例如,久坐、步行、跑步、睡眠、躺下、坐着、骑车、打字、椭圆训练、体重训练),其用以辅助多目标跟踪器。举例来说,可能确定用户固定不动且已开始移动。此信息可用以优先使跟踪继续部分偏向于增大频率。类似地,活动鉴别器可确定用户已停止跑步或正较慢地跑步,且此信息可用以优先使跟踪继续部分偏向于减小频率。可用单扫描或多扫描多目标跟踪器拓扑实现跟踪,例如联合概率数据关联跟踪器、多假设跟踪、最接近的邻近者,等。可经由卡尔曼滤波器、样条回归、粒子滤波器、交互式多模型滤波器等完成跟踪器中的估计及预测。跟踪选择器模块可使用来自多频谱跟踪器的输出轨迹且估计用户的心率。所述估计可取为最大可能性轨迹、轨迹的对照其为心率的概率的加权总和等。此外,活动鉴别器可影响获得心率估计的选择及/或融合。举例来说,如果用户正在睡眠、坐着、躺下或久坐,那么先前概率可能偏向于40到80bpm范围中的心率;而如果用户正在跑步、慢跑或进行其它剧烈锻炼,那么先前概率可能偏向于90到180bpm范围中的升高的心率。活动鉴别器的影响可基于用户的速度。当用户不移动时,估计可移向信号的基本频率(或完全通过其获得)。可基于指示活动改变的准则选择对应于用户心率的轨迹;举例来说,如果用户从固定不动开始行走,那么可优先选择说明朝向较高频率的偏移的轨迹。
良好心率信号的获取可经由生物计量监视装置或与生物计量监视装置进行有线或无线通信的另一装置(例如,装备有蓝牙低能量的移动电话)上的显示器指示给用户。在一些实施例中,生物计量监视装置可包含信号强度指示器,其由可由用户检视的LED的脉搏来表示。脉搏可经定时或相关以与用户的心跳一致。LED的强度、脉搏速率及/或色彩可经修改或调整以暗示信号强度。举例来说,较明亮的LED强度可表示较强的信号或处于RGB LED配置,绿色LED可表示较强的信号。
在一些实施例中,可通过信号在例如0.5Hz到4Hz的频带中的能量(例如,平方和)来确定心率信号的强度。在其它实施例中,生物计量监视装置可具有可并入或建构到外壳及/或带子中的应变计、压力传感器、力传感器,或其它接触指示传感器(在生物计量监视装置附接到带子(如手表、手镯及/或臂带)或用带子(其可接着紧固到用户)安裝的那些实施例中)。可单独地基于来自这些接触传感器的数据或结合来自心率信号的数据来计算信号质量度量(例如,心率信号质量)。
在另一实施例中,生物计量监视装置可经由光电检测器阵列(例如光电二极管或CCD相机的栅格)来以光学方式监视心率。可经由对皮肤的特征跟踪及/或使用加速度计及陀螺仪的自适应运动校正来跟踪光学装置相对于皮肤的运动。检测器阵列可与皮肤接触或从皮肤偏移小的距离。可主动地控制(例如,通过马达)检测器阵列及其相关联光学器件以维持目标的稳定图像并获取心率信号。可使用来自运动传感器(例如,陀螺仪)的信息或图像特征来实现此光学机械稳定化。在一个实施例中,生物计量监视装置可使用照亮皮肤的相干或非相干光源及光电检测器阵列(其中每一光电检测器与用于比较相邻检测器之间的强度(从而获得所谓的斑点模式,其可使用多种图像跟踪技术加以跟踪,例如光流、模板匹配、边缘跟踪等)的比较器相关联)来实施相对运动消除。在此实施例中,用于运动跟踪的光源可不同于用于光学心率监视的光源。
在另一实施例中,生物计量监视装置可由沿着装置的表面分布的多个光电检测器(还称为“光检测器”)及发光器(photoemitter)(还称为“光发射器”)组成,所述装置触碰用户的皮肤(即,生物计量监视装置的皮肤侧)。(见,例如,图2A到6A)。举例来说,在手镯的实例中,可存在放置在沿着带子内部圆周的各个位点的多个光电检测器及发光器。(见,例如,图6A)。与每一位点相关联的心率信号质量度量可经计算以确定用于估计用户心率的最佳或一组最佳位点。随后,可停用或关掉所述位点中的一些以例如减小功率消耗。装置可周期性地检查所述位点中的一些或全部处的心率信号质量以增强、监视及/或优化信号及/或功率效率。
在另一实施例中,生物计量监视装置可包含心率监视系统,其包含例如光学、声学、压力、电(例如,ECG或EKG)及运动等多个传感器,且融合来自这些传感器中的两者或两者以上的信息以提供心率的估计及/或减轻由运动诱发的噪音。
除心率监视(或其它生物计量监视)之外或替代心率监视(或其它生物计量监视),在一些实施例中,生物计量监视装置可包含光学传感器以基于光条件跟踪或检测紫外光暴露、全部室外光暴露的时间及持续时间、光源的类型以及光源的持续时间及强度(萤光光暴露、白炽灯光暴露、卤素,等)、到电视的暴露(基于光类型及闪烁速率)、用户在室内还是在室外、当日时间及位置。在一个实施例中,紫外光检测传感器可由驱动为光检测器的反偏置LED发射器组成。举例来说,由此检测器产生的光电流的特征可在于测量LED的电容(或替代地,并行电容器)放电所花费的时间。
本文中论述的所有光学传感器可结合其它传感器使用以改善上文所描述的数据的检测或用以加强其它类型的生理或环境数据的检测。
在生物计量监视装置包含音频或无源声学传感器的情况下,装置可含有一或多个无源声学传感器,其检测声音及压力且可包含但不限于麦克风、压电膜等。声学传感器可安置在装置的一或多个侧面上,包含触碰或面向皮肤的侧面(皮肤侧)及面向环境的侧面(环境侧)。
皮肤侧声学或音频传感器可检测经由身体发出的任何类型的声音,且此些传感器可按优化此些传感器的信噪比及功率消耗两者的阵列或模式而布置。这些传感器可检测呼吸(例如,通过倾听肺)、呼吸声音(例如,呼吸、打鼾)及问题(例如,睡眠呼吸暂停,等)、心率(倾听心跳)、用户的语音(经由从声带经过身体发出的声音)。
本发明的生物计量监视装置还可包含皮肤电响应(GSR)电路以测量用户的皮肤对情绪及物理刺激或生理改变(例如,睡眠阶段的转变)的响应。在一些实施例中,生物计量监视装置可为手腕或手臂安裝式装置,其并入由导电橡胶或织物制成的带子以使得皮肤电响应电极可隐藏在带子中。因为皮肤电响应电路可能经受不断改变的温度及环境条件,所以其还可包含用以实现自动校准的电路,例如与人皮肤/电极路径并联或串联的两个或两个以上可切换参考电阻器,其允许对已知电阻器的实时测量以表征皮肤电响应电路的响应。参考电阻器可在测量路径中接通及断开以使得可独立地及/或与人皮肤的电阻同时地对其进行测量。
用于执行PPG的电路
如例如上文所描述的此些监视装置具有测量用户心率的能力可为合乎需要的。举例来说,此些监视装置可包含包括一或多个光发射器及一或多个光检测器的心率检测传感器封装。然而,在便携式监视装置中包含此类心率传感器封装提出若干挑战。举例来说,由光检测器检测的光可包含不合需要的环境光分量。此外,环境光条件可随着用户移动或改变定向(例如,手或身体)或随着外部光照条件(例如,日光或内部照明)随时间推移改变而改变。此环境分量可引起装置中的各种组件的不合需要的饱和或导致不准确或不可靠的心率数据。
各种实施方案涉及能够感测及跟踪用户的心率及相关数据的便携式监视装置。在一些实施方案中,所述便携式监视装置还能够监视或跟踪运动、移动或活动,及相关数据。因而,便携式监视装置可包含用于跟踪心率数据(本文中还通常称为“生物计量数据”)的一或多个传感器、用于跟踪移动或活动(本文中还通常称为“移动数据”)的一或多个传感器以及在一些实施方案中,用于检测其它生物计量数据、生理数据、环境数据或相关数据(本文中还将其统称为“活动数据”)的一或多个其它传感器。此外,术语“检测”、“感测”、“监视”、“跟踪”、“记录”及“存储”在本文中在适当的情况下可互换地使用,除非另外指明。
在特定实施方案中,便携式监视装置包含传感器封装(如例如参考图2B到3C所描述),所述传感器封装包含一或多个光传感器(在本文中还称为“光学传感器”、“光检测器”、“光学检测器”,或“光电检测器”)。如下文所描述,一或多个光传感器可用以检测用户的心率。举例来说,传感器封装还可包含将入射光信号发出到用户皮肤表面上的一或多个光发射器(例如,光电二极管)。此入射光信号中的一些可由皮肤(且在一些实施方案中,更明确地说,由用户皮肤表面下方的一或多个动脉)反射、折射或以其它方式散射。散射光信号可接着由传感器封装的一或多个光传感器检测。在一些此类实施方案中,传感器封装充当光电容积图(PPG),且由此,散射光信号在本文中还可称为PPG信号。所检测光信号可经取样、滤波、分析或以其它方式处理以获得心率数据,包含用户的心率、心率变化,或心率恢复。举例来说,图17展示光发射驱动器电路1740的实例,且图18及19展示可与便携式监视装置的光检测器及光发射器结合使用的光检测电路1860及1960的实例。在一些实施方案中,如上文所描述的处理单元可对由例如参考图18及19展示及描述的光检测电路1860及1960取样及处理的散射信号执行此外处理。此外,在一些实施方案中,传感器封装或另一传感器封装中的这些或其它光传感器还可经配置以检测可用以确定例如用户的血压、血糖水平、血氧饱和度(SpO2)、呼吸、皮肤湿气及皮肤色素沉着水平的生物计量数据。
如图2B及2C中所示,在一些实施方案中,传感器封装定位在便携式监视装置的内部或皮肤侧(例如,装置的表面接触、触碰或面向用户的皮肤的侧面(下文中称“皮肤侧”))上。在一些此类实施方案中,便携式监视装置在装置的皮肤侧或内侧上包含突起,如上文所描述且在图2B及2C中表示。
如上文所描述,在一些实施方案中,光发射器包含可发出具有特定于或针对于待收集的生理数据类型的一或多个波长的光的一或多个发光二极管(LED)、激光或其它光产生装置。类似地,光检测器可包含可经配置以检测也特定于或针对于待收集的生理数据的类型及/或待评估或确定的(用户的)生理参数的一或多个波长的光的一或多个光电二极管。举例来说,在一些实施方案中,光发射器及光检测器可经配置以分别发出及检测波长在可见光谱的绿色部分中的光以确定用户的心率。此外,光发射器及光检测器可经配置以分别发出及检测波长在光谱的红色及红外线(IR)部分中的光以确定用户的SpO2。此外,在这些或其它实施方案中的一些中,光检测器可特定地经配置以拒斥(不检测)环境光波长,由光发射器发出的光的那些波长除外。
如上文所描述,在一些其它实施方案中,所述传感器封装以及相关联光发射器及光检测器可位于便携式监视装置的一或多个外部或侧表面上。在一些此类实施方案中,用户可用相反手的手指触碰光学窗口(光发射器及光检测器位于其后方)以起始心率测量(或与心率有关的其它度量,例如心率变化)或收集可用以确定用户的心率(或与心率有关的其它度量)的数据。还如上文所描述,在一些实施方案中,便携式监视装置可通过检测光检测器上的入射光的(例如,突然)下降而触发或起始心率测量,例如,当用户的手指放置在光学窗口上时。另外或替代地,在一些实施方案中,可由基于红外线的接近度检测器或电容式触碰/接近度检测器(其可与其它检测器分开)来触发心率测量(或其它此类度量)。此类基于红外线的接近度检测器或电容式触碰/接近度检测器可例如安置在光学窗口中或其上或功能上、电或物理地与光学窗口耦合以检测或确定例如用户手指所述的存在。
PPG电路可经优化以获得最佳质量信号,而无关于多种环境条件,包含但不限于运动、环境光及肤色。以下电路及技术可用以执行此优化(见图16A到16J及图17到19);
-可用于PPG感测的取样及保持电路以及差分/仪表放大器。输出信号为参考给定电压的当前与先前样本之间的经放大差。
-用以在跨阻抗放大器之前补偿“偏置”电流的受控电流源。此允许在跨阻抗放大器级处应用较大增益。
-用于施加到光电二极管(在跨阻抗放大器之前)的电流反馈的取样及保持电路。此可用于环境光移除,或“偏置”电流移除,或用作伪差分放大器(可能需要双轨)。
-具有环境光消除的差分/仪表放大器。
-补偿由DAC动态地产生的电流的光电二极管。
-补偿由受控电压源动态地产生的电流的光电二极管。
-使用“开关电容器”方法的环境光移除。
-补偿由恒定电流源产生的电流(也可通过恒定电压源及电阻器来完成)的光电二极管。
-环境光移除及连续样本之间的差分化。
-环境光移除及连续样本之间的差分化。
图16A说明可用于PPG感测的取样及保持电路以及差分/仪表放大器的实例示意图。此类电路中的输出信号可为参考给定电压的当前样本与先前样本之间的经放大差。
图16B说明使用受控电流源来在跨阻抗放大器之前补偿“偏置”电流的PPG传感器的电路的实例示意图。此允许在跨阻抗放大器级处应用较大增益。
图16C说明用于PPG传感器的使用取样及保持电路用于施加到光电二极管(在跨阻抗放大器之前)的电流反馈的电路的实例示意图。此电路可用于环境光移除,或“偏置”电流移除,或用作伪差分放大器。
图16D说明用于PPG传感器的使用具有环境光消除功能性的差分/仪表放大器的电路的实例示意图。
图16E说明用于PPG传感器的使用光电二极管补偿由DAC动态地产生的电流的电路的实例示意图。
图16F说明用于PPG传感器的使用光电二极管补偿由受控电压源动态地产生的电流的电路的实例示意图。
图16G说明用于PPG传感器的包含使用“开关电容器”方法的环境光移除功能性的电路的实例示意图。
图16H说明用于PPG传感器的使用光电二极管补偿由恒定电流源产生的电流(此还可使用恒定电压源及电阻器来完成)的电路的实例示意图。
图16I说明用于PPG传感器的包含环境光移除功能性及连续样本之间的差分化的电路的实例示意图。
图16J说明用于环境光移除及连续样本之间的差分化的电路的实例示意图。
下文参考图17到19来描述光发射和光检测电路的更具体或特定实施方案。图17展示根据本发明的一些实施方案的用于驱动光发射器将入射光信号LE发射到用户的皮肤的一区域上的实例性光发射驱动器电路1740。举例来说,光发射驱动器电路1740可与图3A到3C的光发射器结合使用。如上文所描述,入射光信号LE的一部分被用户的皮肤,且更特定来说,被用户的皮肤下方的动脉反射、折射或以其它方式散射。被用户的皮肤散射的入射光的所述部分在本文中还被称作“散射光信号”LS。图18展示根据一些实施方案的用于检测散射光信号LS且用于基于散射光信号LS来输出输出信号OUT的实例性光检测电路1860的框图。举例来说,光检测电路1860可与图3A到3C的光检测器结合使用。图19展示根据一些实施方案的用于实施图18的光检测电路1860的实例性电路1960。
光发射驱动器电路1740包含处于高电平的电压控制的电流源,其驱动经布置以将入射光信号LE发射到用户的皮肤的一区域上的光发射器1742。举例来说,光发射器1742可包含一或多个LED、激光器或其它光源。在所说明的实施方案中,所述电压控制的电流源是由驱动器电路1744实施,所述驱动器电路基于从(例如)如上文所描述的处理器或处理单元接收的一或多个控制信号CntrlD而向光发射器1742供电。在一些实施方案中,驱动器电路1740经配置以基于控制信号CntrlD(例如,当由控制信号启用时)来驱动(或“供电”)光发射器1742并持续某些时间间隔,使得光发射器1742在所述时间间隔期间以一连串(或“排”)脉冲的形式发射光信号LE。举例来说,在一些情况下,光发射器1742是便携式计算装置中在电力消耗方面最经济的组件中的一者。因此,可需要向光发射器1742供电仅较短的时间量,因此一连串短脉冲的使用也持续仅较短的时间量。
当驱动器电路1744的其它实施方案(包含电压控制的电流源的其它实施方案)处于本发明的范围内时,在所说明的实施方案中,驱动器电路1744包含具有第一输入端子、第二输入端子和输出端子的运算放大器1746。驱动器电路1744还包含与运算放大器1746的第一输入端子电耦合的数/模转换器(DAC)1748。DAC 1748基于参考信号VREF和控制信号CntrlD而将输入信号VIN提供给运算放大器1746的第一输入端子。电力供应轨将电源供应给光发射器1742的第一端子。
驱动器电路1740还包含开关,且更特定来说,包含晶体管1750。在所说明的实施方案中,晶体管1750是金属氧化物半导体场效应晶体管(MOSFET),且更具体来说,是n沟道MOSFET(“NMOS晶体管”)。在一些其它实施方案中,晶体管1750可由任何类型的开关或晶体管(例如,双极结晶体管)实施。晶体管1750包含栅极端子、漏极端子D和源极端子S。所述栅极端子与运算放大器1746的输出端子电耦合。所述漏极端子D与光发射器1742的第二端子电耦合。源极端子S经由具有电阻RS的电阻器1752而电耦合到参考电压,例如接地。源极端子S进一步与运算放大器1746的第二输入端子电耦合以用于将反馈信号提供给所述运算放大器。在所说明的实施方案中,驱动器电路1744进一步包含电耦合于运算放大器1746的输出端子与所述运算放大器的第二输入端子之间的具有电容CP的电容器1754。驱动器电路1744还可包含在运算放大器1746的输出端子与晶体管1750的栅极端子之间的具有电阻RP1的电阻器1756。驱动器电路1744还可包含在晶体管1750的源极端子S与运算放大器1746的第二输入端子之间的具有电阻RP2的电阻器1758。电阻RP1和电阻RP2以及电容CP可经配置以调谐驱动器电路1744以获得快速稳定时间,其因为可在较少时间内操作而可节约电力,同时维持了稳定性。在操作期间,运算放大器1746经配置以基于运算放大器的第二输入端子处所接收的反馈信号来维持跨电阻器1752的大体上恒定的电压。以此方式,驱动器电路1744充当恒定电流源,其具有穿过光发射器1742和电阻器1752的电流IE=VIN/RS。这是合意的,因为提供给光发射器1752的电流IE中的任何改变或波纹将导致入射光信号LE中的不合意的假影,这将在散射光信号LS中展示。
现在参看图18,光检测电路1860经配置以:检测散射光信号LS(例如,被用户的皮肤散射的入射光信号LE的一部分);基于所述散射光信号而产生检测到的电信号ID;对所述电信号进行取样以产生经取样信号S1;以及对所述经取样信号进行数字化以产生表示(例如,心率数据)的输出信号OUT。如上文所描述,环境光条件、皮肤色彩(色素沉着)以及用户运动全部可使得难以从数据信号提取用户的心率。在一些实施方案中,光检测电路1860经配置以校正由环境光引起的低频率或“DC”偏移。举例来说,环境光条件可随着用户移动或改变定向(例如,手或身体)或随着外部发光条件(例如,太阳光或内部发光)随着时间改变而改变。在一些实施方案中,光检测电路1860经配置以通过从在光源开启且将对信号进行取样时检测到的信号有效地减去在光源关闭时获得的检测到的信号ID的环境光分量来校正环境光条件。
在一些实施方案中,光检测电路1860还经配置以调整检测到的信号ID的增益以防止光检测电路1860的各种电组件(例如,运算放大器)的饱和,或者使经取样信号S1的值进入适合于对经取样信号进行数字化以产生输出信号OUT的ADC的范围内。举例来说,因为散射光信号LS的归因于用户的心脏输出而引起的时变“AC”分量与归因于环境光而引起的低频率或“DC”分量相比可相对较小,且因为需要使用高频短脉冲来减少光发射器1842的电力消耗,所以需要在经取样信号到达ADC之前减去较大的DC环境光分量。更具体来说,如果未减去DC环境分量,那么ADC可能不能以需要脉动所发射的光的速度来取得测量值/接收数据,因为检测到的信号太大而使得ADC无法在所需的短时间内以所要的位深度来解析所要的AC分量(例如,高精度/高位深度ADC由于处理要求而趋于较慢)。另外,可为有利的是,光检测电路1860调整检测到的光信号ID的增益来虑及用户的皮肤色调(色素沉着)的差异。举例来说,不同的皮肤色调将不同地吸收和散射光。举例来说,因为较暗的皮肤色调可吸收更多的光且散射更少的光,所以可需要增加检测到的光信号ID的增益。
光检测电路1860包含光检测器1862,所述光检测器经定位且经配置以接收(或“感测”或“检测”)散射光信号LS的至少一部分且基于所接收的光而产生检测到的电信号ID。在一些实施方案中,光检测器1862经配置以产生呈时变电流信号的形式的第一电信号ID。在此些实施方案中,第一电信号ID中的电流的量值与当前正由光检测器1862在其可检测的波长范围内接收到的散射光信号LS(和环境光)的强度成比例。在一些其它实施方案中,光检测器1862可经配置以产生呈时变电压信号的形式的第一电信号ID。在此些实施方案中,第一电信号ID中的电压的量值将与当前正由光检测器在其可检测的波长范围内接收到的散射光信号LS(和环境光)的强度成比例。
光检测电路1860还包含切换电路1864。所述切换电路1864可使用包含一或多个模拟或数字切换元件的多种合适的切换技术来实施。举例来说,在一些实施方案中,切换电路1864包含模拟集成电路。在一些实施方案中,第一切换电路1864包括一或多个晶体管,例如一对或更多对的MOSFET(例如,其中每一对包含一NMOS装置以及一P沟道MOSFET(PMOS)装置)。在各种实施方案中,切换电路1864包含至少第一配置a和第二配置b(在一些实施方案中,切换电路1864还包含第三配置c)。切换电路1864经配置以接收基于检测到的信号ID的电压信号VS,如下文更详细地描述。切换电路1864还经配置以接收从(例如)如上文所描述的处理器或处理单元接收的一或多个第一控制信号Cntrl1。切换电路1864基于一或多个第一控制信号Cntrl1而在至少第一配置a与第二配置b之间切换。
光检测电路1860还包含第一取样电路1866,其经配置以在切换电路1864在第一配置a中时对电压信号VS的值进行取样。光检测电路1860还包含第二取样电路1868,其经配置以在第一切换电路1864在第二配置b中时对电压信号VS的值进行取样。
光检测电路1860还包含可调整增益电路1870,其经配置以在第一切换电路1864在第一配置中时提供(或“输出”或“设定”)信号I1(例如,电流信号),从而相对于检测到的信号ID来调整电压信号VS的增益。如上文所描述,可需要调整所述增益以使得光检测电路1860可准确地且可靠地检测散射光信号LS,使得(例如)模/数转换器(ADC)1876可解析来自经取样信号S1的数字信号。可另外需要调整所述增益以使得光检测电路1860的组件(例如,运算放大器)不会饱和或者以其它方式不适当或不合意地起作用。可调整增益电路1870基于一或多个第二控制信号Cntrl2(例如从处理单元接收)且基于(直接地或间接地)检测到的信号ID的值来设定电流信号I1的量值和极性,如下文更详细地描述。
光检测电路1860还包含环境光消除电路1872,其经配置以在第一切换电路1864在第一配置中时提供抵消电流信号I2以至少部分地对检测到的信号ID的非所要的分量进行抵消。环境光消除电路1872基于一或多个第三控制信号Cntrl3(例如从处理单元接收)且基于由第二取样电路1868取样的信号S2(例如,电压信号)的值来设定电流信号I2的量值和极性,如下文更详细地描述。举例来说,如上文所描述,检测到的信号ID的待消除的分量可为环境光的结果。也就是说,光检测器1862可除了时变散射光信号LS之外还接收环境光,且因此,检测到的信号ID可除了由散射光信号LS导致的时变分量之外还包含环境分量(应注意,虽然环境光分量也可随时间改变,但此类环境光时间变化在分别与时变入射光信号LE的频率以及第一取样电路1866和第二取样电路1868的取样速率相比时是具有低得多的频率以及实际上是“DC”或“静止”的)。在一些实施方案中,光检测电路1860还经配置以调整检测到的信号ID的增益以防止光检测电路1860的各种电组件(例如,运算放大器)的饱和,或者使经取样信号S1的值进入适合于ADC 1876的范围内。
如上文所描述,在一些实施方案中,光检测器1862经配置以将检测到的信号ID输出为时变电流信号。在此些实施方案中,光检测电路1860可进一步包含电流-电压转换器1874,其经配置以将检测到的信号ID转换为电压信号VG。在此些实施方案中,可调整增益电路1870在第一切换电路1864在第一配置中时更特定地设定电流信号I1以相对于第一电信号ID来调整电压信号VG的增益。另外,在此些实施方案中,电流信号I1的量值和极性更特定地是基于第二控制信号Cntrl2和电压信号VG
在一些实施方案中,光检测电路1860还包含缓冲器1878,其缓冲电压信号VG且输出缓冲信号VS。光检测电路1860还可包含缓冲器1880,其在经取样信号S1输入到ADC1876之前对其进行缓冲。光检测电路1860还可包含缓冲器1882,其在经取样信号S2输入到环境光消除电路1872之前对其进行缓冲。
在一些实施方案中,电流-电压转换器1874以及可调整增益电路1870的组件形成或充当具有可变增益的跨导放大器1884。如上文所描述,此配置可避免或最少化来自亮环境光或来自光发射器的亮入射光的饱和。举例来说,如下文更详细地描述,跨导放大器1884的增益可借助跨导放大器的负反馈路径中的可变电阻器或电阻器的多路复用组或网络而自动地增加或减小。
图19展示根据一些实施方案的用于实施图18的光检测电路1960的实例电路1960。举例来说,电流电压转换器1874可包含第一运算放大器1974。运算放大器1974的第一输入端子可与光检测器1952(例如,光电二极管)的第一端子及可调整阻抗级1970的第一端子T1电耦合。运算放大器1974的第二输入端子可与例如接地等参考电压电耦合。在电路1960中,可调整增益电路1870包含经配置以提供可调整阻抗的可调整阻抗级1970。运算放大器1974的输出端子可与可调整阻抗级1970的第二端子T2电耦合。运算放大器1974的输出端子还输出电压信号VG。如上文所描述,运算放大器1974及可调整阻抗级1970形成或充当跨阻抗放大器1984。
在实例实施方案中,可调整阻抗级1970包含阻抗网络,所述阻抗网络具有包含具有电阻R1的电阻器及具有电容C1的电容器的第一阻抗路径1973a,其提供第一阻抗。所述阻抗网络还包含包括具有不同电阻R2的电阻器及具有电容C2的电容器的第二阻抗路径1973b,其提供第二阻抗。可调整阻抗级1970进一步包含第二切换电路1971,其经配置以基于一或多个第二控制信号Cntrl2在第一配置d与第二配置e之间转变以分别在第一阻抗路径1973a与第二阻抗路径1973b当中进行选择。应了解,尽管电路1960仅包含两个阻抗路径,但在一些其它实施方案中,可包含三个或三个以上阻抗路径,且第二切换电路1971可在所述三个或三个以上阻抗路径当中进行选择。此外,在一些其它实施方案中,并非使阻抗网络具有拥有不同阻抗的多个路径,可调整阻抗级可包含可变阻抗,例如经配置以改变阻抗从而改变增益的模拟分量。
在电路1960中,环境光消除电路1872在环境光消除电路1872的第一端子T3与环境光消除电路1872的第二端子T4之间包含第二可调整阻抗级1972。第二可调整阻抗级1972经配置以提供可调整阻抗以调整电流信号I2。在实例实施方案中,可调整阻抗级1972包含具有第一阻抗路径1977a的阻抗网络,所述第一阻抗路径1977a包含具有电阻R1的电阻器。所述阻抗网络还包含具有第二阻抗路径1977b,所述第二阻抗路径1977b包含具有电阻R2的电阻器。可调整阻抗级1972进一步包含第三切换电路1975,其经配置以基于一或多个第三控制信号Cntrl3在第一配置d与第二配置e之间转变以在第一阻抗路径1977a与第二阻抗路径1977b当中进行选择。
值得注意的是,在一些实施方案中,阻抗路径1973a与1977a中的电阻相同(R1),而阻抗路径1973b与1977b中的电阻相同(R2)。即,在一些实施方案中,对于可调整增益电路1870的可调整阻抗级1970中的每一阻抗路径,在环境光消除电路1872的可调整阻抗级1972中存在具有相同电阻的对应阻抗路径。因而,在一些实施方案中,当第二切换电路1971处于配置d时,第三切换电路1975也处于配置d,且类似地,当第二切换电路1971处于配置e时,第三切换电路1975也处于配置e。在一些实施方案中,第二切换电路1971及第三切换电路1975可包含相同切换元件或为控制阻抗级1970及阻抗级1972两者的单个开关(例如,单个模拟开关)的部分。在此些实施方案中,第三控制信号Cntrl3可为第二控制信号Cntrl2
此外,如上文参考可调整增益电路1870的可调整阻抗级1970所描述,在一些其它实施方案中,并非使阻抗网络具有拥有不同阻抗的多个路径,环境光消除电路1872的可调整阻抗级1972可包含可变阻抗,例如经配置以改变阻抗的模拟分量。
在电路1960中,缓冲器1878包含第二运算放大器1978。第二运算放大器1978的第一输入端子与运算放大器1974的输出端子电耦合。第二运算放大器1978的输出端子与第二运算放大器的第二输入端子电耦合。在一些实施方案中,所述电路进一步包含隔离电阻器1986,其具有电阻RISO,串联地电耦合于第二运算放大器1978的输出端子与切换电路1864之间。举例来说,隔离电阻器1986可充当最小化成环效应(ringing)的阻尼机构。
第一取样电路1966包含第一取样及保持(S/H)电路,所述第一取样及保持(S/H)电路经配置以接收电压信号VS,对电压信号VS的值进行取样,且在连续样本之间的时间间隔中保持(或“维持”、“俘获”或“存储”)经取样值S1。在电路1960中,第一S/H电路是由切换电路1864及具有电容CS1的电容器1966实施。举例来说,电容器1966的第一端子可电耦合到切换电路1864以在切换电路1864处于第一配置a时接收电压信号VS。电容器1966的第二端子可与例如接地等参考电压电耦合。当切换电路1864从第一配置a转变到例如第二配置b或第三配置c时,电容器1966保持经取样值S1。在一些实施方案中,需要具有大电容CS1以使得电容器1966能够存储许多电荷而不明显地漏电。
在一些实施方案中,因为需要具有大电容CS1(及如下文所描述的大电容CS2),因此需要包含第一缓冲器1878(且具体地说,运算放大器1978)以驱动电容器1966(及下文描述的电容器1968)的大电容。以此方式,第一运算放大器1974无须驱动任何电容器,且从而改善运算放大器1978的性能,运算放大器1978在需要驱动大电容的情况下原本可能不稳定。ADC 1876经配置以基于经取样信号S1产生及输出数字电压信号OUT。如上文所描述,在一些实施方案中,光检测电路1860包含用于缓冲经取样信号S1的第二缓冲器1880。举例来说,第二缓冲器1880可减小或防止ADC 1876可能引起的不稳定性或漏电。在一些此类实施例中,第二缓冲器1880包含第三运算放大器1980。举例来说,第三运算放大器1980的第一输入端子可电耦合到第一取样电路1866的输出(电容器1966的第一端子)。第三运算放大器1980的输出端子可与第三运算放大器的第二输入端子且与ADC 1876电耦合。
第二取样电路1868包含第二取样及保持(S/H)电路,所述第二取样及保持(S/H)电路经配置以接收电压信号VS,对电压信号VS的值进行取样,且在连续样本之间的时间间隔中保持经取样值S2。在电路1960中,第二S/H电路是由切换电路1864及具有电容CS2的电容器1968实施。举例来说,电容器1968的第一端子可电耦合到切换电路1864以在切换电路1864处于第二配置b时接收电压信号VS。电容器1968的第二端子可与例如接地等参考电压电耦合。当切换电路1864从第二配置b转变到例如第一配置a或第三配置c时,电容器1968保持经取样值S2。类似于第一取样电路1866,在一些实施方案中,需要具有大电容CS2以使得电容器1968能够存储许多电荷而不明显地漏电。
如上文所描述,在一些实施方案中,光检测电路1860包含用于在经取样信号S2被环境光消除电路1872(且在图19的实施方案中,由可调整阻抗级1972)接收之前缓冲所述经取样信号S2的第三缓冲器1882。在一些此类实施方案中,第三缓冲器1882包含第四运算放大器1982。举例来说,第四运算放大器1982的第一输入端子可电耦合到第二取样电路1868的输出(电容器1968的第一端子)。第四运算放大器1982的输出端子可与第四运算放大器的第二输入端子电耦合。第四运算放大器1982的输出端子还与环境光消除电路1872(且更具体来说,可调整阻抗级1972)电耦合。在一些实施方案中,第三缓冲器1882(且更具体来说,第四运算放大器1982)经配置以仅当断言或接收到启用信号EN时才将经取样信号S2(且更明确地说,存储在电容器1968上的与经取样信号S2的值相关联的电荷)输出到可调整阻抗级1972。举例来说,在一些实施方案中,至少在切换电路1864处于第一配置a的时间间隔期间断言启用信号EN。以此方式,在切换电路1864处于第一配置a时,存储在电容器1968上的电荷以电流形式传送到环境光消除电路1872的可调整阻抗级1972,所述电荷在此处穿过由第三切换电路1975选择的阻抗路径1977a或1977b中的一者且导致上文所描述的电流I2
在一些实施方案中,电路1960进一步包含与光检测器1862的第一端子耦合的第四切换电路1988。第四切换电路1988可经配置以基于一或多个第四控制信号Cntrl4(从例如如上文所描述的处理单元接收)将光检测器1862的第一端子电耦合到例如接地等电压参考。以此方式,举例来说,在光检测电路1860/1960不对所检测光信号ID进行取样时,例如当切换电路1864处于第二配置b或第三配置c时,由于接收环境光而累积在光检测器1862中的电荷可被排尽。在一些其它实施方案中,第四切换电路1988将光检测器1862电耦合到非接地参考电压可为有用的,例如,举例来说,在其中需要反向偏置光检测器1862(例如,以反向偏置光电二极管)的实施方案中。
现将描述光发射驱动器电路1740及光检测电路1860(及1960)的实例三阶段操作循环。应了解,实例循环的阶段可涵盖涉及多个操作或重配置的时间间隔(与离散时间点相反),且在一些实施方案中可彼此重叠。在第一操作阶段中,一或多个控制信号CntrlD致使驱动器电路1744驱动光发射器1742发出入射光信号LE。还在第一阶段中,一或多个第一控制信号Cntrl1致使切换电路1864转变到第一配置a以使得第一取样电路1866能够对所检测信号ID(或更具体来说,从例如信号VG或VS等所检测信号ID导出的信号)进行样本,且随后使得ADC 1876能够数字化经取样信号S1且输出输出信号OUT(包含,例如,心率数据)。还在第一阶段中,一或多个第二控制信号Cntrl2致使可调整增益电路1970调整或选择阻抗且产生信号I1以相对于所检测信号ID调整电压信号VS的增益。还在第一阶段中,断言启用信号EN,从而致使由第二取样电路1882存储的电荷经由电流传送到环境光消除电路1872。响应于一或多个第三控制信号Cntrl3,环境光消除电路1872基于从第二取样电路1882接收的电荷而调整或选择阻抗且产生消除信号I2以消除(或抵消)所检测信号ID的环境分量。还在第一阶段中,一或多个第四控制信号Cntrl4致使第四切换电路1988使光检测器1862从参考电压解耦,使得光检测器1862可产生所检测信号ID
在一些实施方案中,在第二操作阶段中,一或多个第一控制信号Cntrl1致使切换电路1864转变到第二配置b以停用第一取样电路1866且启用第二取样电路1868以对所检测信号ID进行取样,同时光发射器1742关掉以例如存储与所检测信号ID的环境分量成比例的电荷。还在第二阶段中,撤销断言启用信号EN以使得第二取样电路1882能够存储与经取样信号S2相关联的电荷(例如,在电容器1968上)。如上文所描述,其为与经取样信号S2相关联的电荷,稍后用以提供信号I2以消除在第一操作阶段期间的所检测光的环境分量。
在一些实施方案中,在第三操作阶段中,一或多个第四控制信号Cntrl4致使第四切换电路1988将光检测器1862耦合到参考电压(例如,接地),使得原本将归因于环境光而累积在光检测器1862中的电荷可被排尽。在一些实施方案中,光发射驱动器电路1740及光检测电路1860接着重复第一、第二及第三操作阶段,以此类推。
生物计量反馈
生物计量监视装置的一些实施例可基于一或多个生物计量信号向用户提供反馈。在一个实施例中,PPG信号可作为实时或接近实时的波形在生物计量监视装置的显示器上(或在与所述生物计量监视装置通信的辅助装置的显示器上)呈现给用户。此波形可提供与显示在ECG或EKG机器上的波形类似的反馈。除向用户提供可用以估计各种心脏度量(例如,心率)的PPG信号的指示之外,所述波形还可提供反馈,所述反馈可使得用户能够优化其佩戴生物计量监视装置的位置及压力。举例来说,用户可看到波形具有低振幅。响应于此,用户可试图将生物计量监视装置的位置移动到给出较高振幅信号的不同位置。在一些实施方案中,基于此些指示,生物计量监视装置可提供指令给用户以移动或调整生物计量监视装置的适配度以便改善信号质量。
在另一实施例中,可经由不同于显示波形的方法来向用户提供关于PPG信号的质量的反馈。如果信号质量(例如信噪比)超过某一阈值,那么生物计量监视装置可发出听觉报警(例如蜂鸣声)。生物计量监视装置可将视觉提示(例如,经由使用显示器)提供给用户以改变传感器的位置及/或增大佩戴装置的压力(例如,在装置佩戴在手腕上的情况下通过拉紧腕带)。
可针对不同于PPG传感器的传感器提供生物计量反馈。举例来说,如果装置使用ECG、EMG或连接到执行这些中的任一者的装置,那么其可向用户提供关于来自那些传感器的波形的反馈。如果这些传感器的信噪比低或信号质量因其它原因而受损,那么可指示用户其可如何改善所述信号。举例来说,如果不能从ECG传感器检测到心率,那么装置可向用户提供视觉消息,指示其润湿或弄湿ECG电极以改善信号。
环境传感器
本发明的生物计量监视装置的一些实施例可使用以下环境传感器中的一个、一些或全部来例如获取环境数据,包含在下表中概述的环境数据。此些生物计量监视装置不限于下文指定的传感器的数目或类型,而可使用获取下表中概述的环境数据的其它传感器。环境传感器及/或环境数据的所有组合及排列既定落入本发明的范围内。此外,装置可从对应传感器输出数据导出环境数据,但不限于其可从所述传感器导出的环境数据类型。
值得注意的是,本发明的生物计量监视装置的实施例可使用本文所述的环境传感器中的一或多者或全部及本文所述的生理传感器中的一或多者或全部。实际上,本发明的生物计量监视装置可使用现在已知或稍后开发的任何传感器获取本文所述的环境数据及生理数据中的任一者或全部,其全部既定落入本发明的范围内。
在一个实施例中,生物计量监视装置可包含例如安置在或位于装置外壳内部的高度计传感器。(见,例如,图12B及12C;图12C说明具有生理传感器、环境传感器及连接到处理器的位置传感器的便携式生物计量监视装置的实例)。在此情况下,装置外壳可具有通风口,其允许装置内部测量、检测、取样及/或经历外部压力的任何改变。在一个实施例中,通风口可防止水进入装置,同时促进经由高度计传感器测量、检测及/或取样压力的改变。举例来说,生物计量监视装置的外表面可包含通风口类型配置或架构(例如,GoreTM通风口),其允许周围空气移入及移出装置的外壳(其允许高度计传感器测量、检测及/或取样压力的改变),但减少、防止及/或最小化水及其它液体流动到装置的外壳中。
在一个实施例中,高度计传感器可用凝胶填充,所述凝胶允许传感器经历在凝胶之外的压力改变。凝胶可充当相对不可渗透、不可压缩而又柔性的隔膜,其将外部压力变化发射到高度计同时物理地分离高度计(及其它内部组件)与外部环境。使用凝胶填充高度计可在使用或不使用环境密封通风口的情况下向装置给出较高水平的环境保护。装置可在凝胶填充高度计处于包含但不限于以下位置的位置中的情况下具有较高存活率(survivability rate):具有高湿度的位置、洗衣机、洗碗机、干衣机、蒸汽室或桑拿室、淋浴、水池、浴缸及装置可能暴露于湿气、暴露于液体或浸没于液体中的任何位置。
传感器集成/信号处理
本发明的生物计量监视装置的一些实施例可使用来自两个或两个以上传感器的数据来计算如下表中所见的对应生理或环境数据(例如,可组合地使用来自两个或两个以上传感器的数据来确定例如下文列出的度量的度量)。生物计量监视装置可包含但不限于下文指定的传感器的数目、类型或组合。此外,此些生物计量监视装置可从对应传感器组合导出所包含的数据,但不限于可从对应传感器组合计算出的数据的数目或类型。
在一些实施例中,生物计量监视装置还可包含近场通信(NFC)接收器/发射器以检测到例如移动电话等另一装置的接近性。当使生物计量监视装置接近于第二装置或达到与第二装置的可检测接近度时,其可触发在第二装置上开始新功能性(例如,启动移动电话上的“应用程序”及使来自所述装置的生理数据无线电同步到第二装置)。(见,例如,图10)。实际上,本发明的生物计量监视装置可实施2012年3月5日申请的美国临时专利申请案61/606,559(“近场通信系统及其操作方法(Near Field Communication System,and Methodof Operating Same)”,发明人:詹姆斯帕克(James Park),其内容出于此此目的以引用的方式并入本文中)中所描述及/或说明的电路及技术中的任一者。
图10说明其上具有自行车应用程序的便携式生物计量监视装置的实例,所述自行车应用程序可显示自行车速度及/或踩踏板的步调以及其它度量。每当生物计量监视装置接近无源或有源NFC标记时,可启动所述应用程序。此NFC标记可附接到用户的手柄杆。
在另一实施例中,生物计量监视装置可包含位置传感器(例如,GPS电路)及心率传感器(例如,光电容积图电路)以分别产生GPS或位置相关数据及心率相关数据。(见,例如,图12B及12C)。生物计量监视装置可接着融合、处理及/或组合来自这两个传感器/电路的数据以例如根据生理数据(例如,心率、紧张、活动水平、睡眠量及/或卡路里摄入)来确定、相关及/或“映射”地理区。以此方式,生物计量监视装置可识别增大或减小可测量用户度量(包含但不限于心率、紧张、活动水平、睡眠量及/或卡路里摄入)的地理区。
另外或替代地,生物计量监视装置的一些实施例可使用GPS相关数据及光电容积图相关数据(值得注意的是,其中的每一者可认为是数据流)来根据活动水平(例如,如通过用户的加速度、速度、位置及/或行进距离(如通过GPS测量及/或从GPS相关数据确定)来确定)确定用户的心率或使其相关。(见,例如,图12B及12C)。此处,在一个实施例中,可针对用户“标绘”随速度而变的心率,或所述数据可分解为不同水平,包含但不限于睡眠、静息、久坐、中度活动、活动,及高度活动。
实际上,生物计量监视装置的一些实施例还可使GPS相关数据与预定地理位置(具有针对一组预定条件的与其相关联的活动)的数据库相关。举例来说,活动确定及对应生理分类(例如,心率分类)可包含使用户的GPS座标(对应于锻炼设备、健身俱乐部及/或体育馆的位置)与生理数据相关。在这些情形下,可自动地测量并显示在例如体育馆健身期间的用户心率。值得注意的是,许多生理分类可基于GPS相关数据,包含位置、加速度、海拔高度、距离及/或速度。此类数据库包含地理数据,且可编译、形成生理数据及/或将其存储在生物计量监视装置及/或外部计算装置上。实际上,在一个实施例中,用户可创建其自身的位置数据库或添加或修改位置数据库以更好地分类其活动。
在另一实施例中,用户可同时佩戴多个生物计量监视装置(具有本文所述的特征中的任一者)。此实施例的生物计量监视装置可使用有线或无线电路彼此通信或与远程装置通信,以计算例如以其它方式可能难以计算或计算不准确的生物计量或生理质量或量,例如脉博传导时间。多个传感器的使用还可改善生物计量测量的准确度及/或精确度使其优于单个传感器的准确度及/或精确度。举例来说,在腰部、手腕及脚踝上具有生物计量跟踪装置可改善对用户迈步的检测(较之仅在那些位置中的一者中的单个装置的情况)。可以分布式或集中式方法在生物计量跟踪装置上执行信号处理以提供较之单个装置的情况有所改善的测量。还可远程执行此信号处理且在处理之后传达回到生物计量跟踪装置。
在另一实施例中,可使心率或其它生物计量数据相关到用户的食物日志(用户摄取的食物、其营养内容及其部分的日志)。食物日志条目可自动地键入食物日志或可由用户本身经由与生物计量监视装置(或与生物计量监视装置通信的辅助或远程装置,例如智能电话,或与生物计量监视装置通信的一些其它装置,例如服务器)的交互而键入。关于用户身体对一或多个食物输入的生物计量反应的信息可呈现给用户。举例来说,如果用户喝咖啡,那么其心率可能由于咖啡因而上升。在另一实例中,如果用户在深夜进食食物的较大部分,那么其可能比平时花费更长时间来入睡。生物计量中的食物输入与对应结果的任何组合可并入到此类反馈系统中。
食物摄入数据与生物计量数据的融合还可使得生物计量监视装置的一些实施例能够对用户的葡萄糖水平进行估计。此对于患有糖尿病的用户可能尤其有用。通过涉及葡萄糖水平与用户的活动(例如步行、跑步、卡路里燃烧)及营养摄入的算法,生物计量监视装置可能够建议用户何时其可能具有不正常的血糖水平。
处理任务委托
生物计量监视装置的实施例可包含一个或多个处理器。举例来说,独立应用程序处理器可用以存储及执行利用由一或多个传感器处理器(处理来自生理、环境及/或活动传感器的数据的处理器)获取及处理的传感器数据的应用程序。在其中存在多个传感器的情况下,也可能存在多个传感器处理器。应用程序处理器还可具有直接连接到其的传感器。传感器与应用程序处理器可作为单独离散芯片存在或存在于相同经封装芯片内(多核心)。装置可具有单个应用程序处理器,或应用程序处理器及传感器处理器,或多个应用程序处理器及传感器处理器。
在一个实施例中,传感器处理器可放置在由所有模拟组件组成的子插件板(daughterboard)上。此板可具有通常见于主PCB上的电子器件中的一些,例如但不限于跨阻抗放大器、滤波电路、水平移位器、取样及保持电路及微控制器单元。此类配置可允许子插件板经由使用数字连接而非模拟连接(除任何必要的电力或接地连接之外)连接到主PCB。数字连接可具有优于模拟子插件板到主PCB连接的多种优点,包含但不限于噪音减小及必要缆线数目的减小。子插件板可经由使用柔性缆线或一组导线而连接到主板。
多个应用程序可存储在应用程序处理器上。应用程序可由用于所述应用程序的可执行码及数据组成,但不限于这些。数据可由执行所述应用程序所需的图形或其它信息组成,且其可为由应用程序产生的信息输出。用于应用程序的可执行码及数据两者皆可驻留在应用程序处理器(或并入其中的存储器)上,或用于应用程序的数据可从外部存储器存储及检索。外部存储器可包含但不限于NAND闪存、NOR闪存、另一处理器上的闪存、其它固态存储装置、机械或光学磁盘、RAM,等。
用于应用程序的可执行码还可存储在外部存储器中。当应用程序处理器接收到执行应用程序的请求时,所述应用程序处理器可从外部存储装置检索可执行码及/或数据且执行所述可执行码及/或数据。所述可执行码可暂时或永久地存储在应用程序处理器的存储器或存储装置上。此允许应用程序应下一执行请求而更快速地执行,因为消除了检索步骤。当请求执行应用程序时,应用程序处理器可检索应用程序的所有可执行码或可执行码的部分。在后一种情况下,仅检索在当时需要的可执行码部分。此允许执行比应用程序处理器的存储器或存储装置大的应用程序。
应用程序处理器还可具有存储器保护特征以防止应用程序覆写、破坏、中断、阻断或以其它方式干扰其它应用程序、传感器系统、应用程序处理器或系统的其它组件。
应用程序可经由多种有线、无线、光学或电容机制(包含但不限于USB、Wi-Fi、蓝牙、蓝牙低能量、NFC、RFID、紫蜂)加载到应用程序处理器及/或任何外部存储装置上。
应用程序还可用电子签名加密地署名。应用程序处理器可将应用程序的执行限制于具有正确签名的那些人。
生物计量监视装置中的系统集成
在生物计量监视装置的一些实施方案中,生物计量监视装置中或一些传感器或电子系统可彼此集成或可共享组件或资源。举例来说,用于光学心率传感器的光电检测器(例如可用于2014年2月28日申请且先前以引用的方式并入本文中的第61/946,439号美国临时专利申请案中所论述的心率传感器中),还可充当用于确定环境光水平的光电检测器,例如可用以校正环境光对心率传感器读数的影响。举例来说,如果用于此类心率检测器的光源关掉,那么由所述光电检测器测量的光可指示所存在的环境光的量。
在生物计量监视装置的一些实施方案中,生物计量监视装置可使用例如光学心率监视器中的组件等车载光学传感器加以配置或与之通信。举例来说,光学心率传感器(或,如果存在,环境光传感器)的光电检测器还可充当用于光学发射信道(例如红外线通信)的接收器。
在生物计量监视装置的一些实施方案中,可包含混合天线,其组合射频天线(例如蓝牙天线或GPS天线)与电感环(例如可用于近场通信(NFC)标记或电感充电系统中)。在此些实施方案中,两个不同系统的功能性可提供于一个集成系统中,从而节省封装体积。在此类混合天线中,电感环可放置地紧密接近于倒F形天线的辐射器。所述电感环可以电感方式与辐射器耦合,从而允许所述电感环充当天线的平坦元件用于射频目的,因而形成例如平坦倒F形天线。同时,电感环还可服务于其正常功能,例如经由与由NFC读取器产生的电磁场的电感耦合而将电流提供到NFC芯片。此些混合天线系统的实例更详细地论述于2014年3月5日申请的第61/948,470号美国临时专利申请案中,所述美国临时专利申请案先前在“对相关申请案的交叉参考”部分中以引用的方式并入本文中且再次特此关于在混合天线结构处指出的内容而以引用的方式并入。当然,此些混合天线还可用于不同于生物计量监视装置的其它电子装置中,且混合天线的此类非生物计量监视装置使用涵盖在本发明的范围内。
佩戴装置的方法
生物计量监视装置的一些实施例可包含外壳,其大小及形状促进将生物计量监视装置在在常操作期间固定到用户的身体,其中所述装置在耦合到用户时不可测量地或明显地影响用户的活动。所述生物计量监视装置可取决于集成到生物计量监视装置中的特定传感器封装及用户将想要获取的数据而以不同方式佩戴。
用户可通过使用带子(其为柔性的且由此容易适配到用户)而将本发明的生物计量监视装置的一些实施例佩戴在其手腕或脚踝(或手臂或腿)上。所述带子可具有可调整圆周,因此允许其适配到用户。所述带子可由暴露于热时收缩的材料建构而成,因此允许用户建立定制的适配。所述带子可从生物计量监视装置的“电子器件”部分拆卸且必要时可更换。
在一些实施例中,生物计量监视装置可由两个主要组件组成:主体(含有“电子器件”)及带子(促进将装置附接到用户)。所述主体可包含外壳(例如由塑料或塑料样材料制成)及从主体突出的延伸突出部(例如由金属或金属样材料制成)。(见,例如,图2C到3C)。所述带子(例如由热塑性胺基甲酸酯制成)可例如以机械方式或粘附方式附接到身体。所述带子可从用户手腕的圆周延伸出一部分。胺基甲酸酯带子的远端可与Velcro或钩环弹性织物带子(在一侧上环绕成D形环且接着附接回到自身)连接。在此实施例中,封闭机构可允许用户无限地进行带子长度调整(不同于分度孔及机械卡扣封闭)。Velcro或弹性织物可以允许其被更换(例如,如果其在装置的有用生命周期终止之前佩戴或以其它方式不合需要地佩戴)的方式附接到带子。在一个实施例中,Velcro或织物可通过螺钉或铆钉及/或胶水、粘合剂及/或卡扣附接到带子。
本发明的生物计量监视装置的实施例还可集成到且佩戴在项链、胸带、胸罩、粘着性补片、玻璃、耳索或脚趾带(toe band)中。此些生物计量监视装置可以如下方式内置:传感器封装/生物计量监视装置的部分是可移除的且可以包含但不限于上文所列的那些方式的任何数目的方式佩戴。
在另一实施例中,本发明的生物计量监视装置的实施例可经佩戴以夹到一件衣服或存放在衣服(例如,口袋)或装饰品(例如,手提包、背包、钱包)中。因为此些生物计量监视装置可不靠近用户的皮肤,所以在包含心率测量的实施例中,可通过用户手动地将装置置于特定模式(例如,通过按下按钮、用指尖覆盖电容性触摸传感器,等,可能具有嵌入在按钮/传感器中的心率传感器)而在离散、“按需求”上下文中或自动地(一旦用户将装置放在皮肤上(例如,将手指施加到光学心率传感器))获得测量。
与装置的用户接口
生物计量监视装置的一些实施例可包含用于允许在本地或远程地与装置交互的一或多个方法的功能性。
在一些实施例中,生物计量监视装置可经由数字显示器以视觉方式传达数据。此显示器的物理实施例可使用任何一个或多个显示技术,包含但不限于以下各者中的一或多者:LED、LCD、AMOLED、电子墨水、清晰显示技术、图形显示器,及其它显示技术,例如TN、HTN、STN、FSTN、TFT、IPS及OLET。此显示器可展示在装置上在本地获取或存储的数据或可显示从其它装置或因特网服务远程获取的数据。生物计量监视装置可使用传感器(例如,环境光传感器“ALS”)来控制或调整屏幕背光的量(如果使用背光)。举例来说,在暗照明情境中,显示器可调暗以节省电池寿命,而在明亮的照明情境中,显示器亮度可增大以使得其更容易由用户读取。
在另一实施例中,生物计量监视装置可使用单色或多色LED来指示装置的状态。生物计量监视装置可使用LED指示的状态可包含但不限于例如心率等生物计量状态或例如传入消息或已达到目标等的应用程序状态。这些状态可由LED的色彩、LED开或关(或处于中间强度)、LED的脉冲(及/或其速率)及/或从完全关掉到最高亮度的光强度模式来指示。在一个实施例中,LED可用用户心率的阶段及频率来调制其强度及/或色彩。
在一些实施例中,使用电子墨水显示器可允许显示器保持接通而无非反射性显示器的电池漏电。此“常开”功能性可在例如手表应用程序(其中用户可简单地扫视生物计量监视装置以看到时间)的情况下提供令人愉快的用户体验。电子墨水显示器始终显示内容而不损害装置的电池寿命,从而允许用户看到时间(如同其在传统手表上那样)。
生物计量监视装置的一些实施方案可使用例如LED等光来显示用户的心率(通过调制以用户心率的频率发出的光的振幅)。所述装置可经由LED的色彩(例如,绿色、红色)或根据心率的改变而点亮的一连串LED(例如,进度条)来描绘心率区(例如,好氧的、厌氧的,等)。生物计量监视装置可集成或并入到例如玻璃或护目镜的另一装置或结构中,或与玻璃或护目镜通信以将此信息显示给用户。
生物计量监视装置的一些实施例还可经由装置的物理运动将信息传达给用户。物理地移动装置的方法的一个此类实施例为使用振动诱发马达。装置可单独地或结合多个其它运动诱发技术使用此方法。
在一些实施方案中,生物计量监视装置可经由音频反馈将信息传达给用户。举例来说,生物计量监视装置中的扬声器可经由使用音频音调、语音、歌声或其它声音而传达信息。
在生物计量监视装置的各种实施例中,这三个信息通信方法(视觉的、运动及听觉的)可单独地或与彼此或传达任何一个或多个以下信息的另一传达方法的任何组合来使用:
●用户需要在特定时间唤醒
●用户应在其处于某一睡眠阶段时唤醒
●用户应在某一时间入睡
●用户应在其处于某一睡眠阶段且处于由用户想要唤醒的最早及最晚时间定界的预选时间窗中时唤醒。
●接收到电子邮件
●用户已不活动达某一时间周期。值得注意的是,此可与例如会议日历或睡眠跟踪应用程序的其它应用程序集成以规划、精简或调整不活动提醒的行为。
●用户已活动达某一时间周期
●用户具有约会或日历事件
●用户已达到某一活动度量
●用户已走动某一距离
●用户已达到某一英里数
●用户已达到某一速度
●用户已累积达某一海拔
●用户已行走某一步数
●用户近来已进行心率测量
●用户心率已达到某一水平
●用户具有为特定值或在特定范围中的正常、活动或静息心率
●用户的心率已进入或退出某一目标范围或训练区
●用户具有欲达到的新心率“区”目标,在所述情况下为针对跑步、骑车、游泳等活动训练的心率区
●用户已游泳一个单程或在池中完成某一数目的单程
●外部装置具有需要传达给用户的信息,例如传入电话呼叫或以上提醒中的任一者
●用户已达到某一疲劳目标或极限。在一个实施例中,可经由心率、皮肤电响应、运动传感器及/或呼吸数据的组合来确定疲劳
提供这些实例是为了说明且并不希望限制可由生物计量监视装置的此些实施例传达(例如,给用户)的信息的范围。注意,用以确定是否满足提醒条件的数据可从第一装置及/或一或多个辅助装置获取。生物计量监视装置自身可确定是否已满足用于提醒的准则或条件。或者,与生物计量监视装置通信的计算装置(例如,服务器及/或移动电话)可确定何时应发生提醒。鉴于本发明,所属领域的技术人员可设想生物计量监视装置可传达给用户的其它信息。举例来说,当已满足目标时,生物计量监视装置可与用户通信。满足此目标的准则可基于生理、上下文及第一装置上的环境传感器及/或来自一或多个辅助装置的其它传感器数据。可由用户设定或可由生物计量监视装置自身及/或与生物计量监视装置通信的另一计算装置(例如,服务器)设定目标。在一实例实施例中,在满足生物计量目标时,生物计量监视装置可振动。
本发明的生物计量监视装置的一些实施例可配备有无线及/或有线通信电路以实时地在辅助装置上显示数据。举例来说,此些生物计量监视装置可能够经由蓝牙低能量与移动电话通信以便向用户给出心率、心率变化及/或紧张的实时反馈。此些生物计量监视装置可训练或准许用户以缓解紧张的特定方式(例如通过进行缓慢的深呼吸)呼吸的“时刻”。紧张可经量化或经由心率、心率变化、皮肤温度、运动活动数据及/或皮肤电响应的改变来加以评估。
生物计量监视装置的一些实施例可经由一或多个本地或远程输入方法从用户接收输入。本地用户输入的一个此种实施例可使用一传感器或一组传感器来将用户的移动转译成对装置的命令。此些运动可包含但可不限于触按、转动手腕、弯曲一或多个肌肉,及摆臂。另一用户输入方法可为经由使用按钮,例如但不限于电容式触摸按钮、电容式屏幕按钮及机械按钮。在一个实施例中,用户接口按钮可由金属制成。在其中屏幕使用电容式触摸检测的实施例中,其可始终取样且准备好对任何姿势或输入作出响应而无需介入事件,例如推动物理按钮。此些生物计量监视装置还可经由使用音频命令进行输入。所有这些输入方法可在本地集成到生物计量监视装置中或集成到可经由有线或无线连接与此些生物计量监视装置通信的远程装置中。此外,用户还可能能够经由远程装置操纵生物计量监视装置。在一个实施例中,此远程装置可具有因特网连接性。
报警器
在一些实施例中,本发明的生物计量监视装置可充当手腕安裝式振动报警器以安静地将用户从睡眠中唤醒。此些生物计量监视装置可经由心率、心率变化、皮肤电响应、运动感测(例如,加速度计、陀螺仪、磁力计)及皮肤温度中的一者或组合而跟踪用户的睡眠质量、唤醒周期、睡眠延迟、睡眠效率、睡眠阶段(例如,深睡眠与REM),及/或其它睡眠相关度量。用户可指定所需报警时间或时间窗(例如,设定报警器在上午7点及上午8点响起)。此些实施例可使用睡眠度量中的一或多者来确定报警窗内的最佳时间以唤醒用户。在一个实施例中,当振动报警器活动时,用户可通过拍击或触按装置(其例如经由装置中的运动传感器、压力/力传感器及/或电容性触摸传感器而检测)而致使其退隐或关掉。在一个实施例中,装置可通过在特定用户睡眠阶段处或在报警设定之前的时间开始小振动而试图在睡眠周期中的最佳时刻叫醒用户。其可随着用户朝向觉醒或朝向报警设定进展而逐渐增大振动的强度或明显性。(见,例如,图8)。
图8说明实例便携式生物计量监视装置智能报警特征的功能性。生物计量监视装置可能够检测可检测用户的睡眠阶段或状态((例如,浅或深睡眠)的装置或可与所述装置通信。用户可设定其将希望醒来的时间窗(例如,上午6:15到上午6:45)。智能报警可由用户在报警窗期间进入浅睡眠状态而触发。
生物计量监视装置可经配置以允许用户选择或创建其选择的报警振动模式。用户可能够“打盹”或延迟报警事件。在一个实施例中,用户可能够设定用于“打盹”特征的延迟量:所述延迟为在报警将再次响起之前的时间量。其还可能能够设定每报警周期可激活打盹特征的次数。举例来说,用户可选择5分钟的打盹延迟及为3的最大连续打盹数目。因此,其可按压打盹3次以在其每次按压打盹以延迟报警时将报警延迟5分钟。在此些实施例中,如果用户尝试按压打盹第四次,打盹功能不会关掉报警。
一些生物计量监视装置可具有关于用户的日历及/或调度的信息。用户的日历信息可直接键入生物计量监视装置或其可从不同装置(例如智能电话)下载。此信息可用以自动地设定报警或报警特性。举例来说,如果用户在早晨9点要开会,那么生物计量监视装置可自动地在上午7:30唤醒用户以允许用户有足够时间准备及/或到达会议。生物计量监视装置可基于用户的当前位置、会议的位置及从用户的当前位置到达会议的位置将花费的时间量来确定用户准备会议所需的时间量。或者,可使用关于用户到达会议位置及/或准备出发前往会议所花费的时间(例如,其在早晨醒来、洗淋浴、吃早餐等所花费的时间)的历史数据来确定何时唤醒用户。类似功能性可用于不同于会议的日历事件,例如进食时间、睡眠时间、小睡时间及锻炼时间。
在一些实施例中,生物计量监视装置可使用关于用户想要何时入睡的信息来确定报警应何时响起以唤醒用户。此信息可补充本文所述的日历信息。用户可具有其在每夜或每周所希望的大致睡眠小时数的目标。生物计量监视装置可将早晨报警设定于适当时间以使用户满足这些睡眠目标。除用户在每夜所希望的睡眠时间量之外,用户还可设定的其它睡眠目标可包含但不限于用户在睡眠时经历的深睡眠、REM睡眠及浅睡眠的量,所有这些可由生物计量监视装置用以确定在早晨何时设定报警。此外,可在夜间提醒用户其何时应上床睡觉以满足其睡眠目标。此外,可在日间提醒用户其何时应小睡以满足其睡眠目标。提醒用户其应小睡的时间可通过优化用户在小睡、后续小睡或夜间睡眠期间的睡眠质量的因素来确定。举例来说,如果用户在清晨小睡,那么用户可能在夜间具有入睡的硬性时间。还可建议用户吃某些食物或饮料或避免某些食物或饮料以优化其睡眠质量。举例来说,可能不鼓励用户在接近其就寝时间时饮酒,因为酒精可能降低其睡眠质量。还可建议用户执行某些活动或避免某些活动以优化其睡眠质量。举例来说,可能鼓励用户在午后进行锻炼以改善其睡眠质量。可能不鼓励用户在接近其就寝时间时进行锻炼或看电视以改善其睡眠质量。
与辅助装置的用户接口
在一些实施例中,生物计量监视装置可将数据及/或命令发射到辅助电子装置及/或从辅助电子装置接收数据及/或命令。辅助电子装置可直接或间接地与生物计量监视装置通信。直接通信在本文中是指数据在第一装置与辅助装置之间发射而没有任何中间装置。举例来说,两个装置可经由无线连接(例如蓝牙)或有线连接(例如USB)彼此通信。间接通信是指数据在第一装置与辅助装置之间借助于一个或多个中间第三装置(其中继所述数据)的发射。第三装置可包含但不限于无线转发器(例如,WiFi转发器)、计算装置,例如智能电话、膝上型计算机、桌上型或平板计算机、手机塔、计算机服务器及其它联网的电子器件。举例来说,生物计量装置可将数据发送到智能电话,所述智能电话经由蜂窝式网络数据连接将所述数据转发到经由因特网连接到所述蜂窝式网络的服务器。
在一些实施例中,充当到生物计量监视装置的用户接口的辅助装置可由智能电话组成。智能电话上的应用程序可促进及/或使得智能电话能够充当到生物计量监视装置的用户接口。生物计量监视装置可实时地或在具有一些延迟的情况下将生物计量及其它数据发送到智能电话。智能电话可实时地或在具有一些延迟的情况下将一或多个命令发送到生物计量监视装置以例如指示其将生物计量及其它数据发送到智能电话。举例来说,如果用户在应用程序中进入跟踪跑步的模式,那么智能电话可将命令发送到生物计量装置以指示其实时地发送数据。因此,用户可在其前进时无任何延迟地在其应用程序上跟踪其跑步。
此类智能电话可具有一个或多个应用程序以使得用户能够从其生物计量装置检视数据。所述应用程序可在用户启动或打开所述应用程序时默认地打开到“仪表板”页面。在此页面上,可展示例如总步数、所爬楼层数、行进英里数、燃烧的卡路里数、消耗的卡路里数及消耗的水等数据总计的概要。也可展示其它相干信息,例如应用程序从生物计量监视装置接收数据的最后时间、关于前一夜的睡眠的度量(例如,用户何时入睡、醒来及其睡眠时间),及用户在当天可进食多少卡路里以维持其卡路里目标(例如,实现减肥的卡路里赤字目标)。用户可能够选择将这些及其它度量中的哪些展示在仪表板屏幕上。用户可能够在仪表板上看到前几天的这些及其它度量。其可能够通过按压触摸屏上的按钮或图标而接入前几天。或者,例如向左或向右拨动等姿势可使得用户能够导览当前及先前度量。
智能电话应用程序还可具有提供用户活动的概要的另一页面。活动可包含但不限于步行、跑步、骑车、烹调、坐着、工作、游泳、出差、举重、上下班及瑜伽。与这些活动相干的度量可呈现在此页面上。举例来说,条形图可展示用户在当天的不同部分所走的步数(例如,每5分钟或每1小时走了多少步)。在另一实例中,可显示用户在执行某一活动上花费的时间量及在此时间周期中燃烧了多少卡路里。类似于仪表板页面,应用程序可提供导览功能性以允许用户查看过去几天的这些及其它度量。还可由用户选择例如小时、分钟、周、月或年等其它时间周期以使其能够检视在较短或较大时间跨度内其活动的倾向及度量。
智能电话应用程序还可具有用以将用户已吃或将吃的食物记入日志的接口。此接口可具有关键字搜索特征以允许用户快速找出其希望键入其日志中的食物。作为搜索食物的替代方案或除此之外,用户可能够通过导览菜单或一系列选单而找出要记入日志的食物。举例来说,用户可选择以下系列类别:早餐/谷类/健康/燕麦片以到达其希望记入日志的食物(例如,苹果口味的燕麦片)。在这些菜单中的任一者处,用户可能够执行关键字搜索。举例来说,用户可在已选择类别“早餐”之后搜索“燕麦片”以在早餐食物的类别内搜索关键字“燕麦片”。在已选择其将希望记入日志的食物之后,用户可能够修改或键入分量大小及营养含量。在已将至少一种食物记入日志之后,应用程序可以某一时间周期(例如,天)显示记入日志的食物的概要及所述食物的营养含量(个别及全部卡路里含量、维生素含量、糖含量,等)。
智能电话应用程序还可具有显示关于用户身体的度量(例如,用户的体重、身体脂肪百分比、BMI,及腰围大小)的页面。其可显示展示这些度量中的一者或多者在某一时间周期(例如,两周)内的趋势的一或多个曲线。用户可能够选择此时间周期的值并检视先前时间周期(例如,上月)。
智能电话应用程序还可具有允许用户键入用户已消耗多少水的页面。每当用户饮用一些水时,其可按其选择的单位(例如,盎司、杯,等)键入所述量。应用程序可显示用户在某一时间周期(例如,一天)内已记入日志的所有水的总量。应用程序可允许用户查看先前记入日志的水条目及前几天以及当天的日总量。
智能电话应用程序还可具有显示用户的在线朋友的页面。此“朋友”页面可使得用户能够添加或请求新朋友(例如,通过搜索其姓名或通过其电子邮件地址)。此页面还可显示用户及其朋友的排行榜(leaderboard)。用户及其朋友可基于一或多个度量进行排名。举例来说,用户及其朋友可使用过去七天的总步数进行排名。
智能电话应用程序还可具有展示关于用户前夜及/或前几夜的睡眠的度量的页面。此页面还可使得用户能够通过指定其何时上床睡觉及其何时醒来而将其过去何时睡觉记入日志。用户还可能够关于其睡眠的主观度量(例如,不良的夜间休息、良好的夜间休息、极好的夜间休息,等)。用户可能够检视过去今天或时间周期(例如,两周)的这些度量。举例来说,睡眠页面可默认展示用户在最近两周的每一夜的睡眠时间量的条形图。用户还可能够检视用户在最近一月的每一夜的睡眠时间量的条形图。
用户还可能够经由替代或额外接口接入本文所述的智能电话应用程序的完整能力(例如,能够键入食物日志、检视仪表板,等)。在一个实施例中,此替代接口可由网页组成,所述网页由与生物计量监视装置间接通信的服务器托管。所述网页可经由任何因特网连接装置使用例如网络浏览器等程序接入。
无线连接性及数据发射
本发明的生物计量监视装置的一些实施例可包含用以从因特网及/或其它装置发射及接收信息的无线通信构件。无线通信可由例如蓝牙、ANT、WLAN、电力线联网及手机网络等一或多个接口组成。这些提供为实例,且不应理解为排除其它现有无线通信方法或协议或尚未发明的无线通信技术或协议。
无线连接可为双向的。生物计量监视装置可将其数据发射、传达及/或推送到其它装置,例如智能电话、计算机,等及/或因特网,例如网络服务器等。生物计量监视装置还可从其它装置及/或因特网接收、请求及/或拉动(pull)数据。
生物计量监视装置可充当将用于其它装置的通信提供到彼此或提供到因特网的中继器。举例来说,生物计量监视装置可经由WLAN连接到因特网并且配备有ANT无线电。ANT装置可与生物计量监视装置通信以经由生物计量监视装置的WLAN将其数据发射到因特网(且反之亦然)。作为另一实例,生物计量监视装置可配备有蓝牙。如果具有蓝牙功能的智能电话进入生物计量监视装置的范围内,那么生物计量监视装置可经由智能电话的手机网络将数据发射到因特网或从因特网接收数据。来自另一装置的数据还可发射到生物计量监视装置并存储(或反之亦然)或在稍后时间发射。
本发明的生物计量监视装置的实施例还可包含用于流式传输或发射网络内容以供在生物计量监视装置上显示的功能性。以下为此内容的典型实例:
1.由装置测量但远程存储的心率及/或其它数据的历史曲线
2.由其它装置测量及/或远程存储(例如,例如在如fitbit.com的网站处)的用户活动及/或所消耗食物及/或睡眠数据的历史曲线
3.远程存储的其他用户跟踪数据的历史曲线。实例包含心率、血压、动脉硬度、血糖水平、胆固醇、看电视的持续时间、玩视频游戏的持续时间、情绪,等。
4.基于用户的心率、当前体重、体重目标、食物摄入、活动、睡眠及其它数据中的一或多者的训练及/或节食数据。
5.朝向心率、体重、活动、睡眠及/或其它目标的用户进展。
6.描述前述数据的概要统计、图形、徽章及/或度量(例如,“等级”)
7.用户的前述数据与具有类似装置及/或跟踪方法的其“朋友”的类似数据之间的比较
8.社交内容,例如推特(Twitter)馈送、即时传讯及/或脸书(Facebook)更新
9.其它在线内容,例如报纸文章、星座、天气报导、RSS馈送、连环漫画(comic)、纵横拼字谜、分类广告、股票报导,及网站
10.电子邮件消息及日历计划表
可根据不同上下文将内容递送到生物计量监视装置。举例来说,在早晨,可连同用户前夜的睡眠数据显示新闻及天气报导。在晚上,可显示日间活动的每日概述。
如本文所揭示的生物计量监视装置的各种实施例还可包含可用以起始其它装置中的功能性的NFC、RFID或其它短程无线通信电路。举例来说,生物计量监视装置可配备有NFC天线以使得当用户使其与移动电话紧密接近时,应用程序自动地在所述移动电话上启动。
提供这些实例用于说明且并不希望限制可由装置发射、接收或显示的数据的范围或可在此传送及显示期间发生的任何中间处理。鉴于本发明/应用程序,所属领域的技术人员可设想可流式传输或经由生物计量监视装置传输的数据的许多其它实例。
充电及数据发射
生物计量监视装置的一些实施例可使用有线连接来为内部可再充电电池充电及/或传送数据到例如膝上型计算机或移动电话等主机装置。在类似于本发明中较早论述的实施例的一个实施例中,生物计量监视装置可使用磁体来帮助用户将生物计量监视装置对准到底座或缆线。磁体在底座或缆线中的磁场及装置自身中的磁体可有策略地定向以便迫使生物计量监视装置与底座或缆线(或更具体来说,缆线上的连接器)自对准,且提供将生物计量监视装置保持在底座中或保持到缆线的力。磁体还可用作用于充电或数据发射目的的导电接点。在另一实施例中,永磁体可仅用于底座或缆线侧而不用于生物计量监视装置自身。此可在生物计量监视装置使用磁力计的情况下改善生物计量监视装置的性能。如果在生物计量监视装置中存在磁体,那么附近永磁体的强磁场可能使得显著地更难使磁力计准确测量地球的磁场。在此些实施例中,生物计量监视装置可利用二价铁材料代替磁体,且底座或缆线侧上的磁体可附接到二价铁材料。
在另一实施例中,生物计量监视装置可在生物计量监视装置主体中含有一或多个电磁体。用于充电及数据发射的充电器或底座也可含有电磁体及/或永磁体。生物计量监视装置仅当其接近于充电器或底座时才可接通其电磁体。生物计量监视装置可通过使用磁力计查找充电器或底座中的永磁体的磁场签名而检测与底座或充电器的接近度。或者,生物计量监视装置可通过测量来自充电器或底座的无线信号的接收信号强度指示(RSSI)或在一些实施例中通过辨识与所述充电器或底座相关联的NFC或RFID标记而检测到充电器的接近度。当装置不需要充电、同步或但其已完成同步或充电时,可颠倒电磁体,从而产生从充电缆线或底座排斥所述装置的力。在一些实施例中,充电器或底座可包含电磁体,且可经配置(例如,充电器或底座中的处理器可经由程序指令加以配置)以在连接生物计量监视装置用于充电时接通电磁体(电磁体可通常保持接通以使得放置在充电器上的生物计量监视装置因电磁体而被吸引抵靠充电器,或电磁体可保持关掉直到充电器确定已将生物计量监视装置放置在充电器上,例如经由完成充电电路、辨识出生物计量监视装置中的NFC标记等,且接着接通以吸引生物计量监视装置抵靠充电器。在充电完成(或数据传送完成,如果充电器实际上为数据传送托架或组合的充电器/数据传送托架)之后,可即刻关掉电磁体(暂时性地或直到再次检测到将生物计量监视装置放置在充电器上),且生物计量监视装置可停止被吸引抵靠充电器。在此些实施例中,可能需要定向生物计量监视装置与充电器之间的接口,使得在不存在由电磁体产生的磁力的情况下,生物计量监视装置将从充电器掉落或以其它方式从充电位置偏移到明显不同的位置(以在视觉上向用户指示充电或数据传送完成)。
数据传送中的传感器使用
在一些实施方案中,生物计量监视装置可包含可在具有不同数据发射速率及不同功率消耗速率的两个或两个以上协议之间切换的通信接口。此切换可由从生物计量监视装置的各种传感器获得的数据驱动。举例来说,如果使用蓝牙,那么通信接口可响应于基于来自生物计量监视装置的传感器的数据做出的确定而在使用蓝牙基本速率/增强数据速率(BR/EDR)与蓝牙低能量(BLE)协议之间切换。举例来说,当来自生物计量监视装置中的加速度计的传感器数据指示佩戴者睡着或以其它方式久坐时,可使用较低功率、较慢的BLE协议。相比之下,当来自生物计量监视装置中的加速度计的传感器数据指示佩戴者正到处走动时,可使用较高功率、较快的BR/EDR协议。此自适应数据发射技术及功能性进一步论述于2014年3月5日申请的第61/948,468号美国临时专利申请案中,所述美国临时专利申请案先前在“对相关申请案的交叉参考”部分中以引用的方式并入本文中且再次特此关于在生物计量监视装置中的自适应数据传送速率处指出的内容而以引用的方式并入。
此些通信接口还可充当用于生物计量监视装置的一种形式的传感器。举例来说,无线通信接口可允许生物计量监视装置确定在无线通信接口的范围内的装置的数目及类型。此数据可用以确定生物计量监视装置是否在特定上下文中,例如,在室内、在汽车中,等,且响应于此确定而以各种方式改变其行为。举例来说,如第61/948,468号美国临时专利申请案(上文中以引用的方式并入)中所论述,此些上下文可用以驱动用于无线通信的特定无线通信协议的选择。
可配置应用程序功能性
在一些实施例中,本发明的生物计量监视装置可包含手表样形状因数及/或手镯、臂饰或脚镯形状因数,且可编程有提供特定功能性及/或显示特定信息的“应用程序”。可通过多种方式(包含但不限于按压按钮、使用电容性触摸传感器、执行由加速度计检测的姿势、移动到由GPS或运动传感器检测的特定位置或区域、压缩生物计量监视装置主体(由此在装置内部产生可由生物计量监视装置内部的高度计检测的压力信号),或将生物计量监视装置放置得接近于与一应用程序或一组应用程序相关联的NFC标记)来启动或关闭应用程序。还可通过某些环境或生理条件(包含但不限于检测到高心率、使用湿度传感器检测到水(以例如启动游泳应用程序)、某个当日时间(以例如在夜间启动睡眠跟踪应用程序、平面离开或着陆的压力及运动特性的改变以启动及关闭“飞机”模式应用程序)来自动地触发启动或关闭应用程序。还可通过同时满足多个条件来启动或关闭应用程序。举例来说,如果加速度计检测到用户正跑步且用户按压按钮,那么生物计量监视装置可启动步数计应用程序、高度计数据收集应用程序及/或显示器。在其中加速度计检测到游泳且用户按压相同按钮的另一情况下,其可启动游泳单程计数应用程序。
在一些实施例中,生物计量监视装置可具有可通过起动游泳应用程序而启动的的游泳跟踪模式。在此模式中,生物计量监视装置的运动传感器及/或磁力计可用以检测泳姿、分类泳姿类型、检测游泳单程,及其它相关度量,例如划动效率、单程时间、速度、距离及卡路里燃烧。由磁力计指示的方向改变可用以检测多种单程转身方法。在优选实施例中,来自运动传感器及/或压力传感器的数据可用以检测划动。
在另一实施例中,可通过将生物计量监视装置移动得接近位于自行车上、位于自行车的支座上或在与自行车相关联的位置(包含但不限于自行车车架或自行车存放设施)中的NFC或RFID标记而启动骑车应用程序。(见,例如,图10)。所启动的应用程序可使用与通常用以确定包含但不限于燃烧的卡路里、行进距离及获得的海拔的度量的算法不同的算法。还可在检测到无线自行车传感器(包含但不限于车轮传感器、GPS、步调传感器,或功率计)时启动应用程序。生物计量监视装置可接着显示及/或记录来自无线自行车传感器或自行车传感器的数据。
额外应用程序包含但不限于可编程或可定制手表面、停止观看、音乐播放器控制器(例如,MP3播放器、遥控器)、文本消息及/或电子邮件显示器或通知器、导航指南针、自行车计算机显示器(当与单独或集成式GPS装置通信、车轮传感器或功率计时)、举重跟踪器、仰卧起坐跟踪器、引体向上跟踪器、阻力训练形式/健身跟踪器、高尔夫摆幅分析器、网球(或其它球拍类运动)摆幅/服务分析器、网球游戏摆幅检测器、棒球摆幅分析器、掷球分析器(例如,足球、棒球)、有组织体育活动强度跟踪器(例如,足球、棒球、篮球、网球、橄榄球)、掷盘分析器、咬食物检测器、打字分析器、倾斜传感器、睡眠质量跟踪器、闹钟、压力计、紧张/放松生物反馈游戏(例如,潜在地结合提供听觉及/或视觉线索以在放松训练中训练用户呼吸的移动电话)、刷牙跟踪器、进食速率跟踪器(例如,计数或跟踪器具进入口中以进行实物摄入的速率及持续时间)、驾驶机动车醉酒或适合性指示器(例如,经由心率、心率变化、皮肤电响应、步态分析、解谜,等等)、过敏跟踪器(例如,使用皮肤电响应、心率、皮肤温度、花粉感测等等(可能结合来自例如因特网的外部季节性过敏原跟踪且可能确定用户对特定形式的过敏原(例如,花粉)的响应,及提醒用户此些过敏原的存在,例如从季节性信息、花粉跟踪数据库,或生物计量监视装置中的或由用户使用的本地环境传感器)、发烧跟踪器(例如,测量发烧、感冒或其它疾病的风险、发作或进展,可能结合季节性数据、疾病数据库、用户位置及/或用户提供的反馈来关于用户评估特定疾病(例如,流感)的扩散,及可能作为响应而指出或建议工作或活动的节制)、电子游戏、咖啡因影响跟踪器(例如,监视例如心率、心率变化、皮肤电响应、皮肤温度、血压、紧张、睡眠及/或在对咖啡、茶、能量饮料及/或其它含咖啡因的饮料的摄入或节制的短期或长期响应中的活动)、药物影响跟踪器(例如,类似于先前提及的咖啡因跟踪器但关于其它干预,其是否为医疗或生活方式药物,例如酒精、烟草等)、耐力运动训练(例如,推荐或指出强度、持续时间或跑步/骑车/游泳健身的概况,或建议健身的节制或延迟,根据用户指定的目标,例如马拉松、铁人三项或利用来自例如历史锻炼活动(例如,跑步距离、步幅)、心率、心率变化、健康/疾病/紧张/发烧状态的数据定制的目标)、体重及/或身体组成、血糖、食物摄入或卡路里平衡跟踪器(例如,向用户通知其可消耗多少卡路里以维持或实现某体重)、步数计,及咬指甲检测器。在一些情况下,应用程序可仅依赖于本发明的处理功率及传感器。在其它情况下,应用程序可融合或仅显示来自一外部装置或一组外部装置(包含但不限于心率绑带、GPS距离跟踪器、身体组成计(body composition scale)、血压监视器、血糖监视器、手表、智能手表、例如智能电话或平板计算机等移动通信装置,或服务器)的信息。
在一个实施例中,生物计量监视装置可控制辅助装置上的音乐播放器。可控制的音乐播放器的方面包含但不限于音量、曲目及/或播放列表的选择、快进或后退(skippingforward or backward)、曲目的快速进带或倒带、曲目的速度,及音乐播放器均衡器。可经由用户输入或基于生理、环境或上下文数据自动地控制音乐播放器。举例来说,用户可能够通过经由生物计量监视装置上的用户接口选择曲目而选择及播放其智能电话上的曲目。在另一实例中,生物计量监视装置可基于用户的活动水平(从生物计量监视装置传感器数据计算所述活动水平)自动地选择适当曲目。此可用以帮助激发用户维持某一活动水平。举例来说,如果用户持续跑步且想要将其心率保持在某一范围中,那么生物计量监视装置可播放欢快的或较高速度的曲目(如果用户的心率低于其目标范围)。
通过用户的活动触发的自动功能
睡眠阶段触发功能性
可经由本文所揭示的各种生物计量信号及方法监视睡眠阶段,例如心率、心率变化、体温、身体运动、环境光强度、环境噪声水平等。可使用光学传感器、运动传感器(加速度计、陀螺仪传感器,等)、麦克风及温度计以及(例如)本文中论述的其它传感器来测量此些生物计量。
生物计量监视装置还可具有通信模块,包含但不限于Wi-Fi(802.xx)、蓝牙(经典、低功率)或NFC。一旦估计出睡眠阶段,即可将睡眠阶段发射到以无线方式连接到具有通信功能的电气设备(通过Wi-Fi、蓝牙或NFC)的云系统、家用服务器或主控制单元。或者,生物计量监视装置可与具有通信功能的电气设备直接通信。此些具有通信功能的电气设备可包含例如厨房电气设备,例如微波炉、咖啡研磨机/制作机、烤箱等。
一旦睡眠阶段指示接近于用户醒来的时间,生物计量监视装置就可发出触发项到用户已指示应自动操作的电气设备。举例来说,可致使咖啡研磨机及制作机开始制作咖啡,且可使烤箱开始加热面包。还可致使微波炉开始烹调燕麦片或鸡蛋,且电热水壶开始烧水。只要恰当地准备各部分,此自动信号可触发早餐烹调。
提醒检测
可使提醒(例如低提醒)与人昏昏欲睡相关,还可从上文所列的生物计量检测所述提醒,且所述提醒可用以触发例如咖啡制作机等电气设备开始自动地冲泡咖啡。
水合作用
便携式生物计量监视装置结合活动水平跟踪器可将用户的活动水平直接提交到云系统、家用服务器、主控制单元或电气设备。此可触发电气设备的一些动作,尤其与水合作用有关的动作,例如开始冰箱的冰块制作,或降低净水器的操作温度。
功率节省
许多电气设备通常以消耗功率的低功率功率闲置操作。使用用户的生物计量信号的聚合信息,可致使具有通信功能的电气设备进入超低功率模式。举例来说,在用户睡着或外出工作时,家中的饮水机可自身关闭到超低功率模式,且一旦预期用户在家中的活动,就可开始冷却/加热水。
基于位置及活动的餐馆推荐系统
实时生物计量信号及位置信息的聚合可用以产生关于一个或多个用户在给定时间的需要的有根据的推测(例如离子饮料)。组合此推测的需要与关于用户活动水平、活动类型、活动时间及活动持续时间以及用户记入日志的食物摄入数据的历史用户数据,智能电话及/或智能手表上的应用程序可推荐将满足用户的生活方式及当前需要的餐馆。
举例来说,刚完成六英里巡回跑的用户可启动此应用程序。应用程序可知晓此人在过去一小时内维持高活动水平,且因而确定所述人可能脱水。从历史用户数据,应用程序还可知晓例如用户的膳食中有过多蔬菜但糖分低。通过考虑用户的当前位置、价格范围及上文所提及的其它因素的优化算法,应用程序可推荐例如提供冰沙(smoothie)的餐馆。
游泳跟踪
在生物计量跟踪装置的一些实施例中,生物计量跟踪可包含游泳算法,其可利用来自一或多个运动传感器、海拔高度传感器(例如,大气压力传感器)、定向传感器(例如,磁力计)、位置服务传感器(例如,GPS、无线三角测量)及/或温度传感器的数据。所述传感器可嵌入安裝到例如手腕的单个装置中。在其它实施例中,额外传感器装置可附接到游泳者的前额、头的后部、护目镜、背、髋、肩、大腿、腿及/或脚。
游泳锻炼分析的三个潜在功能分量如下:
●划动计数检测——提供每单程的划动计数,其中单程定义为从池的一端到相反端的单向通过。
●划动类型分类——描述用户的泳姿类型(例如,爬泳、蛙泳、仰泳、蝶泳、侧泳、踩水(kicking without stroke)、直划(body streamline),等),且可为以下各者中的任一者或组合:
a.用户采用的每一划动的分类
b.每个完整单程使用的主要划动类型的分类。
c.每个分数单程(例如二分之一单程的自由泳、二分之一单程的蛙泳)使用的划动类型的分类
●单程计数——对用户穿过的单程进行计数。确定单程的一个方法是通过检测用户何时在池中转身。
转身定义为前进方向的180度改变。在检测到转身时,可推断单程的开始及结束。在再次开始游泳之前在池中的一点处(通常在一端或其它处)暂停(在某一时间周期内无运动)也认为是转身,只要随后的前进方向与暂停之前的前进方向相反即可。
在一些实施例中,可以众多方式组合这些功能分量。
算法结构
可依次、并行或以混合次序(一些顺序框及一些并行框的组合)执行游泳锻炼分析的所述三个功能分量。
顺序方法(见图15A)
在一个实施例中,可首先通过划动检测器算法分析原始及/或经预处理的传感器信号。划动检测器算法可使用运动传感器(例如,加速度计、陀螺仪)中的时间峰值(局部最大值及/或局部最小值)作为已采取划动的指示。接着,还可应用一或多个试探性规则以移除并不表示划动的峰值。举例来说,峰值的量值、两个邻近峰值的时间距离、峰值到峰值振幅及/或峰值的形态特性(例如,清晰度)可指示某些峰值并不表示划动。当传感器提供一维以上的数据(例如3轴加速度计,或3轴运动传感器+高度计(总计4轴数据))时,可考虑所有轴上的峰值的时序及相关大小以确定所述轴中的一或多者上的峰值是否是由划动产生。
如果观测到表示划动的单个峰值或来自表示划动的多个数据轴的一群峰值,那么可从在检测到先前峰值与检测到当前峰值之间的时间获得的数据区段提取特征。特征包含但不限于最大及最小值、区段中的波纹数目、在各种度量中测量的功率(例如,L1功率及L2功率、标准差、平均数),等。所提取的特征可接着经受机器学习系统,其中离线计算系统系数(监督学习)或在用户使用生物计量监视装置时调适系统系数(无监督学习)。机器学习系统可接着针对每一检测到的划动返回划动分类。
转身检测器算法可通过计算导数、移动平均及/或使用对传感器(所述传感器包含但不限于本发明中所列的那些传感器)的信号的高通滤波来搜索运动中的突然改变。还可及/或替代地对信号执行主要分量分析(PCA)。如果一个主要分量不同于下一个,那么可确定转身发生。例如快速傅立叶变换(FFT)等变换的整个或部分系数也可用作特征。还可使用例如自我回归(AR)模型等参数模型。可接着使用线性预测分析(LPA)、最小均方滤波(LMS)、递归最小平方滤波(RLS)及/或卡尔曼滤波估计时变模型参数。接着比较估计的模型参数以确定其值中是否存在突然改变。
在一个实施例中,游泳者的技巧水平及/或游泳样式(例如,速度)可从传感器数据加以推断,且接着用于转身检测。举例来说,高级游泳者通常具有更有力的划动(即,大的加速度计峰值量值),且采用较少划动来完成一次单程。因此,估计游泳者的技巧水平或特性的度量可用于转身检测算法。这些度量在运动信号中可包含但不限于平均运动信号或集成运动信号,明确地说,高级游泳者的臂移动、估计前进速度及检测模式。还可经由用户输入来确定游泳者的技巧水平或其它特性。举例来说,用户可输入其为高级、中级或初学者游泳者。
来自这些分析的一个或许多(组合)特征可用以检测给定数据样本及/或相邻数据样本是否具有转身特性。为获得特征与决策边界的最佳组合,可以利用机器学习技术,例如逻辑回归、决策树、神经网,等。
在一些实施例中,如果检测到转身,那么游泳数据从可概述先前转身起自然增加,例如划动的数目、用于每一划动及用于单程的划动类型、分段时间,等。如果未检测到转身,那么可更新划动计数器及类型。除非用户停止游泳,否则算法可回到划动计数检测。
并行方法(见图15B)
在并行方法中,可并行地执行三个功能组件中的一些或全部。举例来说,可联合地执行划动类型检测及转身检测,而独立地运行划动计数检测。
在此些实施例中,可在同时检测划动类型及转身的单个算法中实施两个功能组件:划动类型及转身检测。举例来说,泳姿类型(例如,检测自由泳、蛙泳、仰泳、蝶泳的移动分析)及转身类型(例如,滚翻转身(tumble turn)、前滚翻转身(flip turn)、两手触摸)的分类器可返回所检测到的划动类型或所检测到的转身类型。在检测期间,可提取时间以及频谱特征。移动窗口可首先应用于多个数据轴。可接着计算此窗口区段的统计量,即,最大及最小值、区段中的波纹的数目、在各种度量中测量的功率(例如,L1功率及L2功率、标准偏差、平均数)。可同样应用独立分量分析(ICA)及/或主要分量分析(PCA)以发现更好地表示转身类型及划动类型特性的任何隐藏信号。可接着从此(潜在地改善的)信号表示计算时间特征。对于时间特征,可应用各种非参数滤波方案、低通滤波、带通滤波、高通滤波来增强所需信号特性。
还可将例如FFT、小波变换、希尔伯特(Hilbert)变换等频谱分析应用于此经开窗区段。整个或部分变换系数可选择为特征。可使用例如AR、移动平均(MA)或ARMA(自我回归及移动平均)模型的参数模型,且可经由自相关及/或部分自相关或LPA、LMS、RLS或卡尔曼滤波器发现此类模型的参数。所估计系数的全部或部分可用作特征。
不同长度的移动平均窗可并行运行,且提供上文所列的特征,且还可将所述特征的全部或部分用作特征。
可接着将机器习得系数(监督学习)应用于这些所提取特征。可训练且接着使用一或多个机器学习技术,即二项式线性判别分析的多个层(例如,逻辑回归)、多项式逻辑回归、神经网、决策树/森林或支持向量机。
随着所关注的窗移动,可提取特征,且这些新提取的特征将经由机器学习系统返回划动类型或检测到的转身。
划动检测器算法可独立于划动类型及转身检测而并行运行。可通过试探性规则检测及选择原始或经预滤波传感器信号的时间峰值。
在算法的概括阶段(在所述阶段中,可确定、显示及/或存储关于游泳的度量),可将后处理应用于所述序列划动类型及转身检测。如果以某一置信度确认转身,那么可连同所检测到的划动计数概括来自先前转身的游泳度量数据。如果未确认转身,那么移动平均窗可继续进行。直到用户停止游泳,算法可继续更新关于用户的锻炼的游泳度量,包含但不限于转身的总数、单程的总数、划动的总数、每单程的平均划动数、最后一个单程中的划动数目、每单程划动数目的改变,等。
混合方法(见图15C及15D)
在混合方法中,可并行地运行划动类型及划动计数检测,随后是转身检测。
划动类型检测可经由机器学习的系数而返回划动类型。第一移动窗口可取的传感器信号的片段。随后可提取特征,或者是本文中所列举的移动窗口特征的整个特征或者是子集。随后可将机器学习系数、训练的离线应用于所述特征以确定哪一划动类型产生传感器信号的给定片段。
划动计数检测可连同划动类型检测一起同时地运行。
一旦检测到划动类型及计数,可用所列举的整个特征或特征的子集来执行转身检测。
如果检测到转身,那么可将一圈的完成记录在用户的游泳总结度量中。可将后过程应用于检测到的划动类型以确定所完成的圈的最突出的划动类型。随后算法可移动到划动类型及计数检测阶段,除非用户停止游泳。如果未检测到转身,那么所述算法可继续更新当前圈的划动类型及计数,直到检测到转身为止。
血糖水平及心率
连续地测量生物计量信号的生物计量监视装置可提供关于疾病的病前状况、进展以及恢复的有意义信息。此些生物计量监视装置可具有传感器且相应地运行算法以测量并计算生物计量信号,例如心率、心率可变性、所进行的步数、所燃烧的卡路里、所行进的距离、体重及身体脂肪、活动强度、活动持续时间及频率等。除了所测量的生物计量信号之外,可使用由用户提供的食物摄入记录。
在一个实施例中,生物计量监视装置可观测心率及其随着时间的改变,尤其在食物摄入事件之前及之后。已知心率受血糖水平影响,而众所周知的是,高血糖水平是糖尿病前期状况。因此,可经由统计回归来找出描述所逝去的时间(在食物摄入之后)与血糖水平之间的关系的数学模型,其中从正常情况、糖尿病前期及糖尿病个体收集数据以提供相应的数学模型。通过所述数学模型,可以预测具有特定心率模式的个体是否健康、糖尿病前期或患有糖尿病。
知晓了与糖尿病前期或糖尿病状况相关联的许多心力衰竭,有可能进一步基于用户的生物计量数据向生物计量监视装置的用户告知此些风险的可能的心力衰竭,例如冠心病、脑血管疾病及周围血管疾病等。
还可以在形成数学模型时使用所推荐的锻炼方针(例如,由美国心脏协会提供的方针(http://www.heart.org/))考虑用户的活动强度、类型、持续时间及频率,以作为控制疾病的发作的“概率”的自变量。关于营养及体重管理的许多方针也可用于学术且用于一般公众以预防心血管疾病及糖尿病。可将此些方针与随着时间积累的用户数据一起并入到数学模型中,所述用户数据例如为用户消耗的食物的成分以及体重及身体肥胖趋势。
如果用户已在存储并显示生物计量数据的社交网站将其家庭成员设定为其朋友,那么还可分析家庭成员取得疾病的可能性且向用户告知结果。
除了向用户告知疾病的潜在发展之外,可将包含锻炼制度以及具有较健康的成分及传播方法的菜谱的所推荐的生活方式提供给用户。
杂货店购物、烹饪及食物记录的统一
杂货店组织及菜谱辨识系统
来自杂货店购物的收据可含有丰富的信息,尤其关于个体的饮食习惯。举例来说,在此处呈现将来自杂货店收据的信息与如由生物计量监视装置收集的个体的生物计量数据进行组合的新颖系统。所述系统可收集且分析关于个体的数据(信息),且可随后推荐可改变个体的生活方式以便改善他们的健康状态的选项。此系统的实施可涉及云计算、用于感测及接口的硬件平台开发以及移动/网站开发。
在一个实施例中,当用户在杂货店结帐时,可将杂货店列表(如从收据或者(例如)从电子邮件收据或发票获得)自动地发射到远程数据库(例如,云服务器),所述远程数据库也可存储用户的生物计量数据。当用户到家且在他们的冰箱及/或食品室中组织项目时,他们的智能电话/手表上的应用可基于关于食品项目的历史数据而推荐丢弃食品室或冰箱里的哪些项目(例如,如果食品项目过期或可能变质)。指示食品已过期或者应在短期内消耗掉以避免腐败的提醒可独立于此类互动被自动地发送到用户。举例来说,每当已满足某一阈值时(例如,在牛奶将过期的两天内),便可将这些提醒发出到用户。还可通过除了通过智能电话/手表之外的手段将提醒发送到用户。举例来说,可通过网络接口、通过电子邮件、通过膝上型计算机上、平板计算机、桌上型计算机,或与维持且/或分析食品数据库的计算机直接或间接通信的任何其它电子装置上的提醒将所述提醒呈现给用户。
通过使用食品项目的经更新列表且基于用户的历史食品消耗数据,所述应用可将菜谱推荐给用户。在一个实施例中,可向使用应该先吃的项目(例如,在其过期、变质或变得比其它成分不新鲜之前)的菜谱给予优先级。为了推荐营养上平衡、正确分配且根据用户的活动而裁定的最佳菜谱,所述应用还可也分析用户的活动数据。举例来说,如果用户在早晨举重,那么可推荐高蛋白质膳食。在另一实例中,如果用户不是非常活动,那么可减小菜谱的大小以降低最终膳食含有的卡路里的数目。
应注意,可将这些策略应用于共享相同的食品及/或膳食的多个用户。举例来说,可为一家人创建组合的食品数据库,使得如果家庭中的一个成员从杂货店取得鸡蛋且家庭中的另一成员取得牛奶,那么鸡蛋及牛奶两者将在食品数据库中表示。类似地,营养偏好(例如,素食者、对某些食品过敏等)、活动、基础代谢率以及总卡路里燃烧可用于形成对准备及/或购买什么食品/菜谱的推荐。
包含(但不限于)心率及心率可变性的生物计量信号可提供对疾病的预先状况的指示。此信息可用于推荐用户购买、消耗及/或准备特定食品,以便降低其患其具有预先状况的疾病的风险。举例来说,如果用户具有心脏问题的预先状况,那么其可推荐他们购买更多的蔬菜、消耗较少的含脂肪食品,且以需要较少油的方法(例如,不深度油炸)制备食品。
控制“智能家电”
在另一实施例中,各种家电可全部具备Wi-Fi功能,且可与服务器通信。由于应用(其可经由(例如)云或因特网而连接到所述家电)可能知晓冰箱含有哪些食品项目,所以所述应用可与冰箱通信以依据食品项目来降低或升高冰箱的温度。举例来说,如果许多食品项目对寒冷更敏感,例如蔬菜,那么可指令冰箱升高温度。所述应用还可也经由蓝牙、BTLE或NFC与冰箱直接通信。
食品记录
所述应用还可基于杂货店购物列表(其可(例如)为在所述应用内维持的列表)以及所述应用推荐的食品菜谱而提供记录为用户的食品的项目。在预先烹饪的膳食(例如,冷冻餐)或在吃之前不需要任何进一步处理的农产品的情况下,用户可简单地输入他们的饭菜大小(或在用户在吃整个膳食的情况下,用户可能不需要输入饭菜大小)且随后将完成食品记录。由于杂货店列表或菜谱提供了某些食品的确切品牌及标记,所以可将更准确的营养信息记录到用户的账户中。
当用户记录正通过遵照应用所建议的菜谱而烹饪的食品项目时,所述应用可从成分及烹饪程序计算营养信息。此可提供比终端产品/膳食的简单组织更准确的对卡路里摄入的估计,因为许多菜谱存在以制备特定类型的食品,例如,可用啤酒、火鸡、猪肉等来制成意大利面的肉丸,且所述肉丸可包含不同程度的碳水化合物。
使用传感器装置的运动计量获取
在一些实施例中,可将传感器安装在例如网球拍等球拍上,从而有助于测量玩家的不同划动。此可适用于大多数(如果不是全部)球拍运动,包含(但不限于)网球、短网拍墙球、壁球、乒乓球、羽毛球、长曲棍球等,以及如棒球、垒球、板球等用球棒玩的运动。还可使用类似的技术来测量高尔夫的不同方面。此类装置可安装在球拍的底部上、手柄上或者通常安装在细绳上的冲击吸收器上。此装置可具有各种传感器,比如加速度计、陀螺仪、磁力计、应变传感器及/或麦克风。来自这些传感器的数据可在本地存储或无线地发射到智能电话上的主机系统或其它无线接收器。
在生物计量监视装置的一些实施例中,包含加速度计、陀螺仪、磁力计、麦克风等的手腕安装式生物计量监视装置可执行对用户的游戏或运动的类似分析。此生物计量监视装置可采取佩戴在用户的手腕上的手表或其它带子的形式。可使用测量或检测球棒或球拍与球之间的撞击时刻且将此数据无线地发射到手腕安装式生物计量监视装置的球拍或球棒安装式传感器可用于通过准确地测量与球的撞击时间来提高此些算法的准确度。
手腕及球拍/球棒安装式装置可有助于测量用户的游戏的不同方面,包含(但不限于)划动类型(正击、反击、发球、斜击)、正击的数目、反击的数目、球旋转方向、上旋、发球百分比、球拍头的角速度、反冲、击打能量、击打一致性等。可使用麦克风或应变传感器作为加速度计的补充来识别球撞击球拍/球棒的时刻。在板球及棒球中,此类装置可测量反冲、撞击时的球棒的角速度、越位对腿侧(棒球)上的击打数目。还可以测量摆动及丢球的数目以及防守对进攻划动的数目。此类装置还可以具有无线发射器以将此统计数据实时地发射到记分板或发射到由观众握住的个别装置。
手腕或球拍安装式装置可具有少量的按钮(例如,两个),其可由玩家使用以指示网球何时赢或何时发生非受迫性的失误。此将允许算法计算赢家以及作为正击对反击的非受迫性的失误的分数。所述算法还可跟踪网球中的直接得分的发球对双发失误的数目。如果两个玩家使用此类系统,那么所述系统还可自动地跟踪得分。
基于自行车手柄杆的ECG
在生物计量监视装置的一些实施例中,可使用与左手接触的电极以及与右手接触的电极(例如,ECG心率测量)来监视用户的心率。因为骑自行车需要用户用手接触手柄杆的任一侧,所以此特定活动良好地适合于使用ECG技术来跟踪用户心率。通过将电极嵌入在手柄杆或手柄杆握把或线带中,每当用户握住手柄杆时便可测量用户的心率。对于具有握把的自行车(与使用手柄杆线带相反),可将电极并入到可用于取代现有握把(例如,通常为不导电的工厂安装的握把)的特殊握把中。左握把及右握把可电连接到(例如)使用电线来测量ECG信号的电子器件。在手柄杆自身导电的情况下,手柄杆可用于将握把中的一者电连接到测量ECG信号的电子器件。测量ECG信号的电子器件可并入到握把中的一者或两者中。或者,测量ECG信号的电子器件可位于单独的外壳中。在一个实施例中,此单独的外壳可安装在自行车手柄杆或柄上。其可具有典型的自行车计算机具有的功能及传感器(例如,速度传感器、步调传感器、GPS传感器)。其还可具有非典型的传感器,例如风速传感器、GSR传感器以及加速度计传感器(潜在地也并入到手柄杆中)。此实施例可使用本发明中所描述的技术来计算活动度量,包含(但不限于)卡路里燃烧,且将这些度量发射到二级及三级装置(例如,智能电话及服务器)。
ECG的电极可并入到自行车的部分或附件中,而不是并入到握把线带及手柄杆握把中,例如并入到手套、制动盖、制动杠杆,或手柄杆自身中。可使用这些电极或额外的电极来测量GSR、身体脂肪及水合作用以作为心率的补充或替代。在一个实例中,可使用缝在手柄杆上所安装的握把线带中的导电细丝(用作ECG电极)来测量用户的心率。握把线带电极可连接到中央自行车计算机单元,所述中央自行车计算机单元含有电子器件来测量GSR、水合作用及/或心率。生物计量监视装置可在显示器上显示此信息。如果用户的水合作用或心率超过某一阈值,那么可提醒用户饮用更多、饮用更少、增加强度或减小强度。在自行车计算机仅测量GSR、水合作用或心率中的一者或两者的情况下,可使用算法来估计无法直接测量的度量。举例来说,如果生物计量监视装置仅可测量心率以及锻炼持续时间,那么可使用心率及锻炼持续时间的组合来估计水合作用且在用户应该饮水时提醒用户。类似地,可使用心率及锻炼持续时间以在用户应该吃或喝除了水之外的东西(例如,运动饮料)时提醒用户。
间接度量估计
自行车计算机通常测量多种度量,包含(但不限于)速度、步调、动力及风速。在便携式监视装置不测量这些度量或不与可能够供应这些度量的装置通信的情况下,可使用所述便携式生物计量监视装置具有的传感器来推断这些及其它度量。在一个实施例中,所述便携式生物计量监视装置可测量心率。其可使用此测量值来推断/估计用户正输出的动力量。例如用户的年龄、高度以及体重等其它度量可有助于告知动力测量值。例如GPS测量的速度、海拔增加/降低、自行车姿势(以便测量斜坡的倾斜或斜度),以及加速度计信号等额外的传感器数据可用于进一步告知动力估计。在一个实施例中,可使用心率与动力输出之间的近似线性的关系来计算用户的动力输出。
在一个实施例中,在用户从便携式生物计量监视装置以及可在校准期间用作基线但在稍后时间不使用的二级装置取得数据的情况下,可发生校准阶段(例如,功率计)。此可允许确定由便携式监视装置测量的传感器数据与由二级装置测量的传感器数据之间的关系。随后当不存在二级装置来计算由二级装置但未由生物计量监视装置明确提供的数据的估计值时,可使用此关系。
基于活动的自动调度
在一个实施例中,可基于用户的日历(或电子邮件或文本消息)中的信息来为用户调度每天的行进要求(上班,下班、在会议之间),目标是满足日常活动目标或长期活动目标。可使用用户的历史数据来帮助计划满足目标以及还有所需的通行时间两者。此特征可与朋友或同事组合。所述调度可如此完成,使得用户可在其步行上班的路上会见朋友,或者在那条路上会见同事进行会议(但用户可能需要设定集合点)。如果在用户的生物计量监视装置与用户的朋友之间存在实时通信,如果来自朋友的生物计量监视装置的数据指示他们的朋友跑得较晚,那么可引导用户步行更长的路线。
在另一实施例中,可(全部或部分)基于用户与用户的接近度来向用户建议步行/跑步/健康路线。用于此些推荐的数据还可或额外地基于来自其他用户的GPS信息。如果存在实时通信,那么可将用户引导到偏好的繁忙路线或安静路线。知晓了关于其他用户的心率及基本健康信息可允许系统建议一条路线来匹配用户的健康水平及所要的锻炼/努力水平。此信息可再次用于向用户规划/导引更长期的活动/健康目标。
位置/背景感测及应用
通过一或多个方法,本文中所揭示的生物计量监视装置的实施例具有可确定或估计生物计量监视装置的位置或背景(例如,在公交车中,在家中、在汽车中)的传感器。可使用专用位置传感器,例如GPS、GLONASS或其它GNSS(全球导航卫星系统)传感器。或者,可可使用较低精度的传感器来推断、估计或猜测位置。在其中难以知晓用户的位置的一些实施例中,用户输入可辅助确定用户的位置及/或背景。举例来说,如果传感器数据使得难以确定用户是在汽车中还是公交车中,那么生物计量监视装置或与生物计量监视装置通信的便携式电子装置或与生物计量监视装置通信的云服务器可向用户呈现询问,从而问用户他们今天是乘公交车还是乘汽车。可针对除了车辆背景之外的位置进行类似询问。举例来说,如果传感器数据指示用户完成了剧烈运动,但不存在指示用户去往健身馆的位置数据,那么可问用户他们今天是否去了健身馆。
车辆运输检测
在一些实施例中,可使用生物计量监视装置的传感器和/或与生物计量监视装置通信的便携式电子装置和/或与生物计量监视装置通信的云服务器来确定用户正在或曾在什么类型的车辆(如果有)中。应注意,在以下实施例中,在一或多个生物计量监视装置通信和/或便携式电子装置中的传感器可用于感测相干信号。还应注意,可在以下描述中使用例如WiFi或蓝牙等特定网络协议,还可使用例如RFID、NFC或蜂窝式电话等一或多个替代性协议。
在一个实施例中,可使用对与车辆相关联的蓝牙装置的检测来推断用户在车辆中。举例来说,用户可具有拥有蓝牙多媒体系统的汽车。当用户与他们的汽车靠得足够近并持续足够长的时间周期时,传感器装置可辨识多媒体系统的蓝牙识别且假设用户在汽车中。可使用来自其它传感器的数据来确证用户在车辆中的假设。可使用来自其它传感器的数据或信号来确认用户在汽车中的实例包含高于30mph的GPS速度测量值以及作为在汽车中的特性的加速度计信号。蓝牙ID固有的信息可用于确定其为车辆的Wi-Fi路由器或车辆类型。举例来说,汽车中的路由器的蓝牙ID可为“奥迪车内多媒体”。关键字“奥迪”或“车”可用于猜测路由器与车辆类型“汽车”相关联。或者,可使用蓝牙ID及其相关联的车辆的数据库。
在一个实施例中,可通过生物计量监视装置的用户或通过便携式通信装置数据来创建或更新蓝牙ID及其相关联的车辆的数据库。此可在用户输入的辅助下且/或在没有用户输入的辅助下完成。在一个实施例中,如果生物计量监视装置可确定其是否在车辆中、车辆类型或特定车辆而不使用蓝牙ID且其遇到与车辆一起移动的蓝牙ID,那么其可将蓝牙ID和关于车辆的信息发送到中央数据库以被按目录分类为与车辆对应的蓝牙ID。或者,如果用户在先前时间点输入关于他们在或曾在其中的车辆的信息且存在在用户指示他们曾在所述车辆中的时间期间或接近所述时间时遇到的蓝牙ID,那么可将蓝牙ID和车辆信息发送到中央数据库且彼此相关联。
在另一实施例中,可使用对与车辆相关联的Wi-Fi装置的检测来推断用户在那个车辆中或车辆类型。一些火车、公交车、飞机、汽车以及其它车辆在其中具有Wi-Fi路由器。可检测且使用路由器的SSID来推断或辅助推断用户在特定车辆中或车辆类型。
在一个实施例中,可用生物计量监视装置的用户或通过便携式通信装置数据来创建或更新SSID及其相关联的车辆的数据库。此可在用户输入的辅助下且/或在没有用户输入的辅助下完成。在一个实施例中,如果生物计量监视装置可确定其是否在车辆中、车辆类型或特定车辆而不使用SSID且其遇到与车辆一起移动的SSID,那么生物计量监视装置可将SSID和关于车辆的信息发送到中央数据库以被按目录分类为与车辆对应的SSID。或者,如果用户在先前时间点输入关于他们在或曾在其中的车辆的信息且存在在用户指示他们曾在所述车辆中的时间期间或接近所述时间时遇到的SSID,那么可将SSID和车辆信息发送到中央数据库且彼此相关联。
在生物计量监视装置的另一实施例中,可使用位置传感器来确定用户的轨迹。随后可将此轨迹与用于不同通行模式的路线的数据库进行比较。通行模式可包含(但不限于)步行、跑步、骑自行车、开车、乘公交车、乘火车、乘有轨电车、乘地铁,和/或骑摩托车。如果用户的轨迹与特定通行模式的路线良好对应,那么可假设用户在穿越所述路线所花费的时间周期期间曾使用所述通行模式。应注意,完成路线或路线的区段的速度可改善对通行模式的猜测。举例来说,公交车和汽车两者都可能够采用相同路线,但公交车在公交站处的额外停靠可允许装置确定用户曾乘公交车而不是汽车。类似地,骑自行车与开车经过一条路线之间的区分可通过所述两者之间的速度的典型差异来辅助。此速度差异还可取决于日时。举例来说,一些路线在高峰期期间可由于汽车而更慢。
在另一实施例中,生物计量监视装置可能够基于车辆的磁场的测量来检测用户在车辆中或在车辆附近。在一些实施例中,还可使用通常与车辆相关联的位置(例如,火车站、地铁站、公交车站、车库)的磁场签名来推断用户当前在、将在或已在车辆中。磁场签名可为非时变的或时变的。
如果确定用户曾实际上在一段时间周期内在车辆中,那么可修改关于用户的其它度量以反映状态。在生物计量监视装置和/或便携式电子装置可测量例如所进行的步数、所行走或跑动的距离、所攀登的海拔和/或所燃烧的卡路里等活动度量的情况下,可基于关于车辆行进的信息来修改这些度量。如果在用户在车辆中期间任何所进行的步数或所攀登的海拔被不正确地记录,那么可从关于用户的度量的记录将其移除。还可从关于用户的度量的记录移除从不正确地记录的所进行的步数或所攀登的海拔导出的度量,例如所行进的距离和所燃烧的卡路里。在可实时地或准实时地确定用户是否在车辆中的情况下,可关闭检测不应在车辆中时测量的度量(例如,所进行的步数或所攀登的楼梯)的传感器,或者可关闭用于测量这些度量的算法,从而防止不正确地记录的度量(以及节省电力)。应注意,可记录关于车辆使用的度量(例如,所乘的车辆的类型,乘的时间、采取哪条路线,以及旅程花费多长时间)且在稍后用于向用户呈现此数据且/或校正关于用户的其它活动和生理度量。
使用蓝牙的位置感测
生物计量监视装置还可使用类似于上文所描述的方法的方法来确定用户何时接近静态位置。在一个实施例中,来自餐馆或商店处的计算机(例如,平板计算机)的蓝牙ID可用于确定用户的位置。在另一实施例中,可使用来自便携式通信装置(例如,智能电话)的半固定蓝牙ID来确定用户的位置。在半固定蓝牙ID源的情况下,可需要多个蓝牙ID来达到用户的位置的可接受的置信度水平。举例来说,可创建用户的同事的蓝牙ID的数据库。如果用户在典型的工作时间期间位于这些蓝牙ID中的若干者的范围内,那么可假设用户在工作。还可使用对其它蓝牙ID的检测来记录两个用户何时偶遇。举例来说,可通过分析计步器数据和蓝牙ID而确定用户与另一用户一起出去跑步。类似的此些概念在2014年3月5日申请的第61/948,468号美国临时专利申请案中进一步详细地论述,且先前关于此些概念以引用的方式并入。
基于位置的GPS的不确定度量
当将传感器信号与GPS信号融合以估计信息性生物计量(例如,步数、生活步伐、速度,或旅程的轨线)时,GPS信号的质量常常非常具信息性。然而,已知GPS信号质量是时变的,且影响信号质量的因素中的一者是周围环境。
可使用位置信息来估计GPS信号质量。服务器可存储区域类型的地图,其中通过恶化GPS信号的物体的数目和种类来预先确定区域类型。所述类型可例如为:大型建筑物区域、小型建筑物区域、开放区域、靠水区域以及森林区域。当GPS传感器开启时,可以其前数个位置估计(其预期较粗略且不正确)来询问这些区域类型。通过位置的粗略GPS估计,可返回可能的区域类型,且可随后在计算GPS信号质量和可靠性时考虑这些区域类型。
举例来说,如果用户在城市峡谷(被高建筑物环绕的区域)(例如,旧金山市区)中或附近,那么低确定性可能与任何GNSS位置测量相关联。此确定性可稍后由尝试至少部分基于GPS数据来确定用户的轨迹、速度和/或高程的算法使用。
在一个实施例中,可使用来自一或多个GNSS传感器的数据自动地创建位置和GPS信号质量的数据库。通过将GNSS轨迹与街道地图进行比较且查看GNSS传感器何时展示用户沿着街道行进(例如,具有10mph或更高的速度)但其轨迹不位于道路上的特性,而自动地执行此比较。还可从展示其中存在高建筑物、峡谷或密集森林的地图来推断基于近似位置的GPS确定性的数据库。
使用车辆GNSS和/或航位推测法的位置感测
许多车辆具有集成式GNSS导航系统。不具有集成式GNSS导航系统的车辆的用户常常为他们的汽车购买GNSS导航系统,所述GNSS导航系统通常被非永久地安装在驾驶者的视野内。在一个实施例中,便携式生物计量监视装置可能够与车辆的GNSS系统通信。在其中便携式生物计量监视装置也用于跟踪位置的情况下,其可从车辆GNSS接收位置信息。其可使生物计量监视装置能够关闭其自身的GNSS传感器(在其具有所述传感器的情况下),因此减少其电力消耗。
除了GNSS位置检测之外,车辆可能够发射关于其方向盘定向和/或其相对于地球磁场的定向的数据,以作为如使用轮胎大小和轮胎旋转速度而测量的其速度的补充。此信息可用于在车辆不具有GNSS系统或车辆的GNSS系统无法取得可靠的位置测量的情况下执行航位推测法以确定轨迹和/或位置。航位推测的位置信息可补充来自生物计量监视装置的GNSS传感器数据。举例来说,生物计量监视装置可降低其对GNSS数据取样的频率,且在GNSS位置数据之间的间隙中填充通过航位推测法确定的位置。
与基于卫星的位置确定的步计数器数据融合
在生物计量监视装置的一些实施方案中,可将来自各种不同传感器的数据融合在一起以提供关于生物计量监视装置的佩戴者的活动的新洞察。举例来说,来自生物计量监视装置中的高度计的数据可与通过对来自生物计量监视装置的加速度计的加速度计数据执行峰值检测分析而获得的步计数数据进行组合,以确定生物计量监视装置的佩戴者何时(例如)爬楼梯或走上坡(与坐升降机或自动扶梯或走过平坦地面相对)。
在传感器数据融合的另一实例中,来自例如上文所论述的步计数器的数据可与从GPS数据导出的距离测量值进行组合以提供在给定窗口内行进的总距离的精细估计。举例来说,可使用卡尔曼滤波器将基于GPS的距离或速度数据与基于步计数器的距离或速度(使用所进行的步数乘以跨距)进行组合,以便获得精细距离估计,所述精细距离估计可比单独基于GPS的距离或速度测量值或基于步计数器的距离或速度测量值更准确。在另一实施方案中,可使用作为如由(例如)加速度计测量的步速率的函数的平滑常数来对基于GPS的距离测量值进行滤波。此些实施方案进一步论述于2014年4月1日申请的第61/973,614号美国临时专利申请案中,所述申请案先前在本文中以引用的方式并入“对相关申请案的交叉参考”节中,且所述申请案再次在此关于对准使用来自基于卫星的定位系统和步计数传感器的数据的距离或速度估计精细化的内容而以引用的方式并入。
生物计量和环境/锻炼性能相关度
本文中所描述的便携式监视装置的一些实施例可检测多种数据,包含生物计量数据、环境数据和活动数据。可对所有此数据进行分析或呈现给用户以促进对两种或更多类型的数据之间的相关度的分析。在一个实施例中,用户的心率可与汽车速度、骑自行车速度、跑步速度、游泳速度或步行速度相关。举例来说,可向用户呈现在X轴上绘制骑自行车速度且在Y轴上绘制心率的图表。在另一实例中,用户的心率可与用户聆听的音乐相关。生物计量监视装置可通过到汽车收音机的无线连接(例如,蓝牙)来接收关于用户曾聆听什么音乐的数据。在另一实施例中,生物计量监视装置还可自身充当音乐播放器,且因此可记录何时播放哪一首歌曲。
举重辅助
在没有私人教练或合作者的辅助的情况下,可能难以适当地完成举重例程。便携式生物计量监视装置可通过向用户传送他们应上举每一重物多长时间、他们应多快举起重物、他们应多快降低重物以及要执行每一举起的重复的次数,而可辅助用户完成举重例程。生物计量监视装置可使用一或多个EMG传感器或应变传感器来测量用户的肌肉收缩。还可通过测量一或多个身体部位的振动(例如,使用加速度计)、一或多个身体部分的汗(例如,使用GSR传感器)、旋转(例如,使用陀螺仪),和/或一或多个身体部位上的温度传感器,来推断用户的肌肉收缩。或者,传感器可置于举重设备自身上以确定使用何时在举起,以及他们举起或降低的速度、他们举起持续的时间,以及他们已执行举起的重复次数。
在一个实施例中,如果生物计量监视装置或举重设备检测到用户正接近他们的失败极限(当用户不再可支撑重物时),那么举重设备可自动地举起重物或防止重物降低。在另一实施例中,与生物计量监视装置或举重设备通信的机械手可自动地举起重物或防止重物降低。此可允许用户将自身推向他们的极限而不需要合作者/目击者(用来在失败的情况下举起重物)且没有来自降下重物的受伤风险。
血糖水平监视辅助
在一些实施例中,便携式生物计量监视装置可经配置以辅助需要监视其血糖水平的用户(例如,糖尿病患者)。在一个实施例中,便携式生物计量监视装置可间接地推断用户的血糖水平或与用户的血糖水平相关的度量。可使用除了通常用于监视血糖监视(使用连续的或离散的手指刺破类型的传感器)的传感器之外的传感器作为典型的血糖监视方法的补充或替代或作为其辅助。举例来说,生物计量监视装置可基于从生物计量监视装置上的传感器测量的数据而向用户提醒他们应检查其血糖水平。如果用户已在一定时间量内执行一定类型的活动,那么他们的血糖水平可能已降低,且因此,生物计量监视装置可显示提醒、产生听觉提醒,或振动,从而提醒用户他们的血糖可能较低且他们应使用典型的血糖测量装置(例如,手指刺破类型的血糖监视器)来检查血糖。生物计量监视装置可允许用户输入从血糖计测量的血糖水平。或者,可将血糖测量值自动地发射到生物计量监视装置和/或与生物计量监视装置直接或间接通信的第三装置(例如,智能电话或服务器)。此血糖测量值可用于告知由生物计量监视装置使用的算法以确定应何时将下一血糖水平提醒递送到用户。用户还可能够将他们吃了、正在吃或者计划吃什么食物输入到生物计量监视装置或与生物计量监视装置直接或间接通信的装置。此信息还可用于确定应何时提醒用户检查他们的血糖水平。还可单独地或组合地使用本文中所描述的其它度量和传感器数据(例如,心率数据)来确定应何时提醒用户检查他们的血糖。
除了在应检查血糖水平时进行提醒之外,生物计量监视装置还可显示当前血糖水平的估计。在另一实施例中,可由二级装置(例如,智能电话或服务器)使用来自生物计量监视装置的数据以估计用户的血糖水平和/或将此数据呈现给用户(例如,通过在智能电话上、网页上显示所述数据,且/或通过经由无线电传送所述数据)。
生物计量监视装置还可用于使锻炼、饮食和其它因素与血糖水平相关。此可辅助用户了解这些因素对他们的血糖水平的正面或负面效果。可由用户使用不同的装置(例如,手指刺破型监视器或连续血糖监视器)、通过生物计量监视装置自身,和/或通过推断血糖水平或使用其它传感器的与血糖水平相关的度量,来测量与活动相关的血糖水平。在生物计量监视装置的一些实施例中,用户可佩戴连续血糖监视装置和生物计量监视装置。这两个装置可将关于活动和血糖水平的数据自动地上载到第三计算装置(例如,服务器)。服务器可随后分析所述数据且/或将所述数据呈现给用户,使得用户更加清楚他们的活动与血糖水平之间的关系。所述服务器还可接收关于用户的饮食的输入(例如,用户可输入他们吃什么食物)且使所述饮食与血糖水平相关。通过帮助用户理解饮食、锻炼和其它因素(例如,紧张)如何影响他们的血糖水平,生物计量监视装置可辅助患有糖尿病的用户。
UV暴露检测
在一个实施例中,生物计量监视装置可能够监视个体到UV辐射的暴露。可通过一个或多个传感器测量UVA及UVB。举例来说,具有仅使UVA通过的带通滤波器的光电二极管可检测UVA暴露,且具有仅使UVB通过的带通滤波器的光电二极管可检测UVB暴露。还可使用相机或反射计(确定光反射离开皮肤的效率的光发射器及光检测器)来测量用户的皮肤色素沉着。使用UVA、UVB及皮肤色素沉着数据,生物计量监视装置可向用户提供关于其已经受的UV暴露量的信息。生物计量监视装置还可提供关于到UV的过度暴露、晒伤的可能性及增大其皮肤癌风险的可能性的估计或报警。
使用用户存在传感器的屏幕功率节省
便携式生物计量监视装置可具有一或多个显示器以将信息呈现给用户。在一个实施例中,生物计量监视装置上的传感器可确定用户正使用生物计量监视装置及/或佩戴生物计量监视装置以确定显示器的状态。举例来说,具有PPG传感器的生物计量监视装置可使用PPG传感器作为接近度传感器以确定用户何时佩戴生物计量监视装置。如果用户佩戴着生物计量监视装置,那么屏幕的状态(例如,彩色LCD屏幕)可从其关掉的典型状态改变到“接通”或“待用”。
相对于基于卫星的位置确定系统的功率节省
在一些实施方案中,包含在生物计量监视装置中的某些系统可能与生物计量监视装置中的其它系统相比消耗相对较大量的功率。归因于许多生物计量监视装置的小空间约束,此可严重影响生物计量监视装置的总体电池电荷寿命。举例来说,在一些生物计量监视装置中,可包含基于卫星的位置确定系统。每当使用基于卫星的位置确定系统使用来自GPS卫星群落的数据获得定位时,其使用从生物计量监视装置电池汲取的功率。生物计量监视装置可经配置以更改基于卫星的位置确定系统基于来自生物计量监视装置的一或多个传感器的数据获得定位的频率。此自适应定位频率功能性可帮助省电同时仍允许基于卫星的位置确定系统以有用间隔(在适当时)提供定位。
举例来说,如果生物计量监视装置具有环境光传感器,那么可使用来自环境光传感器的数据来确定光照条件是否指示生物计量监视装置可能在在室内而非在室外。如果在室内,那么生物计量监视装置可致使定位频率设定到低于在光照条件看起来指示生物计量监视装置在室外时可使用的定位频率的水平。此具有减小生物计量监视装置在室内时所尝试的定位次数的效果,且因此不太可能使用基于卫星的位置确定系统获得良好定位。
在另一实例中,如果生物计量监视装置的运动传感器指示生物计量监视装置的佩戴者实质上固定不动,例如睡眠或大体不移动大于每分钟几英尺,那么基于卫星的位置确定系统的定位频率可设定到比运动传感器指示生物计量监视装置的佩戴者在运动中(例如,从一个位置步行或跑步到另一位置,例如,移动大于几英尺)的情况低的水平。
在又一实例中,生物计量监视装置可经配置以确定生物计量监视装置是否实际上由人佩戴,如果不是,那么生物计量监视装置可将定位频率设定到比生物计量监视装置实际上被佩戴的情况低的水平。可例如在从生物计量监视装置的运动传感器收集的运动数据指示生物计量监视装置实质上固定不动(例如,甚至在表明佩戴者睡眠或久坐的时生物计量监视装置经历小移动时也并非固定不动)时或在例如来自心率传感器的数据指示未检测到心率时进行关于生物计量监视装置是否被佩戴的此些确定。对于光学心率传感器,如果在光源接通及关掉时在光检测传感器检测到的光量中存在极少改变,那么此可指示以下事实:心率传感器未压抵人的皮肤,且推断生物计量监视装置未被佩戴。此自适应基于卫星的位置确定系统定位频率概念更详细地论述于2014年3月18日申请的第61/955,045号美国临时专利申请案中,所述美国临时专利申请案先前在“对相关申请案的交叉参考”部分中以引用的方式并入本文中且再次特此关于在基于卫星的位置确定系统的上下文中的功率节省处指出的内容而以引用的方式并入。
存在本文中描述及说明的许多概念及实施例。尽管已在本文中描述及说明某些实施例、特征、属性及优点,但应理解,从描述及说明显而易见许多其它以及不同及/或类似的实施例、特征、属性及优点。由此,以上实施例仅作为实例而提供。其并不既定为详尽的或将本发明限于所揭示的精确形式、技术、材料及/或配置。根据本发明,许多修改及变化是可能的。应理解,可利用其它实施例,且可在不脱离本发明的范围的情况下作出操作改变。由此,本发明的范围并不仅限于以上描述,因为已出于说明及描述的目的而呈现以上实施例的描述。
重要的是,本发明既不限于任何单个方面或实施例,也不限于此些方面及/或实施例的任何组合及/或排列。此外,可单独地或结合其它方面及/或本发明的实施例中的一或多者而使用本发明的方面及/或其实施例中的每一者。出于简洁起见,将不在本文中单独地论述及/或说明那些排列及组合中的许多者。

Claims (30)

1.一种由包括光电容积PPG传感器的便携式监视装置执行的方法,所述方法包括:
由所述PPG传感器的光检测器基于由所述光检测器检测到的环境光来产生第一电信号;
通过第二取样电路捕获所述第一电信号的样本;
通过所述第二取样电路存储与经捕获的所述第一电信号的所述样本成比例的电荷;
在所述第一电信号的所述样本被捕获后,由所述PPG传感器的光发射器发射光;
由所述光检测器基于发射的所述光来产生第二电信号;
通过控制器致使切换电路从第二配置转变到第一配置以启用第一取样电路以捕获所述第二电信号的样本;
通过所述控制器致使所述第二取样电路将所存储的电荷传送到环境光消除电路;
通过所述环境光消除电路基于从所述第二取样电路接收的所述电荷产生抵消信号以抵消所述第二电信号的环境分量的至少一部分;以及
通过所述第二取样电路基于捕获到的所述第一电信号的所述样本来捕获被抵消的所述第二电信号的所述样本。
2.根据权利要求1所述的方法,进一步包括在所述第二电信号的所述样本被捕获后,致使所述光发射器停止发射光。
3.根据权利要求2所述的方法,进一步包括为多个循环中的每一者反复执行权利要求2所述的方法,且将为所述多个循环中的每一者捕获到的所述第二电信号的所述样本数字化以提供数字信号。
4.根据权利要求3所述的方法,所述数字信号指示所述便携式监视装置被耦合到的用户的心率。
5.根据权利要求1所述的方法,进一步包括基于捕获到的所述第二电信号的所述样本来产生或更新至少一个生理度量。
6.根据权利要求1所述的方法,所述第二电信号的所述环境分量的所述抵消包括设置所述环境光消除电路的阻抗,所述环境光消除电路基于捕获到的所述第一电信号的所述样本和所设置的所述阻抗来提供所述抵消信号。
7.根据权利要求1所述的方法,进一步包括致使所述切换电路转变到所述第一配置以能够捕获所述第一电信号的所述样本。
8.根据权利要求7所述的方法,进一步包括致使所述切换电路转变到所述第二配置以能够捕获所述第二电信号的所述样本。
9.根据权利要求1所述的方法,进一步包括设置增益电路的阻抗,所述增益电路基于所设置的所述阻抗来提供增益调整信号以设置所述第二电信号的增益。
10.根据权利要求1所述的方法,进一步包括在所述第二电信号的所述样本被捕获后使所述光检测器接地。
11.一种便携式监视装置,包括:
光检测器,其基于由所述光检测器检测到的光来产生电信号;
第一取样电路和第二取样电路,其捕获所述电信号的样本;
光发射器,其发射光;以及
控制器,其控制所述光检测器、所述第一取样电路、所述第二取样电路和所述光发射器的操作,所述控制器经配置以致使:
所述光检测器在所述光发射器不发射光的同时,基于由所述光检测器检测到的环境光来产生第一电信号,
所述第二取样电路捕获所述第一电信号的样本,
所述第二取样电路存储与经捕获的所述第一电信号的所述样本成比例的电荷,
所述光发射器在所述第一电信号的所述样本被捕获后发射光,
所述光检测器基于发射的所述光来产生第二电信号,切换电路从第二配置转变到第一配置以启用所述第一取样电路以捕获所述第二电信号的样本,
所述第二取样电路将所存储的电荷传送到环境光消除电路,
所述环境光消除电路基于从所述第二取样电路接收的所述电荷产生抵消信号以抵消所述第二电信号的环境分量的至少一部分,和
所述第二取样电路基于捕获到的所述第一电信号的所述样本来捕获所述第二电信号的被抵消的所述样本。
12.根据权利要求11所述的装置,所述控制器经进一步配置以在所述第二电信号的所述样本被捕获后致使所述光发射器停止发射光。
13.根据权利要求12所述的装置,所述控制器经配置以:
致使,为多个循环中的每一者:
所述光检测器在所述光发射器不发射光的同时,基于由所述光检测器检测到的环境光来产生第一电信号,
所述第二取样电路捕获所述第一电信号的样本,
所述光发射器在所述第一电信号的所述样本被捕获后发射光,
所述光检测器基于发射的所述光来产生第二电信号,
基于捕获到的所述第一电信号的所述样本来抵消与环境光相关联的所述第二电信号的分量,
所述第二取样电路基于捕获到的所述第一电信号的所述样本来捕获所述第二电信号的被抵消的样本;和
所述光发射器在所述第二电信号的所述样本被捕获后停止发射光;以及
致使模数转换器ADC使为所述多个循环捕获到的所述第二电信号的所述样本数字化以提供数字信号。
14.根据权利要求13所述的装置,所述数字信号指示所述便携式监视装置被耦合到的用户的心率。
15.根据权利要求11所述的装置,所述控制器进一步经配置以基于捕获到的所述第二电信号的所述样本来产生或更新至少一个生理度量。
16.根据权利要求11所述的装置,进一步包括所述环境光消除电路,以基于捕获到的所述第一电信号的所述样本来提供所述抵消信号,从而抵消所述第二电信号的所述环境分量。
17.根据权利要求16所述的装置,所述环境光消除电路具有可调整阻抗,所述控制器经进一步配置以设置所述环境光消除电路的阻抗,所述环境光消除电路经配置以基于捕获到的所述第一电信号的所述样本和所设置的所述阻抗来提供所述抵消信号。
18.根据权利要求11所述的装置,进一步包括能够在至少所述第一配置与所述第二配置之间转变的所述切换电路,所述控制器经进一步配置以:
致使所述切换电路转变到所述第一配置以能够捕获所述第一电信号的所述样本;以及
致使所述切换电路转变到所述第二配置以能够捕获所述第二电信号的所述样本。
19.根据权利要求18所述的装置,
所述第一取样电路,其在所述切换电路处于所述第一配置的同时捕获所述第一电信号的所述样本;以及
所述第二取样电路,其在所述切换电路处于所述第二配置的同时捕获所述第二电信号的所述样本。
20.根据权利要求11所述的装置,进一步包括增益电路以提供增益调整信号来设置所述第二电信号的增益。
21.根据权利要求20所述的装置,所述增益电路具有可调整阻抗,所述控制器经进一步配置以设置所述增益电路的阻抗,所述增益调整信号是基于所设置的阻抗。
22.根据权利要求11所述的装置,进一步包括第二电路以在所述第二电信号的所述样本被捕获后使所述光检测器接地。
23.一种包括可执行代码的处理器的存储媒体,当执行时,其经配置以:
由光电容积PPG传感器的光检测器基于由所述光检测器检测到的环境光来产生第一电信号;
通过第二取样电路捕获所述第一电信号的样本;
通过所述第二取样电路存储与经捕获的第一电信号的所述样本成比例的电荷;
在所述第一电信号的所述样本被捕获后,由所述PPG传感器的光发射器发射光;
由所述光检测器基于发射的所述光来产生第二电信号;
通过控制器致使切换电路从第二配置转变到第一配置以启用第一取样电路以捕获所述第二电信号的样本;
通过所述控制器致使所述第二取样电路将所存储的电荷传送到环境光消除电路;
通过所述环境光消除电路基于从所述第二取样电路接收的所述电荷产生抵消信号以抵消所述第二电信号的环境分量的至少一部分;以及
通过所述第二取样电路基于捕获到的所述第一电信号的所述样本来捕获被抵消的所述第二电信号的所述样本。
24.根据权利要求23所述的媒体,所述代码进一步经配置以在所述第二电信号的所述样本被捕获后,致使所述光发射器停止发射光。
25.根据权利要求24所述的媒体,所述代码进一步经配置以:
为多个循环中的每一者:
由所述PPG传感器的所述光检测器基于由所述光检测器检测到的环境光来为相应的循环产生第一电信号,
为相应的循环捕获所述第一电信号的样本,
在所述第一电信号的所述样本被捕获后,由所述PPG传感器的所述光发射器为相应的循环发射光,
由所述光检测器基于发射的所述光来为相应的循环产生第二电信号,
基于捕获到的所述第一电信号的所述样本来为相应的循环抵消与环境光相关联的所述第二电信号的分量,
基于捕获到的所述第一电信号的所述样本来为相应的循环捕获被抵消的所述第二电信号的样本,和
在所述第二电信号的所述样本被捕获后使得所述PPG传感器的所述光发射器为相应的循环停止发射光;以及
使为多个循环捕获到的所述第二电信号的所述样本数字化以提供数字信号。
26.根据权利要求25所述的媒体,所述数字信号指示便携式监视装置被耦合到的用户的心率。
27.根据权利要求23所述的媒体,所述代码进一步经配置以基于捕获到的所述第二电信号的所述样本来产生或更新至少一个生理度量。
28.根据权利要求23所述的媒体,所述代码经配置以抵消与所述环境光相关联的所述第二电信号的所述分量包括代码经配置以设置环境光消除电路的阻抗,所述环境光消除电路经配置以基于捕获到的所述第一电信号的所述样本和所设置的阻抗来提供抵消信号。
29.根据权利要求23所述的媒体,所述代码经进一步配置以:
致使所述切换电路转变到第一配置以能够捕获所述第一电信号的所述样本;以及致使所述切换电路转变到第二配置以能够捕获所述第二电信号的所述样本。
30.根据权利要求23所述的媒体,所述代码经进一步配置以设置增益电路的阻抗,所述增益电路经配置以基于所设置的所述阻抗来提供增益调整信号以设置所述第二电信号的增益。
CN201610284612.7A 2013-06-03 2014-06-03 心率数据收集 Active CN105852841B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361830600P 2013-06-03 2013-06-03
US61/830,600 2013-06-03
US201461946439P 2014-02-28 2014-02-28
US61/946,439 2014-02-28
US14/290,884 2014-05-29
US14/290,884 US9044149B2 (en) 2012-06-22 2014-05-29 Heart rate data collection
CN201410243180.6A CN104207761B (zh) 2013-06-03 2014-06-03 心率数据收集

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410243180.6A Division CN104207761B (zh) 2013-06-03 2014-06-03 心率数据收集

Publications (2)

Publication Number Publication Date
CN105852841A CN105852841A (zh) 2016-08-17
CN105852841B true CN105852841B (zh) 2019-06-18

Family

ID=52089954

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201510745382.5A Pending CN105380635A (zh) 2013-06-03 2014-06-03 心率数据收集
CN201610284612.7A Active CN105852841B (zh) 2013-06-03 2014-06-03 心率数据收集
CN201410243180.6A Active CN104207761B (zh) 2013-06-03 2014-06-03 心率数据收集

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510745382.5A Pending CN105380635A (zh) 2013-06-03 2014-06-03 心率数据收集

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410243180.6A Active CN104207761B (zh) 2013-06-03 2014-06-03 心率数据收集

Country Status (1)

Country Link
CN (3) CN105380635A (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478128B2 (en) 2014-09-26 2019-11-19 Pixart Imaging Inc. Heart rate detection architecture
US20170238875A1 (en) * 2014-10-27 2017-08-24 Lifeq Global Limited Biologically Inspired Motion Compensation and Real-Time Physiological Load Estimation Using a Dynamic Heart Rate Prediction Model
CN104706336B (zh) * 2014-12-31 2017-06-27 歌尔股份有限公司 一种光电式脉搏信号测量方法、装置及测量设备
US9949695B2 (en) 2014-12-31 2018-04-24 Goertek Inc. Photoelectric type pulse signal measuring method and apparatus
KR102415906B1 (ko) * 2015-04-14 2022-07-01 엘지이노텍 주식회사 인체 착용 장치 및 이의 동작 방법
US9943266B2 (en) * 2015-04-29 2018-04-17 Analog Devices, Inc. Time-domain interference removal for heart rate measurements
US9826911B2 (en) * 2015-06-08 2017-11-28 Mediatek Inc. Wearable device and determination method thereof
EP3352647A1 (en) * 2015-09-21 2018-08-01 Koninklijke Philips N.V. A wearable device for measuring a physiological parameter of a user and a measurement method
US20170086689A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Electronic device including ambient light compensation circuit for heart rate generation and related methods
CN107017876B (zh) * 2016-01-27 2023-09-22 普源精电科技股份有限公司 高频程控容性阻抗电路及测量装置
US10181021B2 (en) * 2016-02-01 2019-01-15 Fitbit, Inc. Method and apparatus for off-body detection for wearable device
CN105962922B (zh) * 2016-04-19 2018-11-27 矽力杰半导体技术(杭州)有限公司 光电传感器、光电检测方法以及应用其的心率检测设备
US10719096B2 (en) 2016-08-26 2020-07-21 Texas Instruments Incorporated Circuit and method for generating a reference voltage with a voltage regulator and a sample and hold circuit
TWI605791B (zh) * 2016-11-10 2017-11-21 Light-sensing device for wearable devices
CN106889980A (zh) * 2017-01-13 2017-06-27 佳禾智能科技股份有限公司 基于光谱图的自适应切换心率检测方法、装置和可佩戴心率检测装置
CN106859627B (zh) * 2017-02-24 2020-11-27 台州市吉吉知识产权运营有限公司 一种提高可穿戴设备心率测量准确性的结构及方法
CN106618536A (zh) * 2017-03-01 2017-05-10 屈杰 一种基于人体数据采集检测系统
CN107124155A (zh) * 2017-04-12 2017-09-01 亿信标准认证集团有限公司 有源二阶低通滤波器的标准认证模块
CN108852326A (zh) * 2017-05-08 2018-11-23 原相科技股份有限公司 心律检测架构
CN107088063A (zh) * 2017-05-19 2017-08-25 北京麦迪克斯科技有限公司 基于光特征的生理信息采集装置及方法
TWI635852B (zh) * 2017-06-09 2018-09-21 國立臺灣科技大學 應用於多感測器偵測手掌脈搏的訊號處理方法
US20180368708A1 (en) * 2017-06-22 2018-12-27 Bion Inc. Photoplethysmogram Signal Measurement Device for Exercise Equipment
FR3070250B1 (fr) * 2017-08-30 2022-04-22 Inria Inst Nat Rech Informatique & Automatique Dispositif cardiaque
EP3763284B9 (en) * 2018-03-06 2023-06-28 Nippon Telegraph And Telephone Corporation Heartbeat rate calculation device and method
CN108628217B (zh) * 2018-05-30 2022-03-11 努比亚技术有限公司 穿戴设备功耗控制方法、穿戴设备及计算机可读存储介质
EP3587228B1 (en) 2018-06-27 2021-02-24 Polar Electro Oy Bicycle computer
CN109124582A (zh) * 2018-08-08 2019-01-04 加动健康科技(芜湖)有限公司 近红外光发射器和肌肉氧合值测量单元
JP7062558B2 (ja) * 2018-08-31 2022-05-06 株式会社日立産機システム 移動体の位置検出装置、及び、位置検出装置を備えた移動体
CN109222951A (zh) * 2018-10-30 2019-01-18 广东小天才科技有限公司 一种心率数据采集方法、装置、终端设备及存储介质
WO2021016861A1 (zh) * 2019-07-30 2021-02-04 深圳迈瑞生物医疗电子股份有限公司 测量方法、显示方法、监护设备及监护系统
CN110604559B (zh) * 2019-10-25 2023-11-28 深圳市汇顶科技股份有限公司 环境光信号调节方法、芯片及电子装置
CN110995525A (zh) * 2019-10-31 2020-04-10 北京直真科技股份有限公司 一种基于维护矩阵的路由器检测方法
CN111050634B (zh) * 2019-11-21 2022-08-02 深圳市汇顶科技股份有限公司 生物特征检测方法、生物特征检测装置和电子装置
CN111387957B (zh) * 2020-03-13 2023-03-24 智方达(天津)科技有限公司 一种非接触式的体温与呼吸率联合检测方法
CN111700610B (zh) * 2020-06-04 2023-04-07 浙江普可医疗科技有限公司 一种脑电爆发抑制模式的分析方法、装置、系统及其存储介质
CN111759304B (zh) * 2020-07-01 2022-09-30 杭州脉流科技有限公司 心电图异常识别方法、装置、计算机设备和存储介质
CN114384314A (zh) * 2021-12-31 2022-04-22 芯海科技(深圳)股份有限公司 信号检测电路、方法、集成电路、检测装置及电子设备
CN118153966B (zh) * 2024-05-09 2024-07-23 江西农业大学 基于数据分析的区域监测预警系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2824836Y (zh) * 2005-01-19 2006-10-11 捷飞科研有限公司 头戴式生理参数测量仪
EP1832227A1 (fr) * 2006-03-08 2007-09-12 EM Microelectronic-Marin SA Circuit de conditionnement du signal entre un dispositif optique et une unité de traitement
CN101596107A (zh) * 2009-07-10 2009-12-09 上海华勤通讯技术有限公司 利用移动终端实现心率检测的方法及其移动终端
US8172761B1 (en) * 2004-09-28 2012-05-08 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
CN102647941A (zh) * 2009-10-06 2012-08-22 皇家飞利浦电子股份有限公司 用于执行光电容积描记的方法和系统
CN102697487A (zh) * 2012-05-11 2012-10-03 香港应用科技研究院有限公司 使用光调制测量生理数据的系统和方法
WO2013040399A1 (en) * 2011-09-15 2013-03-21 Qualcomm Incorporated Method and apparatus for denoising of physiological signals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781195A (en) * 1987-12-02 1988-11-01 The Boc Group, Inc. Blood monitoring apparatus and methods with amplifier input dark current correction
US5954644A (en) * 1997-03-24 1999-09-21 Ohmeda Inc. Method for ambient light subtraction in a photoplethysmographic measurement instrument
US8346328B2 (en) * 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
CN101615098A (zh) * 2009-07-31 2009-12-30 深圳市易优特科技有限公司 一种红外触摸屏的抗光电路及抗光方法
CN102389313B (zh) * 2011-08-17 2014-05-28 天津大学 一种方波调制光电容积脉搏波测量方法
CN103093420B (zh) * 2011-11-02 2016-08-03 原相科技股份有限公司 图像系统及其干扰消除方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172761B1 (en) * 2004-09-28 2012-05-08 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
CN2824836Y (zh) * 2005-01-19 2006-10-11 捷飞科研有限公司 头戴式生理参数测量仪
EP1832227A1 (fr) * 2006-03-08 2007-09-12 EM Microelectronic-Marin SA Circuit de conditionnement du signal entre un dispositif optique et une unité de traitement
CN101596107A (zh) * 2009-07-10 2009-12-09 上海华勤通讯技术有限公司 利用移动终端实现心率检测的方法及其移动终端
CN102647941A (zh) * 2009-10-06 2012-08-22 皇家飞利浦电子股份有限公司 用于执行光电容积描记的方法和系统
WO2013040399A1 (en) * 2011-09-15 2013-03-21 Qualcomm Incorporated Method and apparatus for denoising of physiological signals
CN102697487A (zh) * 2012-05-11 2012-10-03 香港应用科技研究院有限公司 使用光调制测量生理数据的系统和方法

Also Published As

Publication number Publication date
CN104207761A (zh) 2014-12-17
CN105380635A (zh) 2016-03-09
CN105852841A (zh) 2016-08-17
CN104207761B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN105852841B (zh) 心率数据收集
CN106333667B (zh) 可佩戴心率监视器
CN104207755B (zh) 可佩戴心率监视器
CN104218976B (zh) 使用蓝牙的自适应数据传送设备和方法
CN104287703B (zh) 个人健身跟踪装置中的陀螺仪的使用
CN106215405B (zh) 具有高度计的健身监视装置
US12070297B2 (en) Photoplethysmography-based pulse wave analysis using a wearable device
US10830904B2 (en) GPS power conservation using environmental data
US9662053B2 (en) Physiological data collection
US20190082985A1 (en) Optical device for determining pulse rate
CN105433949B (zh) 混合角运动传感器
US10512407B2 (en) Heart rate data collection
US9014790B2 (en) Heart rate data collection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: Feibit Co.,Ltd.

Address before: California, USA

Patentee before: FITBIT, Inc.