CN105845783A - 一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法 - Google Patents

一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法 Download PDF

Info

Publication number
CN105845783A
CN105845783A CN201610431812.0A CN201610431812A CN105845783A CN 105845783 A CN105845783 A CN 105845783A CN 201610431812 A CN201610431812 A CN 201610431812A CN 105845783 A CN105845783 A CN 105845783A
Authority
CN
China
Prior art keywords
thin film
cigs
parts
glass substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610431812.0A
Other languages
English (en)
Inventor
刘科高
刘宏
徐勇
吴海洋
李静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201610431812.0A priority Critical patent/CN105845783A/zh
Publication of CN105845783A publication Critical patent/CN105845783A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法,属于太阳电池用光电薄膜制备技术领域,本发明通过如下步骤得到,首先清洗玻璃基片,然后将硫酸铜、氯化铟、氯化镓、二氧化硒放入溶剂中,并调整 pH值为4.0~7.0,用旋涂法在玻璃片上得到前驱体薄膜,烘干,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触,并将装有样品的密闭容器装入烘箱进行加热和保温处理,最后取出样品进行干燥,得到铜铟镓硒光电薄膜。本发明不需要高温高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铟镓硒光电薄膜有较好的连续性和均匀性,主相为铜铟镓硒相,这种新工艺容易控制目标产物的成分和结构,为制备高性能的铜铟镓硒光电薄膜提供了一种成本低、可实现工业化的生产方法。

Description

一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法
技术领域
本发明属于太阳电池用光电薄膜制备技术领域,尤其涉及一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法。
背景技术
进入21世纪以来,能源和环境问题成为人们更加关注的热点,面对能源枯竭以及传统能源带来的环境污染,人们开始逐步寻找可以代替传统化石能源的新型能源新一轮的能源革命正在缓慢拉开序幕。光伏发电具有安全可靠、无噪声、无污染、制约少、故障率低、维护简便等优点,可以利用太阳能这种清洁、安全和环保的可再生能源,因此近几十年来太阳电池的研究和开发日益受到重视。
铜铟镓硒薄膜太阳电池目前可以认为是最有发展前景的薄膜电池之一,其光吸收层由低成本的铜基半导体材料组成,吸光能力远强于晶体硅,在太阳光谱区光吸收深度在微米量级。铜铟镓硒的光吸收系数高达105cm-1,明显高于Si和CdTe等太阳能电池材料,因此非常适合做光吸收材料。此外,铜铟镓硒还有一系列的有点:(1)铜铟镓硒是直接带隙半导体,这可减少对少数载流子扩散的要求;(2)在室温下铜铟镓硒带隙可调,随着镓含量的变化,其带隙可以在1.04~1.67eV范围内连续变化;(3)铜铟镓硒吸收系数很大,转换效率高,性能稳定,薄膜厚度小,约2μm,并且原料的价格较低,大面积制备时价格较低;(4)在较宽成分范围内电阻率都较小;(5)抗辐射能力强,没有光致衰减效应,因而使用寿命长;(6) P型铜铟镓硒材料的晶格结构与电子亲和力都能跟普通的N型窗口材料(如CdS、ZnO)匹配。
目前铜铟镓硒的制备方法主要有溶剂热法、喷射热解法(Spray Prolysis)、电喷射法、电沉积、化学沉积法、封闭的化学气相输运法、化学气相沉积、分子束外延、反应溅射法、真空蒸发法、有机金属化学气相沉积法、等。由于铜铟镓硒原料成本低,且其带隙可以随着镓含量而改变,从而提高光电转换效率,因此是一种非常有发展前途的太阳能电池材料,但现有工艺路线复杂、制备成本高,因而同样需要探索低成本的制备工艺。
象前面所述方法一样,其它方法也有不同的缺陷。与本发明相关的还有如下文献:
[1] Yusuke Oda, Masakazu Matsubayashi, Takashi Minemoto, Hideyuki Takakura, Fabrication of Cu(In, Ga)Se2 thin film solar cell absorbers from electrodeposited bilayers. Current Applied Physics 10 (2010) 146-149.
主要描述了利用电沉积双层制备法,制备铜铟镓硒薄膜,并且对制备的铜铟镓硒薄膜电性能进行了测试表征。
[2] Guo Wei, Xue Yu-ming, Zhang Xiao-feng, Feng Shao-jun, Influence of substrate of deposited precursor layer on structural properties of CIGS thin films. Journal of Optoelectronics.Laser 10 (2013)1936-1941.
主要描述了用三步共蒸发法在玻璃衬底上制备铜铟镓硒薄膜及预制层的衬底温度对铜铟镓硒薄膜结构特性的影响。
[3] Li Chunei, Zhuang Da-ming, Zhang Gong, Luan He-xin, Liu Jiang, The influence of selenization temperature on the properties of CuInGaSe2 thin film. Chinese Journal of Materials Research.Vol.24 No.4 (2010)358-362.
主要描述了用预制硒化法制备铜铟镓硒薄膜,并且通过对薄膜的成分、形貌、结构和电学性能的分析,得到硒化温度对薄膜的影响。
[4] Pan Hui-Ping, Bo Lian-Kun, Huang Tai-Wu, Zhang Yi, Yu Tao, Yao Shu-De, Structural analysis of Cu(In1-xGax)Se2 multi-layer thin film solar cells.Acta Phys. Sin. Vol. 61, No. 22 (2012) 228801.
主要描述了溅射后硒化和共蒸发等方法制备铜铟镓硒太阳能电池薄膜,并且分析了铜铟镓硒的膜层结构。
[5] F. Oliva, C. Broussillou, M. Annibaliano, N. Frederich, P.P. Grand, A. Roussy, P. Collot, S. Bodnar, Formation mechanisms of Cu(In,Ga)Se2 solar cells prepared from electrodeposited precursors. Thin Solid Films 535 (2013) 127–132.
主要描述了首先通过两步电沉积,然后快速退火的方法制备铜铟镓硒薄膜,及对铜铟镓硒薄膜形成过程中温度对其影响。
[6] Guan-Ting Pan, M.-H. Lai, Rei-Cheng Juang, T.-W. Chun, The preparation and characterization of Ga-doped CuInS2 films with chemical bath deposition. Solar Energy Materials & Solar Cells 94 (2010) 1790–1796.
主要描述了用化学浴方法制备的含有Ga层的CuInS2薄膜的特征,及Ga对薄膜的性能的影响。
[7] Miaomiao Li, Fanggao Chang, Chao Li, Cunj un Xia, Tianxing Wang, Jihao Wang, Mengbo Sun, CIS and CIGS thin films prepared by magnetron sputtering. Procedia Engineering 27 (2012) 12-19.
主要描述了采用共溅射方法制备CIS和CIGS薄膜,分别利用XRD, SEM, EDS 对这一新方法制备的薄膜的微观晶体结构,表面形貌和薄膜成分进行分析。
[8] Ying Liu, Deyi Kong, Jiawei Li, Cong Zhao, Chilai Chen, Juergen Brugger, Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process. Energy Procedia 16 (2012) 217 -222.
主要描述了溶剂热和旋涂法制备铜铟镓硒薄膜,通过X射线衍射(XRD),拉曼光谱(RS)和扫描电子显微镜(SEM)等方式测试分析了铜铟镓硒的结构。
[9] Jiang Liu, Daming Zhuang, Hexin Luan, Mingjie Cao, Min Xie, Xiaolong Li, Preparation of Cu(In,Ga)Se2thin film by sputtering from Cu(In,Ga)Se2 quaternary target. Progress in Natural Science: Materials International 2013;23(2):133–138.
主要描述了通过直接溅射法制备铜铟镓硒薄膜,并且通过XRD,AFM,SEM等测试分析了铜铟镓硒的结构以及组分组成。
[10] 廖荣,张海燕,蒋伟,黄茵,梁志鹏,前驱膜叠层及硒化升温方式对铜铟镓硒薄膜性能的影响.真空科学与技术学报5 (2013) 496-500.
主要描述了利用两靶磁控溅射的方法,选择不同的叠层方式制备铜铟镓前驱膜。然后将前驱膜放入特制的真空炉中选择不同的升温方式进行硒化退火,得到四元化合物铜铟镓硒半导体纳米薄膜,对薄膜进行各项表征。
发明内容
本发明为了解决现有技术的不足,而发明了一种与现有技术的制备方法完全不同的,铜铟镓硒太阳电池用薄膜材料的制备工艺。
本发明采用旋涂-化学共还原法制备铜铟镓硒薄膜材料,采用钠钙玻璃为基片,以硫酸铜、氯化铟、氯化镓、二氧化硒为原料,以去离子水、乙二醇、乙醇胺、氨水或这四种原料的两种以上的混合物为溶剂,以氨水为辅助介质来调整溶液的pH值,按元素计量比先以旋涂法制备一定厚度的含铜铟镓硒的前驱体薄膜,以水合联氨为还原剂,在密闭容器内在较低温度下加热,使前驱体薄膜还原并发生合成反应得到目标产物。
本发明的具体制备方法包括如下顺序的步骤:
a.进行玻璃基片的清洗,将大小为20mm×20mm玻璃片放入按体积比硫酸:蒸馏水=2:1的水溶液中,超声波清洗30min;再将玻璃片放入体积比丙酮:蒸馏水=5:1的溶液中,超声波清洗30min;再在蒸馏水中将玻璃基片用超声振荡30min;将上述得到的玻璃基片排放在玻璃皿中送入烘箱中,在100℃下烘干供制膜用。
b.将硫酸铜、氯化铟、氯化镓、二氧化硒放入溶剂中,使溶液中的物质均匀混合,并调节pH值。具体的说,可以将1.5~3.0份硫酸铜、1.0~2.0份氯化铟、1.0~2.0份氯化镓、2.0~4.0份二氧化硒放入110~450份的溶剂中,使溶液中的物质均匀混合,可加入100~250份氨水来调整溶液的pH值为4.0~7.0,其中溶剂为去离子水、乙二醇、乙醇胺、氨水中至少一种的混合溶液。
c.制作外部均匀涂抹步骤b所述溶液的基片,并烘干,得到前驱体薄膜样品。可以将上述溶液滴到放置在匀胶机上的玻璃基片上,再启动匀胶机以300~3500转/分旋转一定时间,使滴上的溶液涂均匀后,在100℃对基片进行烘干后,再次重复滴上前述溶液和旋转涂布后再烘干,如此重复5~15次,于是在玻璃基片上得到了一定厚度的前驱体薄膜样品。
d.将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触。放入35~40份水合联氨。将装有前驱薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间5~20小时,然后冷却到室温取出。
e.将步骤d所得物,使其常温自然干燥后,即得到铜铟镓硒光电薄膜。
本发明不需要高温高真空条件,对仪器设备要求低,生产成本低,生产效率高,易于操作。所得铜铟镓硒光电薄膜有较好的连续性和均匀性,主相为铜铟镓硒相,这种新工艺容易控制目标产物的成分和结构,为制备高性能的铜铟镓硒光电薄膜提供了一种成本低、可实现大规模的工业化生产。
具体实施方式
实施例1
a. 玻璃基片的清洗:如前所述进行清洗玻璃基片,基片大小为20mm×20mm。
b. 将1.5份硫酸铜、 1.0份氯化铟、1.0份氯化镓和2.0份二氧化硒放入378.07份去离子水中均匀混合,加氨水至pH为4.5,利用超声波振动30min以上,使溶液中的物质均匀混合。
c. 将上述溶液滴到放置在匀胶机上的玻璃基片上,再启动匀胶机,匀胶机以300转/分转动5秒,以3000转/分旋转15秒,使滴上的溶液涂均匀后,在100℃对基片进行烘干后,再次重复滴上前述溶液和旋转涂布后再烘干,如此重复10次,于是在玻璃基片上得到了一定厚度的前驱体薄膜样品。
d.将上述工艺所得的前驱体薄膜样品放入可密闭的容器,并放入37.807份水合联氨,前驱薄膜样品置于支架上使其不与联氨接触。将装有前驱薄膜样品的密闭容器放入烘箱中,加热至200℃,保温时间10小时,然后冷却到室温取出。
e.将步骤d所得物,进行常温自然干燥,得到铜铟镓硒光电薄膜。

Claims (5)

1.一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法,包括如下顺序的步骤:
a.玻璃基片的清洗;
b.将1.5~3.0份硫酸铜、1.0~2.0份氯化铟、1.0~2.0份氯化镓、2.0~4.0份二氧化硒放入110~450份的溶剂中,使溶液中的物质均匀混合,并调整pH值至4.0~7.0;
c.制作外部均匀涂抹步骤b所述溶液的基片,并烘干,得到前驱体薄膜样品;
d.将步骤c所得前驱体薄膜样品置于支架上,放入有水合联氨的可密闭容器,使前驱体薄膜样品不与联氨接触;将装有前驱薄膜样品的密闭容器放入烘箱中,加热至160~220℃之间,保温时间5~20小时,然后冷却到室温取出;
e.将步骤d所得物,进行自然干燥,得到铜铟镓硒光电薄膜。
2.如权利要求1所述的太阳电池用铜铟镓硒光电薄膜材料的制备方法,其特征在于,步骤a所述清洗,是将玻璃基片大小为20mm×20mm,放入体积比硫酸:蒸馏水=2:1的溶液中,超声波清洗;再将玻璃片放入按体积比丙酮:蒸馏水=5:1的溶液中,超声波清洗;再在蒸馏水中将玻璃基片用超声振荡;将上述得到的玻璃基片排放在玻璃皿中送入烘箱中烘干供制膜用。
3.如权利要求1所述的太阳电池用铜铟镓硒光电薄膜材料的制备方法,其特征在于,步骤b所述的溶剂为去离子水、乙醇、乙二醇、乙醇胺、氨水中至少一种。
4.如权利要求1所述的太阳电池用铜铟镓硒光电薄膜材料的制备方法,其特征在于,步骤c所述均匀涂抹的基片,是通过匀胶机涂抹,匀胶机以300~3500转/分旋转,然后对基片进行烘干后,再次如此重复5~15次,得到了一定厚度的前驱体薄膜样品。
5.如权利要求1所述的太阳电池用铜铟镓硒光电薄膜材料的制备方法,其特征在于,步骤d所述密闭容器内放入35~40份水合联氨。
CN201610431812.0A 2016-06-15 2016-06-15 一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法 Withdrawn CN105845783A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610431812.0A CN105845783A (zh) 2016-06-15 2016-06-15 一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610431812.0A CN105845783A (zh) 2016-06-15 2016-06-15 一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法

Publications (1)

Publication Number Publication Date
CN105845783A true CN105845783A (zh) 2016-08-10

Family

ID=56575988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610431812.0A Withdrawn CN105845783A (zh) 2016-06-15 2016-06-15 一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法

Country Status (1)

Country Link
CN (1) CN105845783A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590893C (zh) * 2005-12-28 2010-02-17 中国科学院大连化学物理研究所 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜的制备方法
CN102070184A (zh) * 2010-12-01 2011-05-25 同济大学 一种CuInS2纳米颗粒的制备方法
CN102034898B (zh) * 2010-10-20 2012-03-28 山东建筑大学 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN103334081A (zh) * 2013-06-07 2013-10-02 深圳市亚太兴实业有限公司 一种低温硒化制备cigs薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590893C (zh) * 2005-12-28 2010-02-17 中国科学院大连化学物理研究所 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜的制备方法
CN102034898B (zh) * 2010-10-20 2012-03-28 山东建筑大学 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN102070184A (zh) * 2010-12-01 2011-05-25 同济大学 一种CuInS2纳米颗粒的制备方法
CN103334081A (zh) * 2013-06-07 2013-10-02 深圳市亚太兴实业有限公司 一种低温硒化制备cigs薄膜的方法

Similar Documents

Publication Publication Date Title
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
US8569102B2 (en) Method of manufacturing high density CIS thin film for solar cell and method of manufacturing thin film solar cell using the same
US8501524B2 (en) Method of manufacturing thin-film light-absorbing layer, and method of manufacturing thin-film solar cell using the same
JP2010512647A (ja) Ibiiiavia族化合物層のためのドーピング技術
KR101152202B1 (ko) Cigs 태양광 흡수층 제조방법
Pawar et al. Effect of annealing atmosphere on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films
CN106057930A (zh) 一种由氯化铜和氯化镓制备铜镓硒光电薄膜的方法
WO2012161402A1 (en) Method of manufacturing cis-based thin film having high density
You et al. Reactive Ion etching activating TiO2 substrate for planar heterojunction Sb2S3 solar cells with 6.06% efficiency
CN105551936A (zh) 一种硝酸盐体系两步法制备铜铟硫光电薄膜的方法
Peksu et al. Synthesis of ZnO nanowires and their photovoltaic application: ZnO nanowires/AgGaSe 2 thin film core-shell solar cell
CN105932111A (zh) 一种由氯化铜和氯化镓制备铜铟镓硒光电薄膜的方法
CN110165020A (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN105895717A (zh) 一种由氯化铜和硝酸镓制备铜铟镓硒光电薄膜的方法
KR101353618B1 (ko) 광흡수층 박막의 제조방법 및 이를 이용한 박막 태양전지의 제조방법
CN106082690A (zh) 一种由硫酸铜制备铜铟硫光电薄膜的方法
CN105845783A (zh) 一种由硫酸铜和氯化镓制备铜铟镓硒光电薄膜的方法
CN105932081A (zh) 一种由氯化铜制备铜铟硫光电薄膜的方法
CN105895742A (zh) 一种由硫酸铜和硝酸镓制备铜铟镓硒光电薄膜的方法
CN105932110A (zh) 一种由硝酸铜和氯化镓制备铜铟镓硒光电薄膜的方法
CN105895743A (zh) 一种由硝酸铜和硝酸镓制备铜铟镓硒光电薄膜的方法
CN105914246A (zh) 一种由硫酸铜和硝酸镓制备铜镓硒光电薄膜的方法
CN106067489A (zh) 一种由氯化铜和硝酸镓制备铜镓硒光电薄膜的方法
CN106024976A (zh) 一种由氯化铜制备铜镓硫光电薄膜的方法
KR101137434B1 (ko) 급속열처리 공정을 사용한 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20160810

WW01 Invention patent application withdrawn after publication