CN105843256B - 一种多机编队飞行控制方法 - Google Patents

一种多机编队飞行控制方法 Download PDF

Info

Publication number
CN105843256B
CN105843256B CN201610318072.XA CN201610318072A CN105843256B CN 105843256 B CN105843256 B CN 105843256B CN 201610318072 A CN201610318072 A CN 201610318072A CN 105843256 B CN105843256 B CN 105843256B
Authority
CN
China
Prior art keywords
formation
flight
matrix
aircraft
flight control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610318072.XA
Other languages
English (en)
Other versions
CN105843256A (zh
Inventor
张帅
刘峰
王鸿翔
周涛
何坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aircraft Design and Research Institute of AVIC
Original Assignee
Xian Aircraft Design and Research Institute of AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aircraft Design and Research Institute of AVIC filed Critical Xian Aircraft Design and Research Institute of AVIC
Priority to CN201610318072.XA priority Critical patent/CN105843256B/zh
Publication of CN105843256A publication Critical patent/CN105843256A/zh
Application granted granted Critical
Publication of CN105843256B publication Critical patent/CN105843256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种多机编队飞行控制方法,包含以下步骤:S1,根据初始队形设计,构造初始编队队形矩阵;S2,在实际飞行过程中,构造实际编队队形矩阵;S3,根据飞机性能边界确定策略集;S4,计算误差矩阵,并对误差矩阵行列式值与编队态势值进行关联。S5,根据S3中的策略集,遍历每一策略,选取最大编队态势值所对应的策略进行执行;S6,将对应最大态势值的指令传输到自动飞控系统,控制飞机飞行状态,完成目标队形控制;S7,如果目标队形出现扰动,使得编队态势值达不到最大状态,则重复S1至S6中的过程。本发明的有益效果在于:本发明的一种多机编队飞行控制方法在解决固定编队飞行控制的同时,也解决了集群编队飞行控制,增强了多机任务执行成功率。

Description

一种多机编队飞行控制方法
技术领域
本发明涉及飞行控制技术领域,具体涉及一种多机编队飞行控制方法。
背景技术
编队飞行控制的任务是控制多架飞机按照预定队形,进行空中飞行,为有人驾驶飞机飞行表演、无人机编队飞行提供技术保障。
随着无人机技术的日益发展,目前基于多机编队的侦查打击作战任务需求愈加明显。既需要一种适合侦查时使用的多机集群式飞行控制方法,同时兼顾隐蔽性需求,多机紧密编队飞行以降低敌方雷达发现的编队飞行控制方法成为研究的一大难点,人为控制,队形有限,不能实现任意队形的编制,如何完美的实现两者功能,即固定编队飞行控制和集群编队飞行控制成为一个急需解决的问题。
发明内容
本发明的目的是提供一种多机编队飞行控制方法,以解决或至少减轻背景技术中所存在的至少一处的问题。
本发明采用的技术方案是:提供一种多机编队飞行控制方法,包含以下步骤:S1,根据初始队形设计,构造初始编队队形矩阵;S2,在实际飞行过程中,各飞机周期获取本机周围所有飞机的飞行数据,计算飞机两两之间的径向距离,构造实际编队队形矩阵;S3,根据飞机性能边界,定义出标定时间之后飞机能够达到的速度边界、水平航迹角边界、纵向航迹角边界,根据边界确定策略集;S4,利用步骤S2中的实际编队队形矩阵与初始编队队形矩阵构造构造误差矩阵,利用实际编队队形矩阵减初始编队队形矩阵得到所述误差矩阵,并对误差矩阵行列式值与编队态势值进行关联。S5,根据S3中的策略集,遍历每一策略,选取每一策略执行标定时间之后的编队态势值,选取最大编队态势值所对应的策略,进行执行;S6,定义编队态势值等于误差矩阵的绝对值,周期执行,直到编队态势值达到最大,将对应最大态势值的指令传输到自动飞控系统,控制飞机飞行状态,即完成目标队形控制;S7,如果目标队形出现扰动,使得编队态势值达不到最大状态,则重复S1至S6中的过程。
优选地,所述步骤S1中需要编队飞行的飞机包含六架,其初始编队队形矩阵定义为C0
其中,S0为保证矩阵C0正定时的任意大于零的正实数,D0(i,j)为对应的两机之间的距离。
优选地,所述步骤S2中的实际编队队形矩阵定义为C,
其中,S1为保证矩阵C正定时的任意大于零的正实数,D(i,j)为实际飞行状态下对应的两机之间的距离。
优选地,所述步骤S3中的标定时间为50ms~100ms。
优选地,所述步骤S3中的策略为,以飞机当前状态为基础,下一标定时间之后,飞机的状态在当前状态下进行增加或减小。
优选地,对于所述步骤S4中的误差矩阵,如果当前需要固定编队控制,构造固定编队误差矩阵;如果当前需要集群编队控制,构造集群编队误差矩阵。
优选地,所述集群编队误差矩阵定义为P2
其中,m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12为大于零的任意数;S3为使矩阵正定的任意正数,E0(i,j)为两机初始距离与实际距离之差绝对值,当m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12全为1时,集群编队误差矩阵变化为固定编队矩阵P,
优选地,所述步骤S4中对误差矩阵行列式值与编队态势值进行关联具体为,F=|P|或F=|P2|。
本发明的有益效果在于:本发明的一种多机编队飞行控制方法在解决固定编队飞行控制的同时,也解决了集群编队飞行控制,增强了多机任务执行成功率。
附图说明
图1是本发明一实施例的多机编队飞行控制方法的流程图。
具体实施方式
为使本发明实施的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本发明一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合附图对本发明的实施例进行详细说明。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
如图1所示,一种多机编队飞行控制方法,包含以下步骤:S1,根据初始队形设计,构造初始编队队形矩阵;S2,在实际飞行过程中,各飞机周期获取本机周围所有飞机的飞行数据,计算飞机两两之间的径向距离,构造实际编队队形矩阵;S3,根据飞机性能边界,定义出标定时间之后飞机能够达到的速度边界、水平航迹角边界、纵向航迹角边界,根据边界确定策略集;S4,利用步骤S2中的实际编队队形矩阵与初始编队队形矩阵构造构造误差矩阵,利用实际编队队形矩阵减初始编队队形矩阵得到所述误差矩阵,并对误差矩阵行列式值与编队态势值进行关联。S5,根据S3中的策略集,遍历每一策略,选取每一策略执行标定时间之后的编队态势值,选取最大编队态势值所对应的策略,进行执行;S6,定义编队态势值等于误差矩阵的绝对值,周期执行,直到编队态势值达到最大,将对应最大态势值的指令传输到自动飞控系统,控制飞机飞行状态,即完成目标队形控制;S7,如果目标队形出现扰动,使得编队态势值达不到最大状态,则重复S1至S6中的过程。
本发明的一种多机编队飞行控制方法在解决固定编队飞行控制的同时,也解决了集群编队飞行控制,增强了多机任务执行成功率。
在本实施例中,步骤S1中需要编队飞行的飞机包含六架,其初始编队队形矩阵定义为C0
其中,S0为保证矩阵C0正定时的任意大于零的正实数,D0(i,j)为对应的两机之间的距离。
下面根据本实施例中的初始编队队形矩阵按照实际初始设计数据给出实际矩阵,例如,在一个实施例中,飞机01之间、02之间,23之间、15之间、45之间、43之间、14之间、24之间12之间的相对距离为40m,04之间、13之间、25之间的距离为69.28m,05之间、03之间、35之间的距离为80m,则构造的初始队形矩阵如下:
在本实施例中,步骤S2中的实际编队队形矩阵定义为C,
其中,S1为保证矩阵C正定时的任意大于零的正实数,D(i,j)为实际飞行状态下对应的两机之间的距离。
飞机的实际飞行过程中,每架飞机利用其自身的ADS-B技术,来周期获取编队内飞机的位置信息,计算出飞机两两之间的实际径向距离,距离计算按照两点之间距离公式来进行:
同时根据S1中的拓扑关系,构造出实际队形矩阵。例如,在一个实施例中,在某一时刻,飞机0的位置为(3Km,4km,5Km),飞机1的位置为(3.1Km,4Km,5.1Km),飞机2的位置为(2.9Km,3.9km,4.8Km),飞机3的位置为(3.02Km,4.1Km,4.9Km),飞机4的位置为(3.3Km,4Km,5Km),飞机5的位置为(3.12Km,4.1Km,5.05Km);距离计算公式为:则计算出实际队形矩阵为:
在本实施例中,步骤S3中的标定时间为50ms~100ms。步骤S3中的策略为,以飞机当前状态为基础,下一标定时间之后,飞机的状态在当前状态下进行增加或减小。飞机当前状态下进行增加或减小包含包含速度增加或减少指令、纵向航迹角增加或减小指令以及水平航迹角增加或减小指令。例如,在一个实施例中,指令增量按照50ms为度量:
策略0:飞机下一周期水平航迹角减小3度;
策略1:飞机下一周期水平航迹角增大3度;
策略2:飞机下一周期纵向航迹角减小2度;
策略3:飞机下一周期纵向航迹角增大2度;
策略4:飞机下一周期指示空速减小5m/s;
策略5:飞机下一周期指示空速增大5m/s;
策略6:飞机下一周期指示空速减小5m/s,水平航迹角增大3度;
策略7:飞机下一周期指示空速减小5m/s,水平航迹角减小3度;
策略8:飞机下一周期指示空速减小5m/s,纵向航迹角增大2度;
策略9:飞机下一周期指示空速减小5m/s,纵向航迹角减小2度;
策略10:飞机下一周期指示空速增大5m/s,纵向航迹角增大2度;
策略11:飞机下一周期指示空速增大5m/s,纵向航迹角减小2度;
策略12:飞机下一周期水平航迹角增大3m/s,纵向航迹角增大2度;
策略13:飞机下一周期水平航迹角增大3m/s,纵向航迹角减小2度;
策略14:飞机下一周期水平航迹角减小3m/s,纵向航迹角增大2度;
策略15:飞机下一周期水平航迹角减小3m/s,纵向航迹角增大2度;
对于所述步骤S4中的误差矩阵,如果当前需要固定编队控制,构造固定编队误差矩阵;如果当前需要集群编队控制,构造集群编队误差矩阵。
所述集群编队误差矩阵定义为P2
其中,m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12为大于零的任意数;S3为使矩阵正定的任意正数,E0(i,j)为两机初始距离与实际距离之差绝对值,当m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12全为1时,集群编队误差矩阵变化为固定编队矩阵P,
所述步骤S4中对误差矩阵行列式值与编队态势值进行关联具体为,F=|P|或F=|P2|。
例如,在本实施例中,如果需要固定队形控制,m1至m12均取值1,如果矩阵元素小于0,则取绝对其值,得到误差矩阵
为计算方便,将矩阵变形为:编队态势值F计算:F=|P'|。
在步骤S5中,从S3策略集中遍历每一策略,按照S4中编队态势值F,计算执行此策略50ms之后所对应的编队态势值,同时将此策略和编队态势值存储在数组中,等待遍历计算完成之后,寻找最大的编队态势值所对应的策略编号,将该策略作为此周期的最优策略,送入自动飞控系统的自动油门系统,纵向航迹角保持系统、水平航迹角保持系统。周期计算态势值,直到编队态势值达到最大,停止计算,此时实现多机编队控制。
计算分别在执行策略0到策略15时候每一策略对应的编队态势值,此时经过计算,得到策略3对应的编队态势值最大F=15096.753,此时执行策略3.其它飞机依次执行S1-S6,直到编队态势值达到15625,15625为矩阵P'的对角线元素的乘积。如果由于扰动导致队形变化,则所有飞机周期执行S7。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种多机编队飞行控制方法,其特征在于,包含以下步骤:
S1,根据初始队形设计,构造初始编队队形矩阵;具体的为:需要编队飞行的飞机包含六架,其初始编队队形矩阵定义为C0
其中,S0为保证矩阵C0正定时的任意大于零的正实数,D0(i,j)为对应的两机之间的距离;
S2,在实际飞行过程中,各飞机周期获取本机周围所有飞机的飞行数据,计算飞机两两之间的径向距离,构造实际编队队形矩阵;
S3,根据飞机性能边界,定义出标定时间之后飞机能够达到的速度边界、水平航迹角边界、纵向航迹角边界,根据所述飞机性能边界确定策略集;
S4,利用步骤S2中的实际编队队形矩阵与初始编队队形矩阵构造误差矩阵,利用实际编队队形矩阵减初始编队队形矩阵得到所述误差矩阵,并对误差矩阵行列式值与编队态势值进行关联;
S5,根据S3中的策略集,遍历每一策略,选取每一策略执行标定时间之后的编队态势值,选取最大编队态势值所对应的策略,进行执行;
S6,定义编队态势值等于误差矩阵的绝对值,周期执行,直到编队态势值达到最大,将对应最大态势值的指令传输到自动飞控系统,控制飞机飞行状态,即完成目标队形控制;
S7,如果目标队形出现扰动,使得编队态势值达不到最大状态,则重复S1至S6中的过程。
2.如权利要求1所述的多机编队飞行控制方法,其特征在于:所述步骤S2中的实际编队队形矩阵定义为C,
其中,S1为保证矩阵C正定时的任意大于零的正实数,D(i,j)为实际飞行状态下对应的两机之间的距离。
3.如权利要求1所述的多机编队飞行控制方法,其特征在于:所述步骤S3中的标定时间为50ms~100ms。
4.如权利要求3所述的多机编队飞行控制方法,其特征在于:所述步骤S3中的策略为,以飞机当前状态为基础,下一标定时间之后,飞机的状态在当前状态下进行增加或减小,所述当前状态包括飞机的当前速度以及飞机的纵向航迹角。
5.如权利要求1所述的多机编队飞行控制方法,其特征在于:对于所述步骤S4中的误差矩阵,如果当前需要固定编队控制,构造固定编队误差矩阵;如果当前需要集群编队控制,构造集群编队误差矩阵。
6.如权利要求5所述的多机编队飞行控制方法,其特征在于:所述集群编队误差矩阵定义为P2
其中,m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12为大于零的任意数;S3为使矩阵正定的任意正数,E0(i,j)为两机初始距离与实际距离之差绝对值,当m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12全为1时,集群编队误差矩阵变化为固定编队误差矩阵P,
7.如权利要求6所述的多机编队飞行控制方法,其特征在于:所述步骤S4中对误差矩阵行列式值与编队态势值进行关联具体为,编队态势值F=|P|或F=|P2|。
CN201610318072.XA 2016-05-13 2016-05-13 一种多机编队飞行控制方法 Active CN105843256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610318072.XA CN105843256B (zh) 2016-05-13 2016-05-13 一种多机编队飞行控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610318072.XA CN105843256B (zh) 2016-05-13 2016-05-13 一种多机编队飞行控制方法

Publications (2)

Publication Number Publication Date
CN105843256A CN105843256A (zh) 2016-08-10
CN105843256B true CN105843256B (zh) 2019-03-08

Family

ID=56592235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610318072.XA Active CN105843256B (zh) 2016-05-13 2016-05-13 一种多机编队飞行控制方法

Country Status (1)

Country Link
CN (1) CN105843256B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065922B (zh) * 2017-02-14 2020-02-07 中国科学院自动化研究所 基于队形库的多无人机队形编队方法
CN109270949A (zh) * 2017-07-18 2019-01-25 无锡飞天侠科技有限公司 一种无人机飞行控制系统
CN107491608B (zh) * 2017-08-18 2020-05-29 中国空气动力研究与发展中心高速空气动力研究所 一种飞机编队飞行的队形参数优化方法及系统
CN107611576B (zh) * 2017-09-04 2020-09-01 江西洪都航空工业集团有限责任公司 一种基于通信窄波束共形天线的多机协同编队方法
CN112000108B (zh) * 2020-09-08 2021-09-21 北京航空航天大学 一种多智能体集群分组时变编队跟踪控制方法及系统
CN113885577B (zh) * 2021-10-29 2023-11-28 西北工业大学 一种飞机多机密集编队防碰撞控制方法、系统及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464692A (zh) * 2009-01-16 2009-06-24 北京航空航天大学 基于有限状态机的自动编队飞行控制方法
CN104216382A (zh) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 一种空间小型飞行器编队飞行控制系统
CN105824323A (zh) * 2016-05-13 2016-08-03 中国航空工业集团公司西安飞机设计研究所 一种多机会和下的飞机防撞方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464692A (zh) * 2009-01-16 2009-06-24 北京航空航天大学 基于有限状态机的自动编队飞行控制方法
CN104216382A (zh) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 一种空间小型飞行器编队飞行控制系统
CN105824323A (zh) * 2016-05-13 2016-08-03 中国航空工业集团公司西安飞机设计研究所 一种多机会和下的飞机防撞方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Behavior-Based Formation Control for Multirobot Teams;Tucker Balch 等;《IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION》;19981231;第14卷(第6期);第926-939页
一类非完整移动机器人编队控制方法;张瑞雷 等;《控制与决策》;20131130;第28卷(第11期);第1751-1755页
四旋翼无人机一致性编队飞行控制方法;陈杰敏 等;《航空兵器》;20171231(第6期);第25-31页
基于MAS的多UUV编队智能优化控制;李宏宏 等;《系统仿真技术》;20130131;第9卷(第1期);第85-91页
基于图论和行为的深空航天器网络编队控制;王楠 等;《沈阳工业大学学报》;20110831;第33卷(第4期);第439-444页
多机会合下的机载防撞三维避撞策略研究;张帅 等;《航空科学技术》;20160915;第27卷(第9期);第26-30页

Also Published As

Publication number Publication date
CN105843256A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105843256B (zh) 一种多机编队飞行控制方法
CN105824323B (zh) 一种多机会和下的飞机防撞方法
CN104246641A (zh) Uav的安全紧急降落
US8788189B2 (en) Aircraft control system and method for reaching a waypoint at a required time of arrival
US8880247B2 (en) Method for planning a landing approach of an aircraft, computer program product with a landing approach plan stored thereon, as well as device for planning a landing approach
CN103116280B (zh) 一种存在变分布网络随机延迟的微小型无人飞行器纵向控制方法
US10041809B2 (en) Aircraft intent processor
CN108204814B (zh) 无人机三维场景路径导航平台及其三维改进路径规划方法
EP3065019B1 (en) Method for optimum maximum range cruise speed in an aircraft
CN102496313B (zh) 监视数据对飞行器计划预测轨迹的修正方法
CN103941233B (zh) 一种多平台主被动传感器协同跟踪的雷达间歇交替辐射控制方法
CN111006693B (zh) 智能飞行器航迹规划系统及其方法
JP2015512818A5 (zh)
EP3065020A1 (en) Method for calculating the optimum economy cruise speed in an aircraft
CN102541069A (zh) 偏离损失的避免操纵
CN104793201A (zh) 一种跟踪临近空间高超声速目标的修正变结构网格交互多模型滤波方法
US10964226B2 (en) Instructional assessment system for a vehicle
CN102436764A (zh) 通过历史数据挖掘航班管制因素的方法
CN104008674A (zh) 一种基于模式匹配的终端区进场飞行时间预测方法
CN104077469A (zh) 基于速度预测的分段迭代剩余时间估计方法
CN114637325A (zh) 一种无人机飞行轨迹预测方法、电子设备及存储介质
CN105652664A (zh) 一种基于鸽群优化的四旋翼无人机显式预测控制方法
CN110889170A (zh) 飞行器大角度攻击目标的落角与攻角的估计方法
US20230112803A1 (en) System and method for airspace planning
CN117170410B (zh) 用于无人机编队飞行的控制方法及相关产品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant