CN105842116A - 一种磁约束核聚变实验装置的等离子体密度测量方法 - Google Patents

一种磁约束核聚变实验装置的等离子体密度测量方法 Download PDF

Info

Publication number
CN105842116A
CN105842116A CN201610373636.XA CN201610373636A CN105842116A CN 105842116 A CN105842116 A CN 105842116A CN 201610373636 A CN201610373636 A CN 201610373636A CN 105842116 A CN105842116 A CN 105842116A
Authority
CN
China
Prior art keywords
data
signal
gate array
logic gate
programming logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610373636.XA
Other languages
English (en)
Inventor
舒双宝
许崇杨
王晓旭
严谨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610373636.XA priority Critical patent/CN105842116A/zh
Publication of CN105842116A publication Critical patent/CN105842116A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma Technology (AREA)

Abstract

本发明公开了一种磁约束核聚变实验装置的等离子体密度测量计算方法,包括以下步骤;S1、使用HCN激光干涉仪产生两组光束;S2、通过放电实验对D1和D2分别进行采样,并将D1和D2分解为一段段数据;S3、在可编程逻辑门阵列内画出相同功能的A区域和B区域;S4、A区域接收数据1,B区域待命;S5、A区域处理数据1,并将结果送入存储和显示设备中,同时B区域接收数据2;S6、A区域接收数据3覆盖数据1,同时B区域处理数据2,并将结果送入存储和显示设备中;S7、重复S5‑S6,直到实验过程结束。本发明系统响应速度快,响应时间确定,硬件电路结构简单,不易受干扰,易于维护和更换,成本低,通用性好。

Description

一种磁约束核聚变实验装置的等离子体密度测量方法
技术领域
本发明涉及磁约束核聚变实验装置领域,具体是一种磁约束核聚变实验装置的等离子体密度测量方法。
背景技术
在如托卡马克装置、仿星器等磁约束核聚变实验装置中,等离子体密度是等离子体物理研究中重要的物理量,它是表征等离子体特性的一个重要参数,在实验装置中通常使用HCN激光干涉仪等仪器测量等离子体密度。
在具体应用中,使用HCN激光干涉仪产生两组光束,一路经过等离子体,称之为光束一,另一路光束作为参考道,称之为光束二。光束一由TGS探测器转换后得到电信号,称为测量道信号D1;光束二经TGS探测器转换后得到另一组电信号,称为参考道信号D2。
光束一在经过等离子体时因为等离子体介质的折射率不同会产生一个相位移动,使得其对应的电信号D1和光束二对应的电信号D2之间具有一个相位差,由于此相位差与等离子体密度成正比关系,因此对这个相位差经过一系列处理运算后就能得到所测等离子体的密度所以,获取D1和D2的信号相位差成为测量计算等离子体密度的关键所在。
由两束激光束经过一系列的实验装置,可以得到两组不同的电信号D1和D2(此处,D1和D2信号是一个随时间不断变化的连续模拟量,其起始时间由托卡马克实验装置放电实验的起始时间决定)。而怎样由D1和D2得到两者的相位差的方法,是本专利的创新点所在。
对于D1和D2两组信号进行信号采集和处理,传统的方法有使用硬件相位差计处理(硬件处理法)和使用PC机处理(软件处理法)两种方法,硬件处理方法是利用硬件相位差计的硬件电路对D1和D2信号进行处理,经过信号放大、滤波和数模转换后,得到相位差信号,并进一步计算获得等离子体密度,其中,硬件相位差计是一种硬件电路,可以将D1和D2处理后得到相位差信号,送给采集卡,进一步给计算机。其优点是能实时处理数据。
硬件相位差计处理虽然能够实时得到处理结果,但是主要存在有如下不足:
(1)硬件相位差计在核聚变实验装置这一强电磁环境中,容易受到干扰,所产生的噪音信号与实验所需信号很难分开,滤波过程困难。
(2)硬件相位差计结构复杂,增加了系统的不稳定性。
(3)硬件相位差计不属于通用设备,需要单独设计和制作,不利于维修和更换,增加了设备的维护成本。
软件处理法对D1和D2的处理不需要专门的硬件电路,而是通过计算机来实现对D1和D2的处理,通过计算机中软件的处理来实现由D1和D2得到相位差的过程。
使用PC机的软件测量法如图2所示,对于实验过程中得到D1和D2,通过采集卡将D1和D2传送到PC机中,在每次放电实验完成后,再对D1和D2信号进行处理,得到所需的相位差从而计算得到等离子体密度。
软件处理法对D1和D2处理过程如下所述:
对整个实验过程中得到的全部D1和D2的数据,进行“傅立叶变换——相位相减——反转叠加——正比例计算”,从而得到相位差,进一步得到等离子体密度。
从上述描述可以看出,软件测量的方法实质上是等待整个实验结束后,将D1和D2在整个放电实验中的数据全部收集起来后再处理。此方法结构相对简单,但是其处理过程属于离线分析,不能实时地处理数据,不利于对实验实时的控制。为此我们提出一种磁约束核聚变实验装置的等离子体密度测量方法,用于解决现有技术中存在的不足。
发明内容
本发明的目的是提供一种磁约束核聚变实验装置的等离子体密度测量方法,以解决现有技术磁约束核聚变实验装置中等离子体密度测量存在的问题。
为了达到上述目的,本发明所采用的技术方案为:
一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:包括以下步骤:
(1)、采用HCN激光干涉仪产生两组光束,一路光束经过等离子体,称之为光束一,另一路光束作为参考道,称之为光束二,光束一由TGS探测器转换后得到电信号,称为测量道信号D1,光束二经同一TGS探测器转换后得到另一组电信号,称为参考道信号D2;
(2)、放电实验开始,采用AD模数转换器分别对测量道信号D1和参考道信号D2进行采样,当测量道信号D1、参考道信号D2均收集满1000个点的数据时,分别对测量道信号D1、参考道信号D2补上24个0,凑成两组1024个点的数据片段;此过程重复进行,得到一系列的包含1024个点的数据片段,将这一系列的数据片段命名为数据1、数据2,数据3,数据4……,由此,随着放电实验的进行,测量道信号D1、参考道信号D2分别被分解为一段段的数据;
(3)使用可编程逻辑门阵列FPGA接收AD模数转换器采样的数据,该可编程逻辑门阵列FPGA连接有SD卡存储和显示设备,在可编程逻辑门阵列FPGA内画出两个区域,设为A和B,A和B这两个区域功能相同,都可以接收一组数据片段;
(4)、在可编程逻辑门阵列FPGA中对AD模数转换器采样的数据进行处理,首先令A区域开始接收数据1,B区域待命,数据1接收完毕后,A区域开始对其进行处理,得到相位差及相应的密度,并送入SD卡存储和显示设备中,与此同时,B区域接收数据2;
接着A区域开始接收数据3,并覆盖掉之前的数据1,与此同时B区域开始处理数据2,得到相位差及相应的密度,并送入SD卡存储和显示设备中;
数据3接收完毕后,A区域开始对其进行处理,得到相位差及相应的密度,并送入SD卡存储和显示设备中,与此同时,B区域接收数据4;
重复上述过程,直到实验过程结束。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:步骤(4)中,可编程逻辑门阵列FPGA对AD模数转换器采集来的数据的处理步骤还可以为:
(a)、可编程逻辑门阵列FPGA同时控制AD模数转换器采集测量道信号D1和参考道信号D2;
(b)、可编程逻辑门阵列FPGA在其内部随机存储器RAM里开两个缓冲区,分别为缓冲区A和缓冲区B;
(c)、选取采集1000个点为一个周期,进行快速傅里叶变换FFT计算;
(d)、采集开始时可编程逻辑门阵列FPGA首先将采集来的点放入缓冲区A中,待缓冲区A中的两路数据均采集满1000点后,可编程逻辑门阵列FPGA将采集来的点放入缓冲区B中,与此同时,可编程逻辑门阵列FPGA开始对缓冲区A中的数据进行处理;
(e)、当缓冲区B中的两路数据均采集满1000点后,FPGA开始将采集来的点放入缓冲区A中,与此同时,对缓冲区B中的数据进行处理;
(f)、当缓冲区A中的数据采集满后,从上述步骤(d)重新执行,形成一个循环。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:测量道信号D1和参考道信号D2由AD模数转换器转换为可供可编程逻辑门阵列FPGA处理的数字信号。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:HCN激光干涉仪、TGS探测器、AD模数转换器、可编程逻辑门阵列FPGA封装在铁质防干扰盒内,预留对外通讯接口,便于使用和防止电磁干扰。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:可编程逻辑门阵列FPGA可以替换为数字信号处理器DSP,或者ARM处理器。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:SD存储卡可以为包括硬盘或闪存在内的数字存储设备,最终的相位计算结果得到的等离子体密度数据可以实时存储起来。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:TGS探测器转换后得到电信号选用10kHz的频率为载频信号。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:AD模数转换器最少选用两通道,采样率大于10MHz,在可编程逻辑门阵列FPGA处理时算法的特点为:两路信号D1和D2一个周期的采集点数为1000点,后面补0凑满1024点,分别做载频为10kHz的FFT,相应的时间分辨率为0.1ms,可视为实时得到相位差信号。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:显示设备还可以采用数字显示器。
所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:实时密度可以提供给托卡马克其他分系统。
本发明与现有技术相比,其有益效果为:
1、本发明的信号接收和处理器件采用现场可编程逻辑门阵列FPGA和AD实现,系统响应速度快,响应时间确定;
2、本发明的硬件电路结构简单,不易受干扰;
3、本发明的硬件电路采用的器件均为通用器件,易于维护和更换,成本低,通用性好;
4、本发明的算法采用快速傅里叶变换,速度快,可以实时得到处理结果,有利于为进一步进行密度反馈控制提供条件;
5、本发明可以用多种存储介质实时存储数据,便于翻阅和研究;
6、本发明可以实时显示数据的处理结果,便于随时监控实验过程。
7、为聚变装置其他需要等离子体密度的分系统实时获得等离子体密度提供数据。
附图说明
图1为本发明测量系统结构框图。
图2为本发明方法流程图。。
具体实施方式
如图1、图2所示,一种磁约束核聚变实验装置的等离子体密度测量计算方法,包括以下步骤;
S1、使用HCN激光干涉仪产生两组光束,一路经过等离子体,称之为光束一,另一路光束作为参考道,称之为光束二,光束一由TGS探测器转换后得到电信号,称为测量道信号D1,光束二经TGS探测器转换后得到另一组电信号,称为参考道信号D2;
S2、放电实验开始,对D1和D2用AD转换器分别进行采样,当测量道信号D1和参考道信号D2均收集满1000个点的数据时,分别对测量道信号D1和参考道信号D2补上24个0,凑成两组1024个点的数据片段。此过程重复进行,得到一系列的包含1024个点的数据片段,将这一系列的数据片段命名为数据1、数据2,数据3,数据4……由此,随着放电实验的进行,D1和D2被分解为一段段的数据;
S3、使用可编程逻辑门阵列FPGA接收AD模数转换器采样的数据,该可编程逻辑门阵列FPGA连接有SD卡存储和显示设备,在可编程逻辑门阵列FPGA内画出两个区域,设为A和B,A和B这两个区域功能相同,都可以接收一组数据片段;
S4、A区域开始接收数据1,B区域待命;
S5、数据1接收完毕后,A区域开始对其进行处理,得到相位差及相应的密度,并送入SD卡存储和显示设备中。与此同时,B区域接收数据2;
S6、A区域开始接收数据3,并覆盖掉之前的数据1,与此同时B区域开始处理数据2,得到相位差及相应的密度,并送入SD卡存储和显示设备中;
S7、数据3接收完毕后,A区域开始对其进行处理,得到相位差及相应的密度,并送入SD卡存储和显示设备中,与此同时,B区域接收数据4;
S8、重复S4-S6,直到实验过程结束。
本发明中,测量道信号D1和参考道信号D2分别由AD模数转换器转换为可供可编程逻辑门阵列FPGA处理的数字信号。
本发明中,可编程逻辑门阵列FPGA对采集来的数据的处理步骤为:
①可编程逻辑门阵列FPGA同时控制AD模数转换器采集两路电信号测量道信号D1和参考道信号D2;
②可编程逻辑门阵列FPGA在其内部随机存储器RAM里开两个缓冲区,分别为缓冲区A和缓冲区B;
③可以选取采集1000个点为一个周期,进行FFT计算;
④采集开始时可编程逻辑门阵列FPGA首先将采集来的点放入缓冲区A中,待缓冲区A中的两路数据均采集满1000点后,可编程逻辑门阵列FPGA将采集来的点放入缓冲区B中,与此同时,可编程逻辑门阵列FPGA开始对缓冲区A中的数据进行处理;
⑤当缓冲区B中的两路数据均采集满1000点后,可编程逻辑门阵列FPGA开始将采集来的点放入缓冲区A中,与此同时,对缓冲区B中的数据进行处理;
⑥当缓冲区A中的数据采集满后,继续上述步骤④,形成一个循环。
本发明中,整个装置封装在铁质防干扰盒内,预留对外通讯接口,便于使用和防止电磁干扰。
本发明中,现场可编程逻辑门阵列(FPGA)可以为数字信号处理器(DSP)或者ARM处理器。
本发明中,SD存储卡可以为硬盘,闪存等相应的数字存储设备,最终的相位计算结果得到的等离子体密度数据可以实时存储起来。
本发明中,AD转换器最少选用两通道,采样率大于10MHz,在可编程逻辑门阵列(FPGA)处理时算法的特点为:两路信号D1和D2一个周期的采集点数为1000点,后面补0凑满1024点,分别做载频为10kHz的FFT,相应的时间分辨率为0.1ms,可视为实时得到相位差信号。
本发明中,对数据进行FFT运算,根据公式(其中f(k)表示第k点对应的频率、N表示采样点数,fs为采样频率为10MHz),当k=1时我们可以求得基波频率10kHz,这样就可以得到基频的相位。在本发明中,以固定长度(这里为1000)读取数据对D1和D2数据并进行傅里叶变换求出相位,每段只保留能量谱对应的最大的点也就是主频点的相位,将这两路相位进行相减即可达到相位差。
本发明中,在信号采集过程中,在触发信号未发生到触发采集也就是等离子体没有放电的时候以及在采集结束后的这段时间里,输入的信号应该为零,但输出的信号不为零。在HCN激光干涉测等离子体电子密度实验所使用的采集系统中,通过对得到的两列信号的相位差的观察可以看出:采样点的最开始的几个点就是随机噪声,对等离子体电子密度的计算是没有意义的,这些点就是零漂。去除零漂的方法是:选取最开始的几个点的相位差(选取的点数根据你每次选取作FFT运算的点数来决定),然后对这些点取平均值,就可以得到相位差(即与等离子体密度成正比关系)的整体漂移量,接着把整个相位差值减去这个漂移量,就可以到达去除零漂的效果了。
本发明中,在一次放电过程情况下,密度的变化趋势是先增加后平顶,最后下落回最低。如果相邻两点密度值之差不小于0.2(某个设定的阈值,根据情况定),则密度值等于原值,如果密度之差大于0.2小于门限跳变值h,认为该点是干扰点,应该取跳变前那个正常的点作为该点的值。如果相位差值大于h,并且满足要求持续的时间(持续的时间是根据实际情况选取的),则此处判断为翻转,要对此处的跳变点加以记录,并且从此处开始对其做叠加处理,相位在原相位的基础上增加2π(后点相位比前点相位低)或减少2π(后点相位比前点相位高),对于多次翻转则增加2π的翻转次数的倍数;反之,则判断此点为干扰,该点的密度值取上一时刻的值。也就是说个别点的密度值突变是干扰,而当出现连续变化的点那么就认为是翻转。
本发明中,信号接收和处理器件采用现场可编程逻辑门阵列FPGA和AD实现,系统响应速度快,响应时间确定,硬件电路结构简单,不易受干扰,硬件电路采用的器件均为通用器件,易于维护和更换,成本低,通用性好,通过显示设备实时显示数据的处理结果,便于随时监控实验过程。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
本发明中,根据公式(其中f(k)表示第k点对应的频率、N表示采样点数,fs为采样频率),只要满足此公式并使得f(k)=10kHz,算出此时对应的相位,对D1和D2数据分别进行计算即可,将这两路相位进行相减即可达到相位差。这样,采样率和计算点数可以变化的,如计算点可以是500或1000或2000。为了保证运算结果的准确度,采样点1000及以上为更准,采样率要至少高于10kHz的两倍。同时要满足,处理A数据和B数据的时间要小于采集A数据或B数据的时间。
本发明中在S2中,每个数据段有1024×2个数据,因为D1和D2的数据都要采集并进行FFT,也就是说数据1,数据2,数据3,数据4...里面都有2048个数据,然后求得相位差。

Claims (10)

1.一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:包括以下步骤:
(1)、采用HCN激光干涉仪产生两组光束,一路光束经过等离子体,称之为光束一,另一路光束作为参考道,称之为光束二,光束一由TGS探测器转换后得到电信号,称为测量道信号D1,光束二经同一TGS探测器转换后得到另一组电信号,称为参考道信号D2;
(2)、放电实验开始,采用AD模数转换器分别对测量道信号D1和参考道信号D2进行采样,当测量道信号D1、参考道信号D2均收集满1000个点的数据时,分别对测量道信号D1、参考道信号D2补上24个0,凑成两组1024个点的数据片段;此过程重复进行,得到一系列的包含1024个点的数据片段,将这一系列的数据片段命名为数据1、数据2,数据3,数据4……,由此,随着放电实验的进行,测量道信号D1、参考道信号D2分别被分解为一段段的数据;
(3)使用可编程逻辑门阵列FPGA接收AD模数转换器采样的数据,该可编程逻辑门阵列FPGA连接有SD卡存储和显示设备,在可编程逻辑门阵列FPGA内画出两个区域,设为A和B,A和B这两个区域功能相同,都可以接收一组数据片段;
(4)、在可编程逻辑门阵列FPGA中对AD模数转换器采样的数据进行处理,首先令A区域开始接收数据1,B区域待命,数据1接收完毕后,A区域开始对其进行处理,得到相位差及相应的密度,并送入SD卡存储和显示设备中,与此同时,B区域接收数据2;
接着A区域开始接收数据3,并覆盖掉之前的数据1,与此同时B区域开始处理数据2,得到相位差及相应的密度,并送入SD卡存储和显示设备中;
数据3接收完毕后,A区域开始对其进行处理,得到相位差及相应的密度,并送入SD卡存储和显示设备中,与此同时,B区域接收数据4;
重复上述过程,直到实验过程结束。
2.根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:步骤(4)中,可编程逻辑门阵列FPGA对AD模数转换器采集来的数据的处理步骤还可以为:
(a)、可编程逻辑门阵列FPGA同时控制AD模数转换器采集测量道信号D1和参考道信号D2;
(b)、可编程逻辑门阵列FPGA在其内部随机存储器RAM里开两个缓冲区,分别为缓冲区A和缓冲区B;
(c)、选取采集1000个点为一个周期,进行快速傅里叶变换FFT计算;
(d)、采集开始时可编程逻辑门阵列FPGA首先将采集来的点放入缓冲区A中,待缓冲区A中的两路数据均采集满1000点后,可编程逻辑门阵列FPGA将采集来的点放入缓冲区B中,与此同时,可编程逻辑门阵列FPGA开始对缓冲区A中的数据进行处理;
(e)、当缓冲区B中的两路数据均采集满1000点后,FPGA开始将采集来的点放入缓冲区A中,与此同时,对缓冲区B中的数据进行处理;
(f)、当缓冲区A中的数据采集满后,从上述步骤(d)重新执行,形成一个循环。
3.根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:测量道信号D1和参考道信号D2由AD模数转换器转换为可供可编程逻辑门阵列FPGA处理的数字信号。
4. 根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:HCN激光干涉仪、TGS探测器、AD模数转换器、可编程逻辑门阵列FPGA封装在铁质防干扰盒内,预留对外通讯接口,便于使用和防止电磁干扰。
5. 根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:可编程逻辑门阵列FPGA可以替换为数字信号处理器DSP,或者ARM处理器。
6. 根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:SD存储卡可以为包括硬盘或闪存在内的数字存储设备,最终的相位计算结果得到的等离子体密度数据可以实时存储起来。
7. 根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:TGS探测器转换后得到电信号选用10kHz的频率为载频信号。
8. 根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:AD模数转换器最少选用两通道,采样率大于10MHz,在可编程逻辑门阵列FPGA处理时算法的特点为:两路信号D1和D2一个周期的采集点数为1000点,后面补0凑满1024点,分别做载频为10kHz的FFT,相应的时间分辨率为0.1ms,可视为实时得到相位差信号。
9. 根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:显示设备还可以采用数字显示器。
10. 根据权利要求1所述的一种磁约束核聚变实验装置的等离子体密度测量方法,其特征在于:实时密度可以提供给托卡马克其他分系统。
CN201610373636.XA 2016-05-26 2016-05-26 一种磁约束核聚变实验装置的等离子体密度测量方法 Pending CN105842116A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610373636.XA CN105842116A (zh) 2016-05-26 2016-05-26 一种磁约束核聚变实验装置的等离子体密度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610373636.XA CN105842116A (zh) 2016-05-26 2016-05-26 一种磁约束核聚变实验装置的等离子体密度测量方法

Publications (1)

Publication Number Publication Date
CN105842116A true CN105842116A (zh) 2016-08-10

Family

ID=56596023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610373636.XA Pending CN105842116A (zh) 2016-05-26 2016-05-26 一种磁约束核聚变实验装置的等离子体密度测量方法

Country Status (1)

Country Link
CN (1) CN105842116A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775913A (zh) * 2018-04-16 2018-11-09 中国科学技术大学 一种用于高温强磁场下的球床填充因子测量的实验平台
CN109100262A (zh) * 2018-09-21 2018-12-28 中国科学院上海光学精密机械研究所 飞秒激光成丝等离子体密度测量装置和测量方法
CN111343778A (zh) * 2018-12-18 2020-06-26 核工业西南物理研究院 一种测量等离子体湍流中高波数谱的方法
CN112861067A (zh) * 2021-03-01 2021-05-28 合肥工业大学 一种用于托卡马克等离子体密度测量的相位差检测方法
CN114462260A (zh) * 2022-04-14 2022-05-10 国家超级计算天津中心 基于超级计算机的磁约束聚变融合数值处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534309A (zh) * 2003-03-31 2004-10-06 中国科学院电子学研究所 一种合成孔径雷达实时成像处理器距离压缩处理电路
CN1609882A (zh) * 2003-10-24 2005-04-27 深圳迈瑞生物医疗电子股份有限公司 基于可编程逻辑器件的b超电影回放电路的实现方法
CN101178658A (zh) * 2007-11-30 2008-05-14 上海广电(集团)有限公司中央研究院 基于dsp的升级系统以及升级方法
CN104215553A (zh) * 2014-09-05 2014-12-17 北京航空航天大学 一种碱金属蒸汽的原子密度与极化率一体化测量装置
CN204855301U (zh) * 2015-04-10 2015-12-09 北京师范大学 一种用于等离子体密度测量的干涉仪
CN105606488A (zh) * 2016-01-11 2016-05-25 中国科学院上海光学精密机械研究所 易调节的气体密度测量系统及其测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534309A (zh) * 2003-03-31 2004-10-06 中国科学院电子学研究所 一种合成孔径雷达实时成像处理器距离压缩处理电路
CN1609882A (zh) * 2003-10-24 2005-04-27 深圳迈瑞生物医疗电子股份有限公司 基于可编程逻辑器件的b超电影回放电路的实现方法
CN101178658A (zh) * 2007-11-30 2008-05-14 上海广电(集团)有限公司中央研究院 基于dsp的升级系统以及升级方法
CN104215553A (zh) * 2014-09-05 2014-12-17 北京航空航天大学 一种碱金属蒸汽的原子密度与极化率一体化测量装置
CN204855301U (zh) * 2015-04-10 2015-12-09 北京师范大学 一种用于等离子体密度测量的干涉仪
CN105606488A (zh) * 2016-01-11 2016-05-25 中国科学院上海光学精密机械研究所 易调节的气体密度测量系统及其测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
崔俊杰 等: "基于 FPGA的实时数据采集与远程传输系统设计", 《数据采集与处理》 *
舒双宝 等: "托卡马克等离子体电子密度测量与处理研究", 《电子测量与仪器学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775913A (zh) * 2018-04-16 2018-11-09 中国科学技术大学 一种用于高温强磁场下的球床填充因子测量的实验平台
CN108775913B (zh) * 2018-04-16 2020-01-03 中国科学技术大学 一种用于高温强磁场下的球床填充因子测量的实验平台
CN109100262A (zh) * 2018-09-21 2018-12-28 中国科学院上海光学精密机械研究所 飞秒激光成丝等离子体密度测量装置和测量方法
CN109100262B (zh) * 2018-09-21 2021-05-04 中国科学院上海光学精密机械研究所 飞秒激光成丝等离子体密度测量装置和测量方法
CN111343778A (zh) * 2018-12-18 2020-06-26 核工业西南物理研究院 一种测量等离子体湍流中高波数谱的方法
CN112861067A (zh) * 2021-03-01 2021-05-28 合肥工业大学 一种用于托卡马克等离子体密度测量的相位差检测方法
CN112861067B (zh) * 2021-03-01 2023-12-05 合肥工业大学 一种用于托卡马克等离子体密度测量的相位差检测方法
CN114462260A (zh) * 2022-04-14 2022-05-10 国家超级计算天津中心 基于超级计算机的磁约束聚变融合数值处理系统

Similar Documents

Publication Publication Date Title
CN105842116A (zh) 一种磁约束核聚变实验装置的等离子体密度测量方法
Papaefstathiou Discovering Higgs boson pair production through rare final states at a 100 TeV collider
CN107909227A (zh) 超短期预测风电场功率的方法、装置及风力发电机组
CN107124394A (zh) 一种电力通信网络安全态势预测方法和系统
Bedingham Relativistic state reduction model
CN103413180A (zh) 基于蒙特卡洛模拟法的电动汽车充电负荷预测系统和方法
CN109492256A (zh) 一种动态系统状态概率映射矩阵多向搜索方法
CN108989147A (zh) 基于fpga的sdn网络流量测量系统及方法
Migliorini et al. Muon trigger with fast Neural Networks on FPGA, a demonstrator
CN106874251A (zh) 一种岩体rbi和rqd指标的测量方法
CN106461710B (zh) 实时计算相移信号方法及系统、等离子体诊断方法及系统
CN206460088U (zh) 一种基于深度存储的示波器
US11828887B2 (en) Radioactivity measurement method and radioactivity measurement system
Brundu et al. Modeling of solid state detectors using advanced multi-threading: The TCoDe and TFBoost simulation packages
Fortino et al. Digital signal analysis based on convolutional neural networks for active target time projection chambers
Heinze Development of a Hough transformation track finder for time projection chambers
CN113342734A (zh) 一种基于微波反射仪的等离子体密度分布实时计算装置
CN102769446B (zh) 中子脉冲序列三阶累积量的模型快速分析方法
CN103258144B (zh) 基于故障录波器数据的在线静态负荷建模方法
Stillings Search for the associated production of a W boson and a top quark with the ATLAS detector at 7 TeV
JP5126739B2 (ja) 中性子計測用ガス検出装置
Chakravarthi et al. Gross Domestic Product Prediction Model Using Gradient Boosting Algorithm in Machine Learning
Salvachua Beam Diagnostics for Studying Beam Losses in the LHC
CN114113898B (zh) 一种基于多源量测数据的配电网网损分析方法及系统
Bilka The beam test measurements of the Belle II vertex detector modules

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160810

RJ01 Rejection of invention patent application after publication