CN105841724A - 一种对压强和温度同时测量的干涉式光纤传感器 - Google Patents

一种对压强和温度同时测量的干涉式光纤传感器 Download PDF

Info

Publication number
CN105841724A
CN105841724A CN201610173239.8A CN201610173239A CN105841724A CN 105841724 A CN105841724 A CN 105841724A CN 201610173239 A CN201610173239 A CN 201610173239A CN 105841724 A CN105841724 A CN 105841724A
Authority
CN
China
Prior art keywords
optical fiber
sensor
temperature
pressure
fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610173239.8A
Other languages
English (en)
Inventor
姜澜
吕灵亚
王素梅
曹志涛
江毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201610173239.8A priority Critical patent/CN105841724A/zh
Publication of CN105841724A publication Critical patent/CN105841724A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35325Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in reflection, e.g. Mickelson interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明涉及一种对压强和温度同时测量的干涉式光纤传感器,属于光纤传感器技术领域。本发明由压强传感器段、温度传感段和2×2单模光纤耦合器组成,其中压强传感器段和温度传感段分别连接在2×2单模光纤耦合器两干涉臂上,2×2单模光纤耦合器用于将宽带光信号持续引入压强传感器段和温度传感器段并将调制后的信号反馈;压强传感器段用于在压强作用下调制光信号,温度传感器段用于在温度作用下调制光信号。通过采集后向反射光的光谱,并分析光谱的峰或谷的波长,或对光谱进行傅立叶变换分析频谱信息实现对压强和温度的同时测量。对比已有技术,本发明具有成本低、结构稳定和无双参数交叉敏感的优点。

Description

一种对压强和温度同时测量的干涉式光纤传感器
技术领域
本发明涉及一种光纤传感器,特别涉及一种对压强和温度同时测量的干涉式光纤传感器,属于光纤传感器技术领域。
背景技术
光纤传感技术作为与通信技术和计算机技术共同构成的现代社会信息产业的三大支柱之一,因为其重要的应用价值,已成为当前传感器领域的研究热点。光纤传感技术是一种以光波为载体,光纤为媒质,通过测量光纤内部的传输光能量或者波长的变化来测量外界物理量变化的传感技术。因此,相比于传统的传感器,光纤传感器具有一系列优点,比如:体积小、灵敏度高、响应时间短、抗电磁干扰能力强等特点,弥补了传统传感器存在的缺点,被广泛应用于航天航空、石油化工、土木工程、环境监测、疾病诊断等领域。因此,光纤传感技术不但具有较高的科研价值,而且具有潜在的社会经济效益和重大的国防安全意义。
光学中的干涉法是目前已知最灵敏的探测技术之一。干涉式光纤传感器属于相位调制型传感器,相比其他类别的光纤传感器,它的灵敏度相对较高,而且具有易于制造、容易实现与光纤对接通信的特点,可以用来检测折射率、压强、应力/应变、温度、位移等物理参量。
压强和温度的检测已经广泛地应用到国民经济的各个领域,单一的干涉式光纤传感器对压强和温度两种物理参数都敏感,测量压强或温度时会出现交叉敏感的问题,很难实现压强和温度的同时测量。Denis Donlagic课题组利用特殊定制的光纤在氢氟酸腐蚀的作用下制备了可以同时测量压强和温度的传感器,但该种光纤的制备方法特殊,工艺复杂。另外,2013年,本课题组与密苏里科技大学合作采用飞秒激光微纳加工技术和熔融连接技术,在普通单模光纤上加工了封闭内腔式光纤法布里-珀罗压强传感器探头,成功地降低了温度的交叉敏感,但该传感器探头的加工困难且成本高。
发明内容
本发明的目的是为了实现对压强和温度的双参数同时测量,提供了一种对压强和温度同时测量的干涉式光纤传感器。
本发明的目的是通过如下技术方案实现的:
一种对压强和温度同时测量的干涉式光纤传感器,由压强传感器段、温度传感段和2×2单模光纤耦合器组成,其中压强传感器段和温度传感段分别连接在2×2单模光纤耦合器两干涉臂上,2×2单模光纤耦合器用于将宽带光信号持续引入压强传感器段和温度传感器段并将调制后的信号反馈;压强传感器段用于在压强作用下调制光信号,温度传感器段用于在温度作用下调制光信号。
所述压强传感器段包括依次连接在2×2单模光纤耦合器第一干涉臂上的第一实芯光纤、一段空芯的薄壁光纤和第二实芯光纤。
所述温度传感器段包括第一实芯光纤与连接在第二干涉臂上的第三实芯光纤。
所述压强传感器段空芯的薄壁光纤的长度大于第二实芯光纤的长度;温度传感器段的第三实芯光纤的长度大于压强传感器段的第一实芯光纤的长度。
一种对压强和温度同时测量的干涉式光纤传感器,加工方法如下:将2×2单模光纤耦合器的两个干涉臂分别连接第一实芯光纤和第三实芯光纤并用光纤切割刀切出平整光滑端面,两个干涉臂平整的光滑端面形成迈克尔逊干涉式温度传感器;选择第一干涉臂,与空芯的薄壁光纤进行连接,空芯的薄壁光纤与第一实芯光纤同轴;留取适宜长度的空芯的薄壁光纤,切去多余的光纤;连接第二实芯光纤,切割第二实芯光纤并研磨第二实芯光纤外表面至指定厚度,再用飞秒激光加工第二实芯光纤外表面,或氢氟酸腐蚀第二实芯光纤外表面,破坏平整性,去掉传感器外表面的反射光;这样形成的圆柱形封闭腔构成法布里-珀罗干涉式压强传感器。
所述连接可以采用熔接,活动连接或机械连接方式进行,所采用的连接需要确保稳定,且不影响压强对光纤的作用。
本发明的干涉式传感器原理上为法布里-珀罗干涉式光纤传感器与迈克尔逊干涉式传感器的复合形式:压强传感器段为法布里-珀罗干涉式光纤传感器,温度传感器段为迈克尔逊干涉式传感器。通过采集后向反射光的光谱,并分析光谱的峰或谷的波长,或对光谱进行傅立叶变换分析频谱信息实现对压强和温度的同时测量。
有益效果
所述压强传感器段和温度传感器段使用全石英的光子晶体光纤能够在1200℃的高温环境下同时检测压强和温度的变化,使用普通光纤能够在800℃以下的温度环境下同时检测压强和温度的变化。
本发明设计了一种对压强和温度同时测量的干涉式光纤传感器,直接使用2×2单模光纤耦合器将法布里-珀罗干涉式光纤传感器与迈克尔逊干涉式传感器整合到一起,通过测试复合型干涉信号的变化可同时测量压强和温度,该传感器具有成本低、结构稳定和无双参数交叉敏感的优点。
附图说明
图1为本发明的一种对压强和温度同时测量的干涉式光纤传感器压强传感器段的结构示意图;
图2为本发明的一种对压强和温度同时测量的干涉式光纤传感器的结构示意图;
图3为本发明实施例一种对压强和温度同时测量的干涉式光纤传感器原理示意图;
图4为本发明实施例一种对压强和温度同时测量的干涉式光纤传感器的等强度三光束干涉光谱图;
图5为本发明实施例一种对压强和温度同时测量的干涉式光纤传感器的空间频域干涉光谱图;
附图标记:
1-第一实芯光纤,2-空芯的薄壁光纤,3-第二实芯光纤,4-第三实芯光纤,5-光反射面a,6-光反射面b,7-光反射面c,8-2×2单模光纤耦合器,9-宽带光源,10-光谱分析仪。
具体实施方式
下面将结合附图和实施例对本发明加以详细说明。
一种对压强和温度同时测量的干涉式光纤传感器,如图1、图2所示,由分别连接在2×2单模光纤耦合器8两个干涉臂的压强传感器段和温度传感器段组成;2×2单模光纤耦合器8用于将宽带光信号持续引入压强传感器和温度传感器并将调制后的信号反馈;压强传感器段用于在压强作用下调制光信号,温度传感器段用于在温度作用下调制光信号。
加工方法如下:将2×2单模光纤耦合器8的两个干涉臂分别连接第一实芯光纤1和第三实芯光纤4并用光纤切割刀切出平整光滑端面,两个干涉臂平整的光滑端面形成迈克尔逊干涉式温度传感器;选择第一干涉臂,与空芯的薄壁光纤2进行连接,空芯的薄壁光纤2与第一实芯光纤1同轴;留取适宜长度的空芯的薄壁光纤2,切去多余的光纤;连接第二实芯光纤3,切割第二实芯光纤3并研磨第二实芯光纤3外表面至指定厚度,再用飞秒激光加工第二实芯光纤3外表面,或氢氟酸腐蚀第二实芯光纤3外表面,破坏平整性,去掉传感器外表面的反射光;这样形成的圆柱形封闭腔构成法布里-珀罗干涉式压强传感器。
实施例
下面选取单模光纤描述具体的加工方法:将2×2单模光纤耦合器8的两个干涉臂分别连接一段单模光纤并用光纤切割刀切出平整的光反射面a 5和光反射面b 6,两个干涉臂平整的光反射面a 5和光反射面b 6形成迈克尔逊干涉式温度传感器,第一干涉臂的长度大于第二干涉臂的长度,且长度差为200μm;选择第一干涉臂,与内径93μm的空芯薄壁光纤进行连接,空芯薄壁光纤与单模光纤同轴;留取长度为200μm的空芯薄壁光纤,切去多余的光纤,形成平整的光反射面c 7;连接一段单模光纤,切割单模光纤并研磨单模光纤外表面至5μm,再用飞秒激光加工单模光纤外表面,或氢氟酸腐蚀单模光纤外表面,破坏平整性,去掉传感器外表面的反射光;这样形成的圆柱形封闭腔构成法布里-珀罗干涉式压强传感器。压强传感器和温度传感器的长度根据需要的压强灵敏度和温度灵敏度确定。
工作过程
如图3所示,通过2×2单模光纤耦合器8将传感器分别与宽带光源9和光谱分析仪10连接,从宽带光源9中发出的宽带光被压强传感器段和温度传感器段构成的光反射面a 5、光反射面b 6和光反射面c 7分别反射,三束反射光经2×2单模光纤耦合器8返回光谱分析仪10。返回的三束光发生干涉,获得三光束干涉光谱,如图4所示。
本发明的一种对压强和温度同时测量的干涉式光纤传感器压强和温度的测量及解耦原理为:
当环境温度发生变化时,本发明的一种对压强和温度同时测量的干涉式光纤传感器的温度传感器段受热发生沿光纤轴向的膨胀,使两干涉臂产生的光程差变长。
当环境压强发生变化时,本发明的一种对压强和温度同时测量的干涉式光纤传感器的压强传感器段的实芯光纤膜片因受压而沿轴向垂直于实芯光纤膜片外端面向腔内弯曲,压强传感器段的空腔长度变短;传感器的温度传感器段为一端受压的实芯的单模光纤,当环境压强发生变化时,温度传感器段在压强作用下会发生整体位移,而温度传感器段本身的光程差不会发生变化。
光谱经过傅立叶变换后得到的空间频率光谱中存在三个明显的尖峰,如图5所示,从横坐标零点向右分别记作P1,P2,P3,其空间频率值与三光束干涉的光程差线性地一一对应:P1对应压强传感器段,P2对应温度传感器段,P3对应两传感器段的干涉。当环境的压强和温度同时变化时,P1和P2均会发生左右移动,两个峰随压强和温度的变化可用以下公式表示:
Δ P 1 = K P , F P × Δ P Δ P 2 = K T , M I × Δ T
通过多次单一变化压强和温度实验,可以分别得到KP,FP与KT,MI,使用傅立叶变换观测对应峰的漂移可同时测量出压强和温度的变化量,即使用一种干涉式光纤传感器实现压强和温度的同时测量。
综上所述的干涉式光纤传感器可被用于同时测量的压强和温度变化。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种对压强和温度同时测量的干涉式光纤传感器,其特征在于,由压强传感器段、温度传感段和2×2单模光纤耦合器组成;其中压强传感器段和温度传感段分别连接在2×2单模光纤耦合器两干涉臂上,2×2单模光纤耦合器用于将宽带光信号持续引入压强传感器段和温度传感器段并将调制后的信号反馈;压强传感器段用于在压强作用下调制光信号,温度传感器段用于在温度作用下调制光信号。
2.根据权利要求1所述的一种对压强和温度同时测量的干涉式光纤传感器,其特征在于:所述压强传感器段包括连接在2×2单模光纤耦合器第一干涉臂上的第一实芯光纤、一段空芯的薄壁光纤和第二实芯光纤。
3.根据权利要求1所述的一种对压强和温度同时测量的干涉式光纤传感器,其特征在于:所述温度传感器段包括第一实芯光纤与连接在第二干涉臂上的第三实芯光纤。
4.根据权利要求1-3所述的一种对压强和温度同时测量的干涉式光纤传感器,其特征在于:所述压强传感器段空芯的薄壁光纤的长度大于第二实芯光纤的长度;温度传感器段的第三实芯光纤的长度大于压强传感器段的第一实芯光纤的长度。
5.根据权利要求1所述的一种对压强和温度同时测量的干涉式光纤传感器,其特征在于,加工方法如下:将2×2单模光纤耦合器的两个干涉臂分别连接第一实芯光纤和第三实芯光纤并用光纤切割刀切出平整光滑端面,两个干涉臂平整的光滑端面形成迈克尔逊干涉式温度传感器;选择第一干涉臂,与空芯的薄壁光纤进行连接,空芯的薄壁光纤与第一实芯光纤同轴;留取适宜长度的空芯的薄壁光纤,切去多余的光纤;连接第二实芯光纤,切割第二实芯光纤并研磨第二实芯光纤外表面至指定厚度,再用飞秒激光加工第二实芯光纤外表面,或氢氟酸腐蚀第二实芯光纤外表面,破坏平整性,去掉传感器外表面的反射光;这样形成的圆柱形封闭腔构成法布里-珀罗干涉式压强传感器。
6.根据权利要求1-3和5所述的一种对压强和温度同时测量的干涉式光纤传感器,其特征在于:所述连接可以采用熔接,活动连接或机械连接方式进行。
7.根据权利要求1所述的一种对压强和温度同时测量的干涉式光纤传感器,其特征在于:所述干涉式传感器原理上为法布里-珀罗干涉式光纤传感器与迈克尔逊干涉式传感器的复合形式:压强传感器段为法布里-珀罗干涉式光纤传感器,温度传感器段为迈克尔逊干涉式传感器;通过采集后向反射光的光谱,并分析光谱的峰或谷的波长,或对光谱进行傅立叶变换分析频谱信息实现对压强和温度的同时测量。
CN201610173239.8A 2016-03-24 2016-03-24 一种对压强和温度同时测量的干涉式光纤传感器 Pending CN105841724A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610173239.8A CN105841724A (zh) 2016-03-24 2016-03-24 一种对压强和温度同时测量的干涉式光纤传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610173239.8A CN105841724A (zh) 2016-03-24 2016-03-24 一种对压强和温度同时测量的干涉式光纤传感器

Publications (1)

Publication Number Publication Date
CN105841724A true CN105841724A (zh) 2016-08-10

Family

ID=56584346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610173239.8A Pending CN105841724A (zh) 2016-03-24 2016-03-24 一种对压强和温度同时测量的干涉式光纤传感器

Country Status (1)

Country Link
CN (1) CN105841724A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515054A (zh) * 2017-09-25 2017-12-26 中国计量大学 一种基于迈克尔逊干涉仪的光纤温度和折射率测量传感装置
CN107917775A (zh) * 2017-11-01 2018-04-17 集安市盛程水利水电建设公司 基于法布里‑珀罗干涉与压杆失稳原理的压强传感器
CN108414114A (zh) * 2018-03-26 2018-08-17 李青 一种光纤温度传感探头及光纤温度传感系统
CN110186548A (zh) * 2019-05-13 2019-08-30 天津大学 基于光纤微结构膜片的光纤f-p声传感器及其制作方法
CN110553774A (zh) * 2018-06-01 2019-12-10 武汉理工大学 微型全石英光纤Fizeau腔高频响动态压力传感器及其制作方法
CN110864762A (zh) * 2019-12-04 2020-03-06 武汉工程大学 一种无需安装的投入式光纤液位仪
CN110895157A (zh) * 2019-12-18 2020-03-20 厦门大学 基于双模光纤可同时测量液体压强和温度的传感器及方法
CN113074830A (zh) * 2021-03-23 2021-07-06 广东海洋大学 光纤温度传感器、传感头结构及制备方法
CN116007826A (zh) * 2023-01-17 2023-04-25 福州大学 一种基于宽带光干涉的光纤测压仪及水压测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156396A (ja) * 2001-11-13 2003-05-30 Yuan Tze Univ 絶縁層上シリコン結晶体光学導波マイケルソン干渉式温度センサ
US7164478B2 (en) * 2001-05-25 2007-01-16 Intel Corporation Apparatus and methods for stabilization and control of fiber devices and fiber devices including the same
CN101196426A (zh) * 2006-12-07 2008-06-11 中国科学院半导体研究所 一种光纤光栅压强传感器
CN102998039A (zh) * 2011-09-19 2013-03-27 杭州有源光电科技有限公司 基于光纤环镜的保偏光纤的应力、扭曲同时测量的传感器
CN203908582U (zh) * 2014-02-19 2014-10-29 南开大学 S型锥内嵌式光纤布拉格光栅双参数传感器
CN105043588A (zh) * 2015-06-03 2015-11-11 北京理工大学 一种高温温度和压力光纤法布里珀罗复合微纳传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164478B2 (en) * 2001-05-25 2007-01-16 Intel Corporation Apparatus and methods for stabilization and control of fiber devices and fiber devices including the same
JP2003156396A (ja) * 2001-11-13 2003-05-30 Yuan Tze Univ 絶縁層上シリコン結晶体光学導波マイケルソン干渉式温度センサ
CN101196426A (zh) * 2006-12-07 2008-06-11 中国科学院半导体研究所 一种光纤光栅压强传感器
CN102998039A (zh) * 2011-09-19 2013-03-27 杭州有源光电科技有限公司 基于光纤环镜的保偏光纤的应力、扭曲同时测量的传感器
CN203908582U (zh) * 2014-02-19 2014-10-29 南开大学 S型锥内嵌式光纤布拉格光栅双参数传感器
CN105043588A (zh) * 2015-06-03 2015-11-11 北京理工大学 一种高温温度和压力光纤法布里珀罗复合微纳传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LINGYA LV等: "Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating", 《APPLIED OPTICS》 *
林奈等: "Simultaneous measurement of refractive index and temperature using a microring resonator", 《CHINESE OPTICS LETTERS》 *
袁雷: "全光纤传感器的飞秒激光制备与应用研究", 《中国博士学位论文全文数据库 信息科技辑》 *
陶世昆等: "白光干涉型全光纤迈克尔逊温度测量研究", 《大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515054A (zh) * 2017-09-25 2017-12-26 中国计量大学 一种基于迈克尔逊干涉仪的光纤温度和折射率测量传感装置
CN107515054B (zh) * 2017-09-25 2023-10-27 中国计量大学 一种基于迈克尔逊干涉仪的光纤温度和折射率测量传感装置
CN107917775A (zh) * 2017-11-01 2018-04-17 集安市盛程水利水电建设公司 基于法布里‑珀罗干涉与压杆失稳原理的压强传感器
CN108414114A (zh) * 2018-03-26 2018-08-17 李青 一种光纤温度传感探头及光纤温度传感系统
CN110553774A (zh) * 2018-06-01 2019-12-10 武汉理工大学 微型全石英光纤Fizeau腔高频响动态压力传感器及其制作方法
CN110186548A (zh) * 2019-05-13 2019-08-30 天津大学 基于光纤微结构膜片的光纤f-p声传感器及其制作方法
CN110864762A (zh) * 2019-12-04 2020-03-06 武汉工程大学 一种无需安装的投入式光纤液位仪
CN110895157A (zh) * 2019-12-18 2020-03-20 厦门大学 基于双模光纤可同时测量液体压强和温度的传感器及方法
CN113074830A (zh) * 2021-03-23 2021-07-06 广东海洋大学 光纤温度传感器、传感头结构及制备方法
CN116007826A (zh) * 2023-01-17 2023-04-25 福州大学 一种基于宽带光干涉的光纤测压仪及水压测量方法

Similar Documents

Publication Publication Date Title
CN105841724A (zh) 一种对压强和温度同时测量的干涉式光纤传感器
Joe et al. A review on optical fiber sensors for environmental monitoring
CN102323239B (zh) 一种基于非对称双芯光纤的折射率传感器
US9534937B2 (en) Distributed microwave Fabry-Perot interferometer device and method
CN103344277B (zh) 一种可同时检测双参量的法珀传感器及检测装置
CN105043588A (zh) 一种高温温度和压力光纤法布里珀罗复合微纳传感器
Iadicicco et al. Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings
CN109974759A (zh) 用飞秒激光诱导基于游标效应的光纤线内级联法布里-珀罗腔传感器
Zhu et al. A dual-parameter internally calibrated Fabry-Perot microcavity sensor
CN108195411A (zh) 基于飞秒刻写光纤f-p腔级联fbg的微结构传感器
CN109682778A (zh) 飞秒激光制备纤芯失配型fbg温度折射率测量方法
CN208847209U (zh) 一种基于光纤内倾斜分束器的反射式马赫-曾德尔干涉仪
Brientin et al. Numerical and experimental study of a multimode optical fiber sensor based on Fresnel reflection at the fiber tip for refractive index measurement
Liu et al. An ultra-simple microchannel-free fiber-optic gas-pressure sensor with ultra-fast response
Zhu et al. Self-vernier effect-assisted optical fiber sensor based on microwave photonics and its machine learning analysis
CN104390594A (zh) 光纤微结构位移传感器
CN108917800A (zh) 无芯光纤混合传感器及实验系统
Zhang et al. A microfiber half coupler for refractive index sensing
CN116105778B (zh) 一种温盐同步测量的光纤传感系统
CN108918466A (zh) 一种基于光纤线内分束器的多重迈克尔逊干涉仪
Fu et al. A cascaded triple waist-enlarged taper few-mode fiber temperature sensor with beaded structure
Yu et al. Fiber-tip air cavity sealed by cutting-free inwardly concave silica diaphragm cascaded to fiber Bragg​ grating for gas pressure sensing
CN109682779A (zh) 飞秒激光制备纤芯失配型fbg温度应变折射率测量方法
Haroon et al. An overview of optical fiber sensor applications in liquid concentration measurements
CN209069452U (zh) 一种基于光纤线内的多重法布里-珀罗(fp)干涉仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160810

WD01 Invention patent application deemed withdrawn after publication