CN105836786A - 一种可控过渡金属氧化物的制备方法 - Google Patents

一种可控过渡金属氧化物的制备方法 Download PDF

Info

Publication number
CN105836786A
CN105836786A CN201610158533.1A CN201610158533A CN105836786A CN 105836786 A CN105836786 A CN 105836786A CN 201610158533 A CN201610158533 A CN 201610158533A CN 105836786 A CN105836786 A CN 105836786A
Authority
CN
China
Prior art keywords
transition metal
oxide
preparation
intermediate product
controllable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610158533.1A
Other languages
English (en)
Inventor
王辉
赵倩
廖锦云
王荣方
李�浩
李顺喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201610158533.1A priority Critical patent/CN105836786A/zh
Publication of CN105836786A publication Critical patent/CN105836786A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Abstract

本发明提供了一种可控过渡金属氧化物的制备方法,属于材料技术领域。本发明先将难溶于水的过渡金属有机盐溶于与水不互溶且密度小于水的有机溶剂,随后将其沿着器壁逐滴加入到碱性水溶液中形成两相体系,静置使有机相中的过渡金属有机盐与水相中的OH在两相界面发生化学反应生成中间产物(由于中间产物带有亲水基团而沉降于水溶液中);然后将中间产物进行煅烧使其转化为过渡金属氧化物。本发明制备的过渡金属氧化物主要应用于无酶葡萄糖传感器的检测,而且其在低电位下对葡萄糖具有很好的电催化氧化性能。

Description

一种可控过渡金属氧化物的制备方法
技术领域
本发明即一种可控过渡金属氧化物的制备方法,属于材料技术领域,主要用于无酶葡萄糖传感器性能的测试。
背景技术
葡萄糖酶传感器由于使用酶作为检测底物,导致传感器的选择性、重复性、稳定性等性能较差。无酶葡萄糖传感器主要是通过葡萄糖分子在活性电极表面发生电催化氧化反应而进行检测,可以避免酶传感器的这些缺陷,因此无酶葡萄糖传感器已成为近年来研究的热点。由于很多过渡金属元素有多的可变价态、高价态的氧化物及其空的d轨道等优点,过度金属氧化物及其氧化复合物被广泛应用在电化学传感器、磁存储器、场效应晶体管、锂离子电池、超级电容器以及太阳能电池等领域。处于中间价态的过渡金属氧化物电化学传感器即可检测氧化性物质(比如H2O2),也可检测还原性物质(比如葡萄糖),所以制备中间价态的过度金属氧化物具有更大的使用价值。
研究者发现,金属氧化物纳米结构的形状和大小是传感性能和催化性能的重要影响因素,因此,如何采用新的制备技术,制得具有特殊结构、高性能、高稳定性且廉价易得的过渡金属氧化物,成为材料领域发展的关键。
发明内容
本发明的目的是提供一种可控过渡金属氧化物的制备方法,主要用于无酶葡萄糖传感器的测试中。
本发明制备可控过渡金属氧化物的方法,是将难溶于水的过渡金属有机盐溶于与水不互溶且密度小于水的有机溶剂,随后将其沿着器壁逐滴加入到碱性水溶液中形成两相体系,静置使有机相中的过渡金属有机盐与水相中的OH-在两相界面发生化学反应生成中间产物(由于中间产物带有亲水基团而沉降于水溶液中);然后将中间产物进行煅烧使其转化为过渡金属氧化物。
所述过渡金属有机盐为难溶于水的有机盐,例如乙酰丙酮铜Cu(acac)2、乙酰丙酮镍Ni(acac)2和乙酰丙酮铁Fe(acac)3,过渡金属有机盐溶于有机溶剂后的浓度为7~120mmol/L。
所述碱性水溶液为NaOH、CH3COONa或NaHCO3等的水溶液,其浓度为8~50mmol/L。所述的有机溶剂与水不互溶且密度小于水,例如环己烷、苯、氯仿等。
所述静置即两相界面反应的时间为2~ 8 h;中间产物的煅烧温度为150~250℃,煅烧时间为1 ~2 h。
本发明制备可控的过渡金属氧化物的反应机理见图1。在混合溶液中有机溶剂与水溶液分为两相,即在两相之间形成了液-液界面。有机相中的有机金属盐与水相中的OH-在液-液界面发生反应,生成金属氢氧化物。当反应物浓度达到30~120 mM时,生成针状的氢氧化物。由于反应速率随着浓度的增大而加快,针状的氢氧化物来不及扩散而自组装成花状的氢氧化物;当不断生成的氢氧化物没有足够的时间向已有的花状的氢氧化物沉积时,这些针状的氢氧化物重新自组装并形成新的花状氢氧化物。由于氢氧化物具有亲水基团,所以最终产物沉积在水溶液中。最后通过低温煅烧,使其失水而转化为氧化物(其通过煅烧生成氧化物,形貌不发生改变)。因此,过渡金属氧化物的形貌可通过反应物浓度控制。
下面以CuO为例,对本发明制备的可控过渡金属氧化物的结构和性能进行分析和测试。
1、SEM分析
图2为本发明制备CuO的SEM图。从a到d,反应物的浓度逐渐增加。如图2(a)所示;当反应物浓度达到7~30mM时,开始有针状的氢氧化物生成,如图2(b)所示;当反应物浓度达到30~120 mM时,全部生成针状的氢氧化物并且自组装成花状的氢氧化物,随着反应物浓度的增大,其针状逐渐变粗,如图2(c)、(d)所示。由图2可知,随着反应物浓度的增加,逐渐有针状的CuO形成且自组装成花状的CuO。
2、XRD分析
图3为本发明制备的CuO的XRD图(煅烧前后的对比)。从图3可以看出,煅烧之前在2θ为23.76°、34.02°、35.78°、38.46°、39.80°、53.30°出现Cu(OH)2 (021)、Cu(OH)2 (002)、Cu(OH)2 (111)、Cu(OH)2 (022)、Cu(OH)2 (130)、Cu(OH)2 (150)晶面的特征衍射峰。煅烧之后只有在2θ为35.58°、38.56°出现CuO (200)(ī11)、CuO (111)晶面特征衍射峰,说明通过煅烧产物由氢氧化铜转化为氧化铜。
3、催化性能分析
图4为本发明制备的CuO在0.1MNaOH和葡萄糖(葡萄糖溶液的浓度逐渐增大)的混合溶液中的计时电流曲线图。每隔20s加入一定量的葡萄糖溶液,由图4可以看出,随着葡糖糖浓度的增大,对应的响应电流逐渐增大。
图5为响应电流-葡萄糖浓度校正曲线图。由图5可知,一定浓度范围内的葡萄糖浓度和响应电流成线性关系。由图5可知,本发明制备的CuO (a)与传统方法制备的CuO (b)相比,虽其线性范围有所减小,但是其灵敏度提高了178.76μA·cm-2·Mm-1,检测限降低了0.5 µM,说明本发明制备的CuO催化剂对无酶葡萄糖的传感性能有所提高。
图6为本发明制备的CuO在葡萄糖、抗坏血酸、氯化钠混合溶液中的计时电流曲线图。可以看出,本发明制备的CuO对抗坏血酸、氯化钠具有很强的抗干扰性,说明此CuO催化剂对葡糖糖有较好的选择性。
实验表明,本发明方法制备的Fe3O4 、NiO具有与上述CuO相同的性质,在碱性溶液中对葡萄糖有较强的电催化氧化性能,因此,可以应用在无酶葡萄糖传感性能的检测中。
附图说明
图1为本发明制备的CuO的反应示意图。
图2为本发明制备的CuO的SEM图。
图3为本发明制备的CuO在煅烧前后的XRD图。
图4为本发明制备的CuO在NaOH和葡萄糖混合溶液中的计时电流曲线图。
图5为本发明制备响应电流-葡萄糖浓度校正曲线图。
图6为本发明制备的CuO在抗坏血酸、氯化钠混合溶液中的计时电流曲线图。
具体实施方式
下面通过具体实施例对本发明的可控过渡金属氧化物的制备和传感性能进一步说明。
实施例1
有机金属盐——乙酰丙酮铜(Cu(acac)2)的制备:称取0.24 g NaOH溶于20 mL蒸馏水,加入0.5114 g CuCl2·2H2O,充分搅拌均匀后,离心洗涤;加入12 mL乙酰丙酮,磁力搅拌30 min,冰浴中静置15 min,然后用无水乙醇洗涤3次、60℃烘干,既得。
CuO的制备:称取34.06 mg乙酰丙酮铜,加入10 mL环己烷,搅拌均匀,并超声10min;随后将其沿着器壁逐滴加入到16 mL 16 mmol/L NaOH溶液中,静置反应4 h得到沉淀产物Cu(OH)2;先后用氯仿、无水乙醇、蒸馏水各洗涤三次,60℃烘干;然后将沉淀产物在管式炉中200℃煅烧2 h,即得CuO。
进行无酶葡萄糖传感性能测试,其灵敏度为274.2μA· cm-2· Mm-1,检测限(S/N = 3)为1μM,线性范围为2μM ~ 4mM。
实施例2
有机金属盐的制备——乙酰丙酮铜(Cu(acac)2)的制备与实施例1同。
CuO的制备:静置反应6 h,其它与实施例1同。
进行无酶葡萄糖传感性能测试,其灵敏度为324.21μA· cm-2· Mm-1,检测限(S/N = 3)为 1μM,线性范围为2μM ~ 4.5mM。
实施例3
有机金属盐的制备——乙酰丙酮铜(Cu(acac)2)的制备与实施例1同。
CuO的制备:称取104.8 mg乙酰丙酮铜,加入10 mL环己烷,搅拌均匀,然后超声10min;随后将其沿着器壁逐滴加入到16 mL 50 mmol/L NaOH溶液中,静置反应4 h得到沉淀产物Cu(OH)2;先后用氯仿、无水乙醇、蒸馏水各洗涤三次,60℃烘干;然后置于管式炉中200℃煅烧2 h,得到CuO。
进行无酶葡萄糖传感性能测试,其灵敏度为424.15μA· cm-2· Mm-1,检测限(S/N = 3)为 0.5μM,线性范围为1μM ~ 6 mM。
实施例4
有机金属盐——乙酰丙酮铜(Cu(acac)2)的制备与实例1同。
CuO的制备:称取314.8 mg乙酰丙酮铜,加入10 mL环己烷,搅拌均匀,然后超声10min;随后将其沿着器壁逐滴加入到16 mL 150 mmol/L NaOH溶液中,静置反应4 h得到沉淀产物Cu(OH)2;先后用氯仿、无水乙醇、蒸馏水各洗涤三次,60℃烘干;然后置于管式炉中200℃煅烧2 h,即得到CuO。
进行无酶葡萄糖传感性能测试,其灵敏度为677.3μA· cm-2·Mm-1,检测限(S/N=3)为0.3μM,线性范围为1μM~ 9 mM。
实施例5
有机金属盐——乙酰丙酮镍(Ni (acac)2)的制备:称取0.24 g NaOH溶于20 mL蒸馏水,加入0.7228 g NiCl2·6H2O,充分搅拌均匀后,离心洗涤;加入12 mL乙酰丙酮,磁力搅拌30 min,冰浴中静置15 min,然后用无水乙醇和蒸馏水洗涤3次、60℃烘干,既得。
NiO的制备:称取164.4 mg乙酰丙酮镍,加入10 mL环己烷,搅拌均匀,然后超声10min;随后将其沿着器壁逐滴加入到16 mL 50 mmol/L NaOH溶液中,静置反应4 h得到沉淀产物Ni(OH)2;先后用氯仿、无水乙醇、蒸馏水各洗涤三次,60℃烘干;然后置于管式炉中200℃煅烧2 h,得到NiO。
进行无酶葡萄糖传感性能测试,其灵敏度为918μA·cm-2·Mm-1,检测限(S/N=3) 为1.6μM,线性范围为2μM ~ 500μM。
实施例6
有机金属盐——乙酰丙酮铁(Fe(acac)3)的制备:称取0.36 g NaOH溶于10 mL蒸馏水,加入0.8106 g NiCl2·6H2O,充分搅拌均匀后,加入12 mL乙酰丙酮和10 mL 甲醇,磁力搅拌30 min,冰浴中静置15 min,然后用蒸馏水洗涤3次、60℃烘干,既得。
Fe3O4的制备:称取226 mg乙酰丙酮铁,加入10 mL环己烷,搅拌均匀,然后超声10min;随后将其沿着器壁逐滴加入到16 mL 50 mmol/L NaOH溶液中,静置反应4 h得到沉淀产物Fe(OH)3;先后用无水乙醇、蒸馏水各洗涤三次,60℃烘干;然后置于管式炉中200℃煅烧2 h,得到Fe3O4
进行无酶葡萄糖传感性能测试,其灵敏度为86μA·cm-2·Mm-1,检测限(S/N=3)为2μM,线性范围为4μM ~ 100μM。

Claims (8)

1.一种可控过渡金属氧化物的制备方法,是将难溶于水的过渡金属有机盐溶于与水不互溶且密度小于水的有机溶剂,随后将其沿着器壁逐滴加入到碱性水溶液中形成两相体系,静置使有机相中的过渡金属有机盐与水相中的OH-在两相界面发生化学反应生成中间产物;然后将中间产物进行煅烧使其转化为过渡金属氧化物。
2.如权利要求1所述可控过渡金属氧化物的制备方法,其特征在于:所述过渡金属有机盐为Cu(acac)2、Ni(acac)2或Fe(acac)3
3.如权利要求1所述可控过渡金属氧化物的制备方法,其特征在于:所述碱性水溶液为NaOH、CH3COONa或NaHCO3的水溶液。
4.如权利要求1所述可控过渡金属氧化物的制备方法,其特征在于:所述有机溶剂为环己烷、苯或氯仿。
5.如权利要求1所述可控过渡金属氧化物的制备方法,其特征在于:所述过渡金属有机盐溶于有机溶剂后的浓度为7 ~ 120mmol/L。
6.如权利要求1所述可控过渡金属氧化物的制备方法,其特征在于:所述碱性水溶液的浓度为8 ~ 150mmol/L。
7.如权利要求1所述可控过渡金属氧化物的制备方法,其特征在于:所述两相界面反应的时间为2~ 8 h。
8.如权利要求1所述可控过渡金属氧化物的制备方法,其特征在于:所述中间产物的煅烧温度为150 ~ 250℃,煅烧时间为1 ~ 2 h。
CN201610158533.1A 2016-03-18 2016-03-18 一种可控过渡金属氧化物的制备方法 Pending CN105836786A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610158533.1A CN105836786A (zh) 2016-03-18 2016-03-18 一种可控过渡金属氧化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610158533.1A CN105836786A (zh) 2016-03-18 2016-03-18 一种可控过渡金属氧化物的制备方法

Publications (1)

Publication Number Publication Date
CN105836786A true CN105836786A (zh) 2016-08-10

Family

ID=56588431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610158533.1A Pending CN105836786A (zh) 2016-03-18 2016-03-18 一种可控过渡金属氧化物的制备方法

Country Status (1)

Country Link
CN (1) CN105836786A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244922A (zh) * 2021-04-01 2021-08-13 西安理工大学 一种非酶葡萄糖传感器催化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037228A (zh) * 2007-02-25 2007-09-19 华中师范大学 两相溶剂软界面法制备分等级纳米结构过渡金属氧化物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037228A (zh) * 2007-02-25 2007-09-19 华中师范大学 两相溶剂软界面法制备分等级纳米结构过渡金属氧化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUN-LIANG CHENG ET AL.: "Liquid–liquid interface-assisted solvothermal synthesis of durian-like a-Fe2O3 hollow spheres constructed by nano-polyhedrons", 《CRYSTENGCOMM》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244922A (zh) * 2021-04-01 2021-08-13 西安理工大学 一种非酶葡萄糖传感器催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Yin et al. Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: toward an advanced electrocatalyst for alcohol oxidation
Gupta et al. Highly efficient electro-reduction of CO 2 to formic acid by nano-copper
Ye et al. Highly porous nickel@ carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium
Zhang et al. Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers
Lu et al. CuO/Cu 2 O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity
CN101792137B (zh) 一种新型高性能复合纳米材料修饰电极的制备方法
Chen et al. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts
Lu et al. Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles
CN106952743A (zh) 一种四氧化三钴/碳@二硫化钼核壳材料的制备及其应用
Zhang et al. Redox-active microsized metal-organic framework for efficient nonenzymatic H2O2 sensing
Wei et al. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose
Daemi et al. An efficient platform for the electrooxidation of formaldehyde based on amorphous NiWO4 nanoparticles modified electrode for fuel cells
CN104118904A (zh) 三维空心多级结构氧化锡气敏材料的制备方法及其应用
Tseng et al. Sonochemical synthesis and fabrication of perovskite type calcium titanate interfacial nanostructure supported on graphene oxide sheets as a highly efficient electrocatalyst for electrochemical detection of chemotherapeutic drug
Kang et al. Porous Co 3 O 4 nanoplates as an efficient electromaterial for non-enzymatic glucose sensing
CN103949271B (zh) 一种钴锰水滑石负载纳米金催化剂及其制备方法
Wu et al. Cu 2 O/CuO@ rGO heterostructure derived from metal–organic-frameworks as an advanced electrocatalyst for non-enzymatic electrochemical H 2 O 2 sensor
Wang et al. In situ growth of Ni-B nanoparticles on Ni foam: An efficient 3D integrated anode for enzyme-free glucose detection
Li et al. A bimetallic synergistic effect on the atomic scale of defect-enriched NiV-layered double hydroxide nanosheets for electrochemical phenol hydroxylation
Wang et al. T-and T′-type layered perovskite Ln2CuO4 nanocrystals for enhanced sensing detection of hydrogen peroxide
Zhe et al. Bimetallic-MOF-derived crystalline–amorphous interfacial sites for highly efficient nitrite sensing
Danial et al. Effect of different synthesis routes on the electrocatalytic properties of NiOX nanoparticles
Li et al. In-situ electronic structure redistribution tuning of single-atom Mn/g-C3N4 catalyst to trap atomic-scale lead (II) for highly stable and accurate electroanalysis
Tan et al. Surface adsorption guided design of semicrystalline nickel-iron hydroxide for highly-sensitive glucose sensing
CN103212439B (zh) 一种聚合物复合材料、其制备方法及化学修饰电极

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160810

RJ01 Rejection of invention patent application after publication