CN105834589A - 利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法 - Google Patents

利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法 Download PDF

Info

Publication number
CN105834589A
CN105834589A CN201610430067.8A CN201610430067A CN105834589A CN 105834589 A CN105834589 A CN 105834589A CN 201610430067 A CN201610430067 A CN 201610430067A CN 105834589 A CN105834589 A CN 105834589A
Authority
CN
China
Prior art keywords
femtosecond laser
silicon crystal
silicon
chevilled silk
target platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610430067.8A
Other languages
English (en)
Inventor
孙洪波
徐淮良
詹学鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610430067.8A priority Critical patent/CN105834589A/zh
Publication of CN105834589A publication Critical patent/CN105834589A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Abstract

本发明涉及一种利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法,首先,利用长焦距(1000mm)的平凸透镜使飞秒激光脉冲在空气中形成光丝,再利用水平方向的一维电控精密位移平台和竖直方向的一维手动精密位移平台的结合,使飞秒激光光丝能够在硅晶体表面进行扫描。在空气中,飞秒激光在硅晶体表面进行远程微结构的制备,微结构的存在能够降低其反射率,提升其在可见光波段的光吸收率。这种远程加工微结构的技术将在对硅基太阳能电池等光电器件的坏损微结构的修复领域,具有独特的优势和良好应用前景。

Description

利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法
技术领域
本发明属于飞秒激光远程加工微结构技术领域,具体涉及一种利用飞秒激光光丝在硅晶体表面进行远程微加工以提升其可见光波段的吸收率的装置及方法。
背景技术
在光伏电池产业领域中,半导体材料的硅太阳电池一直处于主导地位。由于硅晶体具有良好的光电转换性能,使得包括单晶硅和多晶硅的晶体硅电池在市场中占据着绝大部分的份额。1999年,美国哈佛大学的Eric Mazur教授首次发现了黑色的硅晶体,这种黑硅材料相比于传统的蓝色硅太阳能电池具有更高的能量转换效率,其在250nm到2500nm的范围内都具有极高的吸收率,可高达90%以上。传统的由激光辅助的制备黑硅材料的方法是:将硅晶体放置于洁净的真空腔内,并向其中通入一定量的SF6、Cl2等气体,并利用具有超短脉冲的飞秒激光照射在硅片表面,在具有极高峰值功率的飞秒激光脉冲的作用下,SF6气体被电离出F-离子,将不断的刻蚀硅晶体表面产生易挥发的基团,导致硅片表面呈现出尖峰状形貌结构,使得表面的反射率极低,肉眼看上去完全呈黑色。
1995年,美国密歇根大学的Braun教授,首次发现了具有超短脉冲时间和超高脉冲能量的飞秒激光在透明介质如空气中传播时,当激光的功率满足一定阈值要求后会产生一种独特的非线性光学现象,产生一条明亮的、稳定的、具有一定长度的光通道,即被称作飞秒激光光丝。飞秒激光光丝的产生需要满足几个特定的条件,具体为飞秒激光在空气中进行传输的距离远远大于光束瑞利长度;其具有较高脉冲能量(高于一定阈值)。此时,由于光的非线性传播的自聚焦效应和电离空气后产生的等离子体散焦效应的动态平衡,使得飞秒激光在空中形成具有一定长度和很高强度的等离子体激光通道。另外飞秒激光光丝是一种远程的、稳定的、自引导的现象,光丝中的激光强度可达到1013W/cm2,可以诱导分解光丝通道内的所有物质,因此,其在大气环境污染物质检测、光频率转换、激光引雷等领域具有广泛的应用前景。
传统的利用飞秒激光制备黑硅材料的方法,一般是用短焦距的会聚透镜将飞秒激光聚焦到真空腔内的硅晶体表面。这种近场的方法,不适宜于在硅材料表面进行远程的微构造的制备,同时只有在会聚透镜焦点位置所处的平面内才能进行有效的微构造的制备。
发明内容
利用飞秒激光在透明介质如水、空气中远距离传输形成光丝的现象,可以在硅晶体表面实现微结构高速的远程操控和加工,因而能够降低硅片表面的反射率,增加其对光的吸收率,使之满足于光电器件对于光电转换效率的要求。而这种基于飞秒激光光丝对硅晶体的远程加工和控制的技术,尤其是在远程微构造的加工以及远程微构造的修复时具有潜在的应用前景和不可替代的优势。
为了实现上述目的,本发明提供了一种利用飞秒激光光丝在硅晶体材料表面远程制备微结构的装置,由飞秒激光放大器1、光闸2、半波片3、偏振镜片4、平凸透镜5、硅晶体6及夹具靶台7组成;飞秒激光放大器1出光口的后面,依次竖直放置光闸2、半波片3、偏振镜片4、平凸透镜5,夹具靶台7放置于平凸透镜5的焦距位置范围内,硅晶体6放置在夹具靶台7上,夹具靶台7上配有水平和竖直两个方向的精密位移平台,水平方向上采用电控的步进电机精密位移平台,竖直方向采用手动精密位移平台。可通过旋转半波片的角度来改变入射到偏振镜片上的飞秒激光在偏振方向上的能量分量,以达到连续改变飞秒激光的单脉冲能量的效果。
进一步地,所述的飞秒激光放大器1为带有振荡器的飞秒激光放大器,其工作波长为800nm,脉冲宽度为35fs~60fs,重复频率为10Hz~1000Hz,飞秒激光的单脉冲脉冲能量为0.5mJ/cm2~3.5mJ/cm2
进一步地,所述的平凸透镜5的焦距为500mm~2000mm,可以使飞秒激光在空气中形成光丝。
进一步地,所述的偏振镜片4为布鲁斯特镜片,可以在满足特定角度入射后,所使用的反射光束均为线偏振光。
进一步地,所述的步进电机精密平台的水平方向运动的速度为1mm/s~40mm/s、扫描距离为1mm~500mm。
进一步地,所述的手动精密位移平台的调节距离为0.05mm~25mm。
一种利用飞秒激光光丝在硅晶体材料表面远程制备微结构的方法,其具体步骤如下:
(1)、用玻璃刀将硅晶体切割成正方形硅片,分别经过丙酮、乙醇和去离子水擦拭表面,然后将其放置在夹具靶台上;
(2)、将飞秒激光放大器的重复频率调节为100Hz-1000Hz,通过旋转半波片的方向,并使用功率计测试激光功率,调整飞秒激光的单脉冲脉冲能量为0.5mJ/cm2~3.5mJ/cm2
(3)、打开光闸,使飞秒激光通过平凸透镜形成光丝,然后将放置硅片的夹具靶台调整到适当的位置,即光丝的位置处于硅片的边缘,等待扫描,夹具靶台的水平方向上采用电控的步进电机精密位移平台以实现飞秒激光光丝对硅片的水平方向的扫描,在水平方向扫描完成后,竖直方向通过调控手动精密位移平台实现对夹具靶台的垂直方向距离的调节,然后重复以上水平方向的扫描及竖直方向的移动,从而完成对硅片表面的扫描,从而实现微结构的制备。
进一步地,步骤(1)所述的正方形硅片的尺寸为100mm2~400mm2
进一步地,步骤(1)所述的光丝在硅片一侧的边缘,距离硅片1~3mm。
进一步地,通过改变水平方向的电控位移平台的移动速度,可以调节光丝在硅片表面某具体位置的等效作用时间,相应的可以改变光丝扫描后在硅片表面所形成的微结构的深度;改变每次水平扫描后垂直方向的手动位移平台的移动的距离,可以调节每条光丝扫描区域的间隔,以实现从完全重叠到其边缘相距一定距离的转变。
与现有技术相比,本发明具有以下优点:
本发明的装置及方法适用于远程的微构造的制备,并且适用于在非平面的样品微构造的加工,可以快速大范围的在样品表面进行加工扫描。
附图说明
图1为本发明的利用飞秒激光光丝在硅片表面远程制备微结构的装置结构示意图;
图中:飞秒激光放大器1、光闸2、半波片3、偏振镜片4、平凸透镜5、硅晶体6、夹具靶台7;
图2为本发明实施例1制备出的单晶硅的平面扫描电子显微镜图;
其中,a为扫描速度5mm/s,每行的扫描间隔为0.10mm的样品的平面扫描电镜图,b为该样品局部放大的平面扫描电镜图;
由图可以看出,该样品微结构的尺寸范围是3~12μm;
图3为本发明实施例1制备出单晶硅的45度倾斜的扫描电子显微镜图;
其中,a为扫描速度5mm/s,每行的扫描间隔为0.10mm的样品的倾斜的扫描电镜图,b为该样品局部放大的倾斜扫描电镜图;
由图可以看出,飞秒激光光丝表面制备出微构造具有的深度为10μm。
图4为本发明实施例1制备的单晶硅与未经处理的单晶硅在可见光波段的吸收率的对比图;
由图可以看出,未经处理的单晶硅片的吸收率为70%左右,而实施例1制备的硅片的吸收率增强了1.5倍,最高可达95%。
具体实施方式
下面结合附图和具体实施为例来对本发明进行详细说明。
本发明的具体实施步骤如下:
本发明提供了一种利用飞秒激光光丝在硅晶体材料表面远程制备微构造的装置,由飞秒激光放大器1、光闸2、半波片3、偏振镜片4、平凸透镜5、硅晶体6及夹具靶台7组成,飞秒激光放大器的光路中依次竖直放置光闸2、半波片3、偏振镜片4、平凸透镜5,夹具靶台7放置于飞秒激光放大器1通过平凸透镜5形成光丝的范围内,硅晶体6放置在夹具靶台7上,夹具靶台7上配有水平和竖直两个方向的精密位移平台,水平方向上采用电控的步进电机精密位移平台,竖直方向采用手动精密位移平台。可通过旋转半波片的角度来改变入射到偏振镜片上的飞秒激光在偏振方向上的能量分量,以达到连续改变飞秒激光的单脉冲能量的效果。
首先,将无掺杂的(100)晶向的单晶硅片,用玻璃刀切割成为400mm2大小的正方形,将其分别用丙酮、乙醇、去离子水擦拭表面,然后将其放置在配有水平和竖直两个精密位移平台的夹具靶台上,水平方向上使用北京北光世纪公司的电控步进电机一维位移平台(型号为MTS304、分辨率为0.00032mm、工作波长为800nm,脉冲宽度为35fs~60fs、最大速度40mm/s),以及该公司提供的配套的步进电机控制器(型号为SC100),竖直方向使用北京北光世纪公司的手动精密位移平台(型号为PTS104M、分辨率为0.002mm、调节距离为0.05mm~25mm)。
然后,使用Spectra-Physics公司的波长为800nm的带有振荡器的飞秒激光放大器,并且设置其工作的重复频率为500Hz,在光路中放置控制激光是否能够通过的光闸,接下来放置半波片,布鲁斯特镜片(均为Thorlabs公司产品),以及焦距为1000mm的带有增透膜的平凸透镜作为成丝透镜(长春金龙光电公司)。
其次,使用功率计(Spectral Physics)测试激光功率,通过不断旋转半波片,在测量到的激光功率为1W时停止,即此时激光的单脉冲能量为2.0mJ/cm2。移走功率计,打开光闸使激光通过所设计的光路,即可在成丝透镜的后方得到飞秒激光光丝。将放置由硅片样品的夹具靶台调整到适当的位置,光丝紧邻硅片并在其外边缘,处于硅片的左外侧并距离硅片边缘2mm,等待扫描。
接着,水平方向上在配套的步进电机控制器中设置夹具靶台的运动的速度和距离,其中运动速度分别为5mm/s,扫描距离为25mm,电控步进电机位移平台即可带动夹具靶台在水平方向上从右向左进行移动,从而使得飞秒激光光丝在硅片表面上进行一次一维扫描,留下一条黑色印记,此时光丝超出硅片的右外侧,距离硅片边缘约3mm。此时,通过调节手动精密位移平台,使得夹具靶台的高度在竖直的方向上升0.10mm,然后再设置步进电机控制器将靶台在水平方向上从左向右移动,完成飞秒激光光丝对硅片的第二次扫描。以后不断重复以上过程,即可实现飞秒激光光丝对整个切割好的硅片的光栅扫描,在其表面形成具有一定周期性的微结构。此时,样品的扫描电镜显微镜(JEOL JSM-7500F)的水平表征和45度倾斜表征,分别如图2、图3所示。此外,通过增加切割硅片的尺寸和相应调节步进电机控制所设置的水平方向上的运行距离,即可制得具有周期性微构造的硅片。
最后,通过利用配有积分球的UV3600分光光度计,分别测量制备出硅片和未经处理的硅片在可见光波段的光反射率和透射率,由于对于同一个样品的反射率、透射率和吸收率的和为常数1,因此可以得到经过加工的硅片和未经处理的硅片在可见光波段的光吸收率如图4所示,从图中可以看出,未经处理的单晶硅片的吸收率为70%左右,而通过本发明制备的硅片的吸收率增强了1.5倍,最高可达95%。

Claims (9)

1.利用飞秒激光光丝在硅晶体表面远程制备微结构的装置,其特征在于,由飞秒激光放大器(1)、光闸(2)、半波片(3)、偏振镜片(4)、平凸透镜(5)、硅晶体(6)及夹具靶台(7)组成,飞秒激光放大器(1)的光路中依次竖直放置光闸(2)、半波片(3)、偏振镜片(4)、平凸透镜(5),夹具靶台(7)放置于平凸透镜(5)的焦距位置范围内,硅晶体(6)放置在夹具靶台(7)上,夹具靶台(7)上配有水平和竖直两个方向的精密位移平台,水平方向上采用电控的步进电机精密位移平台,竖直方向采用手动精密位移平台。
2.如权利要求1所述的利用飞秒激光光丝在硅晶体表面远程制备微结构的装置,其特征在于,所述的飞秒激光放大器(1)为带有振荡器的飞秒激光放大器,其工作波长为800nm,脉冲宽度为35fs~60fs,重复频率为10Hz~1000Hz,飞秒激光的单脉冲脉冲能量为0.5mJ/cm2~3.5mJ/cm2
3.如权利要求1所述的利用飞秒激光光丝在硅晶体表面远程制备微结构的装置,其特征在于,所述的平凸透镜(5)的焦距为500mm~2000mm。
4.如权利要求1所述的利用飞秒激光光丝在硅晶体表面远程制备微结构的装置,其特征在于,所述的偏振镜片(4)为布鲁斯特镜片。
5.如权利要求1所述的利用飞秒激光光丝在硅晶体表面远程制备微结构的装置,其特征在于,所述的步进电机精密平台的水平方向运动的速度为1mm/s~40mm/s、扫描距离为1mm~500mm。
6.如权利要求1所述的利用飞秒激光光丝在硅晶体表面远程制备微结构的装置,其特征在于,所述的手动精密位移平台的调节距离为0.05mm~25mm。
7.利用飞秒激光光丝在硅晶体表面远程制备微结构的方法,其特征在于,其具体步骤如下:
(1)、用玻璃刀将硅晶体切割成正方形硅片,分别经过丙酮、乙醇和去离子水擦拭表面,然后将其放置在夹具靶台上;
(2)、将飞秒激光放大器的重复频率调节为100Hz-1000Hz,通过旋转半波片的方向,并使用功率计测试激光功率,调整飞秒激光的单脉冲脉冲能量为0.5mJ/cm2~3.5mJ/cm2
(3)、打开光闸,使飞秒激光通过平凸透镜形成光丝,然后将放置硅片的夹具靶台调整到适当的位置,即光丝的位置处于硅片的边缘,等待扫描,夹具靶台的水平方向上采用电控的步进电机精密位移平台以实现飞秒激光光丝对硅片的水平方向的扫描,在水平方向扫描完成后,竖直方向通过调控手动精密位移平台实现对夹具靶台的垂直方向距离的调节,然后重复以上水平方向的扫描及竖直方向的移动,从而完成对硅片表面的扫描,从而实现微结构的制备。
8.如权利要求7所述的利用飞秒激光光丝在硅晶体材料表面远程制备微结构的方法,其特征在于:步骤(1)所述的正方形硅片的尺寸为100mm2~400mm2
9.如权利要求7所述的利用飞秒激光光丝在硅晶体材料表面远程制备微结构的方法,其特征在于:步骤(3)所述的光丝在硅片一侧的边缘,距离硅片1~3mm。
CN201610430067.8A 2016-06-16 2016-06-16 利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法 Pending CN105834589A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610430067.8A CN105834589A (zh) 2016-06-16 2016-06-16 利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610430067.8A CN105834589A (zh) 2016-06-16 2016-06-16 利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法

Publications (1)

Publication Number Publication Date
CN105834589A true CN105834589A (zh) 2016-08-10

Family

ID=56576942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610430067.8A Pending CN105834589A (zh) 2016-06-16 2016-06-16 利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法

Country Status (1)

Country Link
CN (1) CN105834589A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030378A (zh) * 2017-05-18 2017-08-11 长春理工大学 一种飞秒激光处理金属表面优化微波段吸收性能的方法
CN107824963A (zh) * 2017-12-06 2018-03-23 温州大学 提高高反射金属表面激光吸收率的方法
CN107941662A (zh) * 2017-11-10 2018-04-20 吉林大学 一种利用强场激光检测火焰内颗粒物分布的装置与方法
CN107931866A (zh) * 2017-11-10 2018-04-20 吉林大学 利用飞秒激光在陶瓷球表面进行图案加工的装置及方法
CN109483058A (zh) * 2018-12-10 2019-03-19 吉林大学 一种在不规则金属曲面上快速大面积远程制备超疏水抗反射结构的方法
CN109759714A (zh) * 2019-01-17 2019-05-17 南开大学 一种基于飞秒激光成丝的大幅面打标系统及打标范围标定方法
CN109894747A (zh) * 2019-03-27 2019-06-18 上海理工大学 飞秒光丝背向冲击波用于表面超精细加工装置及方法
CN109962013A (zh) * 2017-12-22 2019-07-02 吉林大学 一种解码大脑活动的针状高密度电极阵列的制备方法
CN112404705A (zh) * 2020-10-30 2021-02-26 山东师范大学 一种飞秒激光微纳加工装置及其使用方法与应用
US20230204969A1 (en) * 2020-02-07 2023-06-29 Jilin University Method and Device Using Femtosecond Laser to Prepare Nano-Precision Structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093127A1 (ja) * 2005-03-01 2006-09-08 Kyoto University ナノ空孔周期配列体の作製方法及びその装置
CN1889311A (zh) * 2006-07-14 2007-01-03 中国科学院上海光学精密机械研究所 高能量飞秒激光脉冲外腔压缩装置
CN101291041A (zh) * 2008-06-04 2008-10-22 中国科学院上海光学精密机械研究所 飞秒激光脉冲空气中快速成丝的方法
CN103326478A (zh) * 2013-06-27 2013-09-25 北京空间机电研究所 一种基于激光诱导等离子体的空间太阳能无线传输方法
CN103433618A (zh) * 2013-07-25 2013-12-11 长春理工大学 一种控制金属表面微纳米结构尺寸和分布的方法
CN104690430A (zh) * 2013-12-03 2015-06-10 罗芬-新纳技术公司 通过突发超快激光脉冲的成丝的激光处理硅的方法和装置
CN204934887U (zh) * 2015-07-23 2016-01-06 深圳英诺激光科技有限公司 一种激光成丝加工微孔的装置
KR20160010041A (ko) * 2014-07-18 2016-01-27 전상욱 레이저 회절빔의 필라멘테이션을 이용한 취성 소재 가공 방법 및 이를 위한 레이저 가공 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093127A1 (ja) * 2005-03-01 2006-09-08 Kyoto University ナノ空孔周期配列体の作製方法及びその装置
CN1889311A (zh) * 2006-07-14 2007-01-03 中国科学院上海光学精密机械研究所 高能量飞秒激光脉冲外腔压缩装置
CN101291041A (zh) * 2008-06-04 2008-10-22 中国科学院上海光学精密机械研究所 飞秒激光脉冲空气中快速成丝的方法
CN103326478A (zh) * 2013-06-27 2013-09-25 北京空间机电研究所 一种基于激光诱导等离子体的空间太阳能无线传输方法
CN103433618A (zh) * 2013-07-25 2013-12-11 长春理工大学 一种控制金属表面微纳米结构尺寸和分布的方法
CN104690430A (zh) * 2013-12-03 2015-06-10 罗芬-新纳技术公司 通过突发超快激光脉冲的成丝的激光处理硅的方法和装置
KR20160010041A (ko) * 2014-07-18 2016-01-27 전상욱 레이저 회절빔의 필라멘테이션을 이용한 취성 소재 가공 방법 및 이를 위한 레이저 가공 장치
CN204934887U (zh) * 2015-07-23 2016-01-06 深圳英诺激光科技有限公司 一种激光成丝加工微孔的装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030378A (zh) * 2017-05-18 2017-08-11 长春理工大学 一种飞秒激光处理金属表面优化微波段吸收性能的方法
CN107941662A (zh) * 2017-11-10 2018-04-20 吉林大学 一种利用强场激光检测火焰内颗粒物分布的装置与方法
CN107931866A (zh) * 2017-11-10 2018-04-20 吉林大学 利用飞秒激光在陶瓷球表面进行图案加工的装置及方法
CN107931866B (zh) * 2017-11-10 2019-10-29 吉林大学 利用飞秒激光在陶瓷球表面进行图案加工的装置及方法
CN107824963A (zh) * 2017-12-06 2018-03-23 温州大学 提高高反射金属表面激光吸收率的方法
CN109962013A (zh) * 2017-12-22 2019-07-02 吉林大学 一种解码大脑活动的针状高密度电极阵列的制备方法
CN109962013B (zh) * 2017-12-22 2020-12-04 吉林大学 一种解码大脑活动的针状高密度电极阵列的制备方法
CN109483058B (zh) * 2018-12-10 2020-09-29 吉林大学 一种在不规则金属曲面上制备超疏水抗反射结构的方法
CN109483058A (zh) * 2018-12-10 2019-03-19 吉林大学 一种在不规则金属曲面上快速大面积远程制备超疏水抗反射结构的方法
CN109759714A (zh) * 2019-01-17 2019-05-17 南开大学 一种基于飞秒激光成丝的大幅面打标系统及打标范围标定方法
CN109894747A (zh) * 2019-03-27 2019-06-18 上海理工大学 飞秒光丝背向冲击波用于表面超精细加工装置及方法
US20230204969A1 (en) * 2020-02-07 2023-06-29 Jilin University Method and Device Using Femtosecond Laser to Prepare Nano-Precision Structure
US11914165B2 (en) * 2020-02-07 2024-02-27 Jilin University Method and device using femtosecond laser to prepare nano-precision structure
CN112404705A (zh) * 2020-10-30 2021-02-26 山东师范大学 一种飞秒激光微纳加工装置及其使用方法与应用

Similar Documents

Publication Publication Date Title
CN105834589A (zh) 利用飞秒激光光丝在硅晶体表面远程制备微结构的装置及方法
CN104625415B (zh) 飞秒激光制备仿生超疏水微纳表面的方法及装置
CN102672355B (zh) Led衬底的划片方法
CN103658993B (zh) 基于电子动态调控的晶硅表面飞秒激光选择性烧蚀方法
CN102500923B (zh) 基于飞秒激光在硅表面制备功能微纳米材料的制备装置和方法
CN103567630B (zh) 贴合基板的加工方法及加工装置
CN106216833B (zh) 基于电子动态调控激光加工半导体双级表面结构的方法
CN104392914B (zh) 双波长激光退火装置及其方法
CN107442942A (zh) 激光划线扫描材料制备大面积周期性点阵式表面织构的方法
CN102581484B (zh) 一种利用超短脉冲激光制备硅基表面陷光结构的方法
CN102528276A (zh) 一种提高tco膜光透射率的激光辅助表面处理方法
CN108620728A (zh) 半导体硅表面大面积规则分布纳米孔阵列结构制备方法
CN109277692B (zh) 聚二甲基硅氧烷表面微纳结构飞秒激光双脉冲调控方法
CN204189772U (zh) 双波长激光退火装置
CN206105146U (zh) 一种激光精密加工光路
CN102909477A (zh) 利用超快激光在靶材表面制备大面积微光栅的方法及装置
Wang et al. Direct fabrication of cone array microstructure on monocrystalline silicon surface by femtosecond laser texturing
CN109483058A (zh) 一种在不规则金属曲面上快速大面积远程制备超疏水抗反射结构的方法
CN102950382B (zh) 用于刻蚀电控衍射光学器件的激光直写刻蚀系统及其方法
CN102689092A (zh) 一种使用双激光光束的太阳能晶圆精密加工方法及装置
CN103862179A (zh) 一种陶瓷表面精细刻线结构激光加工方法
CN104900487A (zh) 一种点阵扫描制备黑硅的方法和装置
CN101819927B (zh) 一种微纳结构硅材料的制备系统与制备方法
US20110253685A1 (en) Laser processing system with variable beam spot size
CN106129183B (zh) 一种提高砷化镓太阳能电池光电转换效率方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160810

RJ01 Rejection of invention patent application after publication