CN105826519B - A kind of adhesive-free porous silicon-base electrode and its application - Google Patents
A kind of adhesive-free porous silicon-base electrode and its application Download PDFInfo
- Publication number
- CN105826519B CN105826519B CN201610266114.XA CN201610266114A CN105826519B CN 105826519 B CN105826519 B CN 105826519B CN 201610266114 A CN201610266114 A CN 201610266114A CN 105826519 B CN105826519 B CN 105826519B
- Authority
- CN
- China
- Prior art keywords
- porous silicon
- electrode
- adhesive
- base electrode
- free porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 44
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000011889 copper foil Substances 0.000 claims abstract description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 22
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000011248 coating agent Substances 0.000 claims abstract description 15
- 238000000576 coating method Methods 0.000 claims abstract description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000004070 electrodeposition Methods 0.000 claims abstract description 11
- -1 alkyl silicate Chemical compound 0.000 claims abstract description 10
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 239000002243 precursor Substances 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 5
- 239000010439 graphite Substances 0.000 claims abstract description 5
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims abstract description 5
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 21
- 238000001035 drying Methods 0.000 claims description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 11
- 230000008021 deposition Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000004062 sedimentation Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 7
- 238000001291 vacuum drying Methods 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical group [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 3
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 239000004323 potassium nitrate Substances 0.000 claims description 3
- 235000010333 potassium nitrate Nutrition 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 239000004317 sodium nitrate Substances 0.000 claims description 3
- 235000010344 sodium nitrate Nutrition 0.000 claims description 3
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 claims description 3
- 229910001488 sodium perchlorate Inorganic materials 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 11
- 230000009467 reduction Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 239000008367 deionised water Substances 0.000 description 16
- 229910021641 deionized water Inorganic materials 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 16
- 239000010703 silicon Substances 0.000 description 16
- 238000004140 cleaning Methods 0.000 description 14
- 229910052573 porcelain Inorganic materials 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 244000137852 Petrea volubilis Species 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910001290 LiPF6 Inorganic materials 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 229910021607 Silver chloride Inorganic materials 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 125000005909 ethyl alcohol group Chemical group 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002103 nanocoating Substances 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 229910021426 porous silicon Inorganic materials 0.000 description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000010405 anode material Substances 0.000 description 4
- 230000005518 electrochemistry Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 3
- 150000004702 methyl esters Chemical class 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FXSGDOZPBLGOIN-UHFFFAOYSA-N trihydroxy(methoxy)silane Chemical class CO[Si](O)(O)O FXSGDOZPBLGOIN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0452—Electrochemical coating; Electrochemical impregnation from solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
A kind of adhesive-free porous silicon-base electrode and its application, the electrode are prepared by method comprising the following steps:(1) absolute ethyl alcohol, nitrate or perchlorate aqueous solution and alkyl silicate are mixed, then adjusts pH to 2.0~6.0, stirring obtains precursor solution;(2) copper foil or nickel foil matrix are carried out removing oxide on surface and oil removal treatment;(3) copper foil after processing or nickel foil matrix are placed in the slot electrode equipped with precursor solution as working electrode, using platinized platinum or graphite as to electrode, carry out electro-deposition, micro-nano-silica coating is obtained in copper foil or nickel foil matrix surface;(4) copper foil or nickel foil matrix covered with micro-nano-silica coating obtain adhesive-free porous silicon-base electrode through magnesiothermic reduction.The adhesive-free porous silicon-base electrode can be used as negative electrode of lithium ion battery application.
Description
(1) technical field
A kind of application the present invention relates to adhesive-free porous silicon-base electrode and its as negative electrode of lithium ion battery.
(2) background technology
Informationized society development is maked rapid progress, and various electronic equipments are information editing is handled, transmission such as uses at the side
Face plays very important effect.The lithium ion battery a kind of Portable secondary higher as a kind of stable, the electric density of performance
Battery, is widely used in fields such as electronic equipment, instrument and meter, communications and transportation.
With the development of electrode material technology, lithium ion battery achieves considerable in storing up electricity capacity and cycle performance etc.
Progress, the graphite cathode material generally used now is already close to theoretical specific capacity (372mAh/g).But use at present
Negative material is also difficult to meet the needs of people are to lithium ion electronics storing up electricity capacity, researches and develops the negative material gesture of higher storing up electricity capacity
It must go.Wherein silica-base material due to highest theoretical specific capacity (4200mAh/g) and suitable removal lithium embedded voltage (<
0.5V vs Li/Li+), become most promising lithium ion battery negative material.Using the silicon-based anode material of height ratio capacity
Material substitutes traditional graphite cathode material, and mitigates negative material load capacity and improve battery capacity density and power density
Effective ways.But silicon substrate lithium ion battery negative material in charge and discharge process there is serious bulk effect (up to
300%) the problems such as, battery high rate performance is poor.For this, it is often necessary to which silicon based anode material is subjected to surface modification, more coherents
It is miscellaneous to wait processing.Porous silicon-base material by surface modification can not only reduce volume of the lithium ion battery in charge and discharge process
Change, and since with special porous surface pattern, the charge transfer and ion between electrode and electrolyte can be accelerated
Insertion and desorption rate in electrode surface, improve battery energy density and high rate performance.
At present, the preparation method of silicon based anode material mainly has:Chemical corrosion method, electrochemistry anodic oxidation, titanium dioxide
The methods of silicon magnesiothermic reduction.
Chemical corrosion method:Chemical corrosion method is to prepare the simplest method of porous silicon-base material.Clean silicon chip is put into
In the plastics reaction unit for filling HF and nitric acid hybrid corrosion liquid, by the volume fraction and etching time that control HF and nitric acid
To obtain the porous silicon-base material of feature of interest and structure.
Electrochemistry anodic oxidation:Pool technology is generally electrolysed to prepare porous silicon-base material using double flute at present.The technology
On the fixed frame among silicon substrate insertion electrolytic cell, electrolytic cell is separated into two mutually independent " half groove " by silicon chip, two
The other parts mutually insulated of " half groove ", is only realized by silicon substrate and conducted, two electrodes are located at the two " half grooves " respectively
In.After applying voltage to electrode, due to the effect of electric field, electric current flows to another " partly by silicon substrate from one " half groove "
Groove ", the hole in substrate will flow to the silicon face towards cathode one side, so that electrochemistry occurs is rotten for the silicon substrate in the face
Erosion, and another side then remains unchanged.Double flute electrolytic cell is using volume ratio as 1:1 HF and the mixed solution of ethanol are electrolyte, are led to
Control current density size and etching time are crossed to control the structure of porous silicon surface and pattern, it is porous to finally obtain purpose product
Silicon based anode material.
Silica magnesiothermic reduction:General flow is using nano silicon dioxide as raw material, and silica dioxide granule is added to
Containing coating after being stirred evenly in the binder solutions such as silica sol liquid, polyethylene glycol, acrylamide, sodium carboxymethylcellulose to silicon
Piece surface, after vacuum dried curing, the silicon chip for being coated with silica is put into porcelain boat, according to molar ratio SiO2:Mg=1:2
Magnesium powder is added, is heated to 650 DEG C of insulation 2h, subsequent natural cooling.Product obtains after dilute hydrochloric acid, deionized water cleaning successively
To porous silica material as ion cathode material lithium.
Although above method can obtain the set goal product, still there are many deficiencies in an experiment
Place, such as:Chemical corrosion method is poor come the porous silicon uniformity prepared, finite thickness, and reaction process is difficult to control;Electrochemistry
Porous silicon prepared by anodizing is easy to cause surface checking;Directly prepared by nano grade silica particles by magnesiothermic reduction
Porous Silicon Electrode due to the use of adhesive penetrate into SiO 2 powder between hole among, cause obtain porous silica material
Porosity is relatively low.And a kind of adhesive-free porous silicon-base electrode synthetic method safety and environmental protection according to the present invention, to synthesis
Material morphology and structure-controllable and yield rate is higher.
(3) content of the invention
The present invention first purpose be to provide a kind of adhesive-free porous silicon-base electrode, which has good multiplying power
Performance and cyclical stability and manufacturing cost is low, environmentally friendly.
Second object of the present invention is to provide the adhesive-free porous silicon-base electrode as negative electrode of lithium ion battery
Application.
The present invention is achieved by following technical solution:
A kind of adhesive-free porous silicon-base electrode, it is prepared by method comprising the following steps:
(1) it is (0-50) according to volume ratio:(50-100):(1~10) is by absolute ethyl alcohol, 0.05molL-1~
1.0mol·L-1Nitrate or perchlorate aqueous solution and alkyl silicate mixing, then adjust pH to 2.0~6.0, stir at room temperature
2~48h is mixed, obtains precursor solution;
(2) copper foil or nickel foil matrix are carried out removing oxide on surface and oil removal treatment;
(3) copper foil after processing or nickel foil matrix are placed in the slot electrode equipped with precursor solution, with the copper after processing
Paper tinsel or nickel foil matrix are as working electrode, and using platinized platinum or graphite as to electrode, electrode spacing control is in 1~10cm, control electricity
Current density is -0.1mAcm-2~-5.0mAcm-2Electro-deposition is carried out, sedimentation time is 30s~2000s, will after the completion of deposition
Working electrode washing obtains micro/nano level silica dioxide coating, i.e., after 40~150 DEG C of drying in copper foil or nickel foil matrix surface
Wherein silica particle sizes are in micron or nanoscale;
(4) it will be covered with the copper foil of micro/nano level silica dioxide coating or nickel foil matrix be placed in the reactor in the source containing magnesium metal
In, it is closed, under argon gas atmosphere protection, rise to 550~750 DEG C with the heating rate of 0.1~5 DEG C/min and calcined, during insulation
Between 0.5~12h, reaction product obtains adhesive-free porous silicon-base electrode after pickling, washing, vacuum drying after cooling.
Further, in step (1), the nitrate is preferably sodium nitrate or potassium nitrate, and the perchlorate is preferred
For lithium perchlorate, sodium perchlorate or potassium hyperchlorate.
Further, in step (1), the preferred ethyl orthosilicate of the alkyl silicate (TEOS), methyl orthosilicate
One or both of (TMOS) mixing.
Further, in step (1), it can be hydrochloric acid (HCl), nitric acid (HNO to adjust the acid that pH is used3) or acetic acid (HAc),
Concentration is 0.5molL-1~2.0molL-1。
Further, in step (2), copper foil or the polishing of nickel foil electrode can be removed into oxide on surface with sand paper, then by copper
Paper tinsel or nickel foil electrode are put into sour (can be hydrochloric acid, sulfuric acid, nitric acid etc.) and further remove oxide on surface, then pass through cleaning solvent
Oil removing cleaning is carried out, cleaning solvent can be acetone, ethanol, water etc..
Further, in step (3), current density is preferably -1.0mAcm-2~-5.0mAcm-2。
Further, in step (3), sedimentation time is preferably 200s~600s.
Further, in step (4), the magnesium metal source is any one in magnesium powder, magnesium ribbon or magnesium vapor.
Further, in step (4), heating rate is preferably 1~5 DEG C/min.
Further, in step (4), calcining heat is preferably 650~750 DEG C.
Further, in step (4), soaking time is preferably 1~2h.
Further, in step (4), the pickling preferably with the dilute hydrochloric acid of 1~5mol/L clean reaction product 1~
15min, dilute hydrochloric acid concentration are more preferably 1~3mol/L, and scavenging period is more preferably 5~15min.
Further, the preparation method is made of step (1)~(4).
Present invention also offers application of the adhesive-free porous silicon-base electrode as negative electrode of lithium ion battery.
The beneficial effects of the present invention are:
(1) micro/nano level SiO is prepared in copper foil or nickel foil matrix surface by electro-deposition techniques in the present invention2Coating,
The micro-nano SiO2Coating and matrix have excellent combination power there are chemical bonding effect;
(2) porous silica formed on copper foil or nickel foil matrix is prepared by electro-deposition techniques, without viscous
Mixture, eliminates the flows such as SiO 2 powder mold, sintering;
(3) the porous silicon-base electrode effect on environment for preparing of the present invention is small, surface is not easy to crack, has higher storing up electricity
Energy and longer service life cycle;
(4) preparation process of the present invention is simple and convenient to operate, is efficient, being easily achieved.
Brief description of the drawings
Fig. 1 is the electron scanning micrograph of the micro-nano-silica coating obtained by 2 electro-deposition of embodiment.
Embodiment
Technical scheme is described further with specific embodiment below, but protection scope of the present invention is unlimited
In this:Embodiment 1
Copper foil or nickel foil matrix are polished successively to light first by the sand paper (400#, 600#, 1000#) of gradient particles degree
Without obvious cut, with oxide on surface is removed in the dilute hydrochloric acid of 1mol/L, then with absolute ethyl alcohol and deionized water successively oil removing
Hot blast drying after cleaning;Progressively toward addition 50mL absolute ethyl alcohols, 50mL 0.05molL in beaker-1The positive silicic acid of potassium nitrate, 1mL
Methyl esters (TMOS), uses 2.0molL-1HNO3PH to 6.0 or so is adjusted, is stirred at room temperature stand-by.With the copper foil or nickel foil polished
Cathode, 2*2cm2Platinized platinum is anode, and Ag/AgCl is reference electrode, electrode spacing control in 1cm, control current density be-
0.1mA·cm-2Carry out electro-deposition, sedimentation time 2000s, after the completion of deposition by working electrode deionized water rinsing after
150 DEG C of drying, obtain micro-nano oxide coating.Thereafter, the copper foil of micro nano-coatings or nickel foil move in porcelain boat deposition,
The upper excessive magnesium powder of surface covering.Porcelain boat is carefully placed into tube furnace, it is closed, lead to argon gas.Heated with the heating rate of 1 DEG C/min
To 550 DEG C of insulation 12h.After cooling, copper foil or nickel foil substrate are put into the dilute hydrochloric acid of 3mol/L and clean 5min, it is residual to remove surface
Remaining magnesium powder and MgO solids.80 DEG C of vacuum drying chamber is put into after finally cleaning in deionized water until having porous silicon base material
The copper foil or nickel foil pole drying of material.
Lithium ion battery is made as follows with the adhesive-free porous silicon-base electrode of the gained of embodiment 1.
Using adhesive-free porous silicon-base electrode as anode, metal lithium sheet is cathode, and electrolyte is 1mol/L LiPF6/EC-
DMC (volume ratios 1:1), polypropylene microporous film is membrane (Celgard 2300), is assembled into lithium ion half-cell.The nothing is viscous
Mixture porous silicon-base material has excellent cyclical stability, during long in 1A/g current densities, 5mV~1.5V voltage ranges
Between circulate 100 times circulation after specific capacity still be up to 2325mAh/g.
Embodiment 2
Copper foil or nickel foil matrix are polished successively to light first by the sand paper (400#, 600#, 1000#) of gradient particles degree
Without obvious cut, with oxide on surface is removed in the dilute hydrochloric acid of 1mol/L, then with absolute ethyl alcohol and deionized water successively oil removing
Hot blast drying after cleaning;Progressively toward addition 50mL absolute ethyl alcohols, 50mL 1.0molL in beaker-1The positive silicic acid second of sodium nitrate, 5mL
Ester (TEOS), uses 0.5molL-1HAc tune pH to 2.0 or so, it is stand-by to stir 2h at room temperature.Using the copper foil polished or nickel foil as
Cathode, 2*2cm2Platinized platinum is anode, and Ag/AgCl is reference electrode, electrode spacing control in 10cm, control current density be-
5mA·cm-2Carry out electro-deposition, sedimentation time 30s, by working electrode deionized water rinsing after 40 DEG C of bakings after the completion of deposition
It is dry, obtain micro-nano oxide coating.Thereafter, the copper foil of micro nano-coatings or nickel foil move in porcelain boat deposition, surface is covered
Cover excessive magnesium ribbon.Porcelain boat is carefully placed into tube furnace, it is closed, lead to argon gas.750 are heated to the heating rate of 5 DEG C/min
DEG C insulation 0.5h.After cooling, copper foil or nickel foil substrate are put into the dilute hydrochloric acid of 1mol/L and clean 15min, remove surface residual
Magnesium powder and MgO solids.80 DEG C of vacuum drying chamber is put into after finally cleaning in deionized water until having porous silicon-base material
Copper foil or nickel foil pole drying.
Lithium ion battery is made as follows with the adhesive-free porous silicon-base electrode of the gained of embodiment 2.
Using adhesive-free porous silicon-base electrode as anode, metal lithium sheet is cathode, and electrolyte is 1mol/L LiPF6/EC-
DMC (volume ratios 1:1), polypropylene microporous film is membrane (Celgard 2300), is assembled into lithium ion half-cell.The nothing is viscous
Mixture porous silicon-base material has excellent cyclical stability, during long in 1A/g current densities, 5mV~1.5V voltage ranges
Between circulate 100 times circulation after specific capacity still be up to 2152mAh/g.
Embodiment 3
Copper foil or nickel foil matrix are polished successively to light first by the sand paper (400#, 600#, 1000#) of gradient particles degree
Without obvious cut, with oxide on surface is removed in the dilute hydrochloric acid of 1mol/L, then with absolute ethyl alcohol and deionized water successively oil removing
Hot blast drying after cleaning;Progressively toward addition 50mL absolute ethyl alcohols, 50mL 0.2molL in beaker-1The positive silicon of lithium perchlorate, 10mL
Sour methyl esters (TMOS), uses 1.0molL-1HCl tune pH to 6.0 or so, it is stand-by to stir 6h at room temperature.With the copper foil or nickel polished
Paper tinsel is cathode, 2*2cm2Platinized platinum is anode, and Ag/AgCl is reference electrode, electrode spacing control in 1cm, control current density be-
1mA·cm-2Carry out electro-deposition, sedimentation time 600s, by working electrode deionized water rinsing after 40 DEG C after the completion of deposition
Drying, obtains micro-nano oxide coating.Thereafter, the copper foil of micro nano-coatings or nickel foil move in porcelain boat deposition, surface
Excessive magnesium powder in covering.Porcelain boat is carefully placed into tube furnace, it is closed, lead to argon gas.It is heated to the heating rate of 0.1 DEG C/min
650 DEG C of insulation 1h.After cooling, copper foil or nickel foil substrate are put into the dilute hydrochloric acid of 1mol/L and clean 15min, remove surface residual
Magnesium powder and MgO solids.80 DEG C of vacuum drying chamber is put into after finally cleaning in deionized water until having porous silicon-base material
Copper foil or nickel foil pole drying.
Lithium ion battery is made as follows with the adhesive-free porous silicon-base electrode of the gained of embodiment 3.
Using adhesive-free porous silicon-base electrode as anode, metal lithium sheet is cathode, and electrolyte is 1mol/L LiPF6/EC-
DMC (volume ratios 1:1), polypropylene microporous film is membrane (Celgard 2300), is assembled into lithium ion half-cell.The nothing is viscous
Mixture porous silicon-base material has excellent cyclical stability, during long in 1A/g current densities, 5mV~1.5V voltage ranges
Between circulate 100 times circulation after specific capacity still be up to 2831mAh/g.
Embodiment 4
Copper foil or nickel foil matrix are polished successively to light first by the sand paper (400#, 600#, 1000#) of gradient particles degree
Without obvious cut, with oxide on surface is removed in the dilute hydrochloric acid of 1mol/L, then with absolute ethyl alcohol and deionized water successively oil removing
Hot blast drying after cleaning;Progressively toward addition 20mL absolute ethyl alcohols, 80mL 0.2molL in beaker-1The positive silicic acid of potassium hyperchlorate, 5mL
Methyl esters (TMOS), uses 1.0molL-1HCl tune pH to 6.0 or so, it is stand-by to stir 6h at room temperature.With the copper foil or nickel foil polished
For cathode, 2*2cm2Platinized platinum is anode, and Ag/AgCl is reference electrode, electrode spacing control in 5cm, control current density be-
1mA·cm-2Carry out electro-deposition, sedimentation time 600s, by working electrode deionized water rinsing after 40 DEG C after the completion of deposition
Drying, obtains micro-nano oxide coating.Thereafter, the copper foil of micro nano-coatings or nickel foil move in porcelain boat deposition.By porcelain
Boat is carefully placed into tube furnace, closed, leads to argon gas.Lead to magnesium vapor after being heated to 650 DEG C with the heating rate of 1 DEG C/min and keep the temperature
2h.After coolings, copper foil or nickel foil substrate are put into the dilute hydrochloric acid of 1mol/L and clean 15min, remove surface residual magnesium powder and
MgO solids.80 DEG C of vacuum drying chamber is put into after finally cleaning in deionized water until copper foil with porous silicon-base material or
Nickel foil pole drying.
Lithium ion battery is made as follows with the adhesive-free porous silicon-base electrode of the gained of embodiment 4.
Using adhesive-free porous silicon-base electrode as anode, metal lithium sheet is cathode, and electrolyte is 1mol/L LiPF6/EC-
DMC (volume ratios 1:1), polypropylene microporous film is membrane (Celgard 2300), is assembled into lithium ion half-cell.The nothing is viscous
Mixture porous silicon-base material has excellent cyclical stability, during long in 1A/g current densities, 5mV~1.5V voltage ranges
Between circulate 100 times circulation after specific capacity still be up to 3127mAh/g.
Embodiment 5
Copper foil or nickel foil matrix are polished successively to light first by the sand paper (400#, 600#, 1000#) of gradient particles degree
Without obvious cut, with oxide on surface is removed in the dilute hydrochloric acid of 1mol/L, then with absolute ethyl alcohol and deionized water successively oil removing
Hot blast drying after cleaning;Progressively toward addition 50mL absolute ethyl alcohols, 50mL 0.2molL in beaker-1The positive silicic acid of sodium perchlorate, 3mL
Ethyl ester (TEOS) and 2mL methyl orthosilicates (TMOS), use 1.0molL-1HCl tune pH to 6.0 or so, stirs 6h and treats at room temperature
With.Using the copper foil or nickel foil polished as cathode, 2*2cm2Platinized platinum is anode, and Ag/AgCl is reference electrode, and electrode spacing controls
In 5cm, it is -1mAcm to control current density-2Electro-deposition is carried out, sedimentation time 200s, uses working electrode after the completion of deposition
Deionized water rinsing obtains micro-nano oxide coating after 40 DEG C of drying.Thereafter, by deposit have micro nano-coatings copper foil or
Nickel foil is moved in porcelain boat, the upper excessive magnesium powder of surface covering.Porcelain boat is carefully placed into tube furnace, it is closed, lead to argon gas.With 1 DEG C/
The heating rate of min is heated to 650 DEG C of insulation 2h.After cooling, copper foil or nickel foil substrate are put into the dilute hydrochloric acid of 1mol/L clearly
15min is washed, removes the magnesium powder and MgO solids of surface residual.80 DEG C of vacuum drying chamber is put into after finally cleaning in deionized water
Until copper foil or nickel foil pole drying with porous silicon-base material.
Lithium ion battery is made as follows with the adhesive-free porous silicon-base electrode of the gained of embodiment 5.
Using adhesive-free porous silicon-base electrode as anode, metal lithium sheet is cathode, and electrolyte is 1mol/L LiPF6/EC-
DMC (volume ratios 1:1), polypropylene microporous film is membrane (Celgard 2300), is assembled into lithium ion half-cell.The nothing is viscous
Mixture porous silicon-base material has excellent cyclical stability, during long in 1A/g current densities, 5mV~1.5V voltage ranges
Between circulate 100 times circulation after specific capacity still be up to 2981mAh/g.
The above is only the preferred embodiment of the present invention.It should be pointed out that the technology of the present invention principle is not being departed from
On the premise of can also make some improvements and modifications, these improvements and modifications are also considered as in protection scope of the present invention.
Claims (9)
1. a kind of adhesive-free porous silicon-base electrode, it is prepared by method comprising the following steps:
(1) it is (0-50) according to volume ratio:(50-100):(1~10) is by absolute ethyl alcohol, 0.05molL-1~1.0molL-1
Nitrate or perchlorate aqueous solution and alkyl silicate mixing, then adjust pH to 2.0~6.0, stir 2~48h at room temperature, obtain
To precursor solution;
(2) copper foil or nickel foil matrix are carried out removing oxide on surface and oil removal treatment;
(3) copper foil after processing or nickel foil matrix are placed in the slot electrode equipped with precursor solution, with the copper foil after processing or
Nickel foil matrix is as working electrode, and using platinized platinum or graphite as to electrode, electrode spacing controls close in 1~10cm, control electric current
Spend for -0.1mAcm-2~-5.0mAcm-2Electro-deposition is carried out, sedimentation time is 30s~2000s, by work after the completion of deposition
Electrode washing obtains micro/nano level silica dioxide coating after 40~150 DEG C of drying in copper foil or nickel foil matrix surface;
(4) copper foil or nickel foil matrix that will be covered with micro/nano level silica dioxide coating are placed in the reactor in the source containing magnesium metal,
It is closed, under argon gas atmosphere protection, rise to 550~750 DEG C with the heating rate of 0.1~5 DEG C/min and calcined, soaking time
0.5~12h, reaction product obtains adhesive-free porous silicon-base electrode after pickling, washing, vacuum drying after cooling.
2. adhesive-free porous silicon-base electrode as claimed in claim 1, it is characterised in that:In step (1), the nitrate
For sodium nitrate or potassium nitrate, the perchlorate is lithium perchlorate, sodium perchlorate or potassium hyperchlorate;The alkyl silicate
For the mixing of one or both of ethyl orthosilicate, methyl orthosilicate.
3. adhesive-free porous silicon-base electrode as claimed in claim 1, it is characterised in that:In step (1), adjust what pH was used
Acid is hydrochloric acid, nitric acid or acetic acid, concentration 0.5molL-1~2.0molL-1。
4. adhesive-free porous silicon-base electrode as claimed in claim 1, it is characterised in that:In step (3), current density for-
1.0mA·cm-2~-5.0mAcm-2, sedimentation time is 200s~600s.
5. adhesive-free porous silicon-base electrode as claimed in claim 1, it is characterised in that:In step (4), the magnesium metal
Source is any one in magnesium powder, magnesium ribbon or magnesium vapor.
6. the adhesive-free porous silicon-base electrode as described in claim 1 or 5, it is characterised in that:In step (4), heating rate
For 1~5 DEG C/min, calcining heat is 650~750 DEG C, and soaking time is 1~2h.
7. adhesive-free porous silicon-base electrode as claimed in claim 1, it is characterised in that:In step (4), the pickling is
1~15min of reaction product is cleaned with the dilute hydrochloric acid of 1~5mol/L.
8. adhesive-free porous silicon-base electrode as claimed in claim 1, it is characterised in that:The preparation method is by step (1)
~(4) form.
9. application of the adhesive-free porous silicon-base electrode as claimed in claim 1 as negative electrode of lithium ion battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610266114.XA CN105826519B (en) | 2016-04-25 | 2016-04-25 | A kind of adhesive-free porous silicon-base electrode and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610266114.XA CN105826519B (en) | 2016-04-25 | 2016-04-25 | A kind of adhesive-free porous silicon-base electrode and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105826519A CN105826519A (en) | 2016-08-03 |
CN105826519B true CN105826519B (en) | 2018-05-08 |
Family
ID=56527511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610266114.XA Active CN105826519B (en) | 2016-04-25 | 2016-04-25 | A kind of adhesive-free porous silicon-base electrode and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105826519B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109817892B (en) * | 2019-03-06 | 2019-12-03 | 浙江工业大学 | A kind of method of copper current collector making Nano surface |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009112714A2 (en) * | 2008-02-26 | 2009-09-17 | Commissariat A L'energie Atomique | Process for fabricating a silicon-based electrode, silicon-based electrode and lithium battery comprising such an electrode |
CN103730645A (en) * | 2014-01-17 | 2014-04-16 | 江苏华盛精化工股份有限公司 | Silicon-coated carbon fiber nano composite material and preparation method and application thereof |
-
2016
- 2016-04-25 CN CN201610266114.XA patent/CN105826519B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009112714A2 (en) * | 2008-02-26 | 2009-09-17 | Commissariat A L'energie Atomique | Process for fabricating a silicon-based electrode, silicon-based electrode and lithium battery comprising such an electrode |
CN103730645A (en) * | 2014-01-17 | 2014-04-16 | 江苏华盛精化工股份有限公司 | Silicon-coated carbon fiber nano composite material and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
"A silica co-electrodeposition route to highly active Ni-based film electrodes";Lian-Kui Wu et al;《Journal of materials chemistry A》;20130830;第1卷;第12885-12892页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105826519A (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries | |
CN103046088B (en) | A kind of micro-nano compound porous copper surface tissue and preparation method thereof and device | |
CN102623680B (en) | Silicon-carbon composite cathode material with three-dimensional preformed hole structure and preparation method thereof | |
CN105140469B (en) | A kind of egg yolk structure transition metal oxide/graphene composite material and preparation method and application | |
CN104319401B (en) | The silica-based lithium ion battery cathode material and its preparation method of a kind of bivalve layer capsule shape | |
CN103682272B (en) | A kind of lithium ion battery cathode material and its preparation method | |
CN104934602A (en) | Molybdenum disulfide/carbon composite material and preparation method thereof | |
CN106356519A (en) | Preparation method of expanded graphite/silicon@carbon negative electrode material for lithium ion batteries | |
CN105845918B (en) | A kind of porous silica material of high power capacity and its preparation method and application | |
CN103915630A (en) | Molybdenum disulfide/mesoporous carbon composite electrode material as well as preparation method and application thereof | |
CN105742600A (en) | Preparation method for silicon dioxide/carbon nano composite aerogel negative electrode material of lithium ion battery | |
CN107673307A (en) | Germanium/graphene/titanium dioxide nanofiber composite material and preparation method thereof and battery | |
CN102044662B (en) | Method for preparing spinel type lithium titanate nanowire array | |
CN108899484A (en) | Preparation method of carbon-coated hollow nano-silicon tube serving as negative electrode material of lithium ion battery | |
CN203080093U (en) | Electro-deposition device for manufacturing micro-nano composite porous copper surface structure | |
CN103311502A (en) | Metal foil/graphene composite electrode plate and preparation method thereof | |
CN105161696B (en) | A kind of preparation method of graphene silicon nano composite material | |
CN107317014A (en) | The Fe of FeS claddings3O4Nano composite material and its application | |
CN109065861A (en) | Asphaltic base porous carbon materials and preparation method thereof, silicon-carbon cathode material and secondary cell | |
CN105810889B (en) | A kind of adhesive-free porous silicon/carbon composite electrode and its application | |
CN109167048A (en) | Titanium and nitrogen co-doped carbon-coated silicon monoxide material and preparation method and application thereof | |
CN108232158A (en) | A kind of preparation method of order mesoporous Co/CMK composite Nanos negative material | |
CN105481004A (en) | Stannic oxide nanotubes with high electrical properties and preparation method therefor | |
CN106981650A (en) | A kind of preparation method of nanoscale bismuth with elementary | |
CN109748283A (en) | A kind of hollow SiO of lithium ion batteryx@C cube composite negative pole material and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |