CN105826169B - 一种硅基砷化镓复合衬底的制备方法 - Google Patents

一种硅基砷化镓复合衬底的制备方法 Download PDF

Info

Publication number
CN105826169B
CN105826169B CN201610153371.2A CN201610153371A CN105826169B CN 105826169 B CN105826169 B CN 105826169B CN 201610153371 A CN201610153371 A CN 201610153371A CN 105826169 B CN105826169 B CN 105826169B
Authority
CN
China
Prior art keywords
substrate
electron gun
gaas
gun furnace
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610153371.2A
Other languages
English (en)
Other versions
CN105826169A (zh
Inventor
王朋
龚谦
曹春芳
丁彤彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Kunyuan Photoelectric Co ltd
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201610153371.2A priority Critical patent/CN105826169B/zh
Publication of CN105826169A publication Critical patent/CN105826169A/zh
Application granted granted Critical
Publication of CN105826169B publication Critical patent/CN105826169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02466Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明涉及一种硅基砷化镓复合衬底的制备方法,其特征在于所述的复合衬底以锑化物为中间层、上、下表面分别形成压应变AlSb/Si和张应变GaAs/GaSb的界面失配位错阵列IMF,使应变在两个界面处得到释放,解决了GaAs与Si之间晶格失配。所述Si衬底为向[110]晶向斜切5°。制备方法特征在于首先在Si衬底上生长AlSb/Si IMF阵列,然后生长GaSb缓冲层,然后在GaSb缓冲层上生长GaAs/GaSb IFM阵列,从而完成从Si衬底向GaAs材料层的过渡,获得Si基GaAs复合衬底。本发明解决了Si衬底与GaAs外延层的晶格失配,不失为为Si基Ⅲ‑Ⅴ材料光电耦合提供了一种可行性方案,为Ⅲ‑Ⅴ族材料集成技术的发展提供了重要的实施途径。

Description

一种硅基砷化镓复合衬底的制备方法
技术领域
本发明提供了一种制备Si基GaAs复合衬底的方法,属于半导体材料,器件工艺技术领域。
背景技术
从20世纪50年代第一个晶体管的发明至今,集成电路的尺寸一直按照摩尔定律发展。随着Si基集成电路芯片的集成度不断提高,特征尺寸的不断缩小,集成电路技术面临着速度、功耗、集成度的严重挑战[Liang D,Bowers J E.Recent progress in lasers onsilicon[J].Nature Photonics,2010,4(8):511-517.]。当电路和器件特征尺寸接近原子尺度时,受到量子效应限制,器件的可靠性降低。传统的以电子为介质的集成电路内部通信方式是导致这一困境的主要原因。采用光互连技术可以有效的解决集成电路进一步发展的尺寸限制同时可以极大的提高芯片间信息传输的速度和频率。Si基光电子集成是实现集成电路光互联的核心技术和重要研究方向[Ganesh Balakrishnan,A.J.,Paul Rotella,Shenghong Huang,Arezou Khoshakhlagh,Abdenour Amtout,Sanjay Krishna(2006)."Room-Temperature Optically Pumped(Al)GaSb Vertical-Cavity Surface-EmittingLaser Monolithically Grown on an Si(1 0 0)Substrate."Journal of SelectedTopics in Quantum Electronics 12(6).]。然而,Si因为其间接带系的特性很难作为发光材料[J.Noborisaka,K.Nishiguchi,A.Fujiwara(2014)."Electric tuning of direct-indirect optical transitions in silicon."Scientific Reports4(6950).]。而传统Ⅲ-Ⅴ族材料如InP,GaAs,已经在光电子器件领域得到广泛的应用。因此,Si基Ⅲ-Ⅴ集成是实现Si基光电子的一种理想途径。现有的Si基Ⅲ-Ⅴ集成主要有晶片键合和直接外延两种途径。东京大学的K.Tanabe等人分别利用直接键合和金属媒介键合的方法实现了1.3umInAs/InGaAs阱中量子点有源区激光器在Si衬底上的集成[K.Tanabe,T.Rae,K.Watanabe,and Y.Arakawa(2013).“High-Temperature 1.3um InAs/GaAs Quantum Dot Lasers onSi Substrates Fabricated by wafer bonding.”Applied Physics Express 6(082703).]。加州大学的John E.Bowers课题组利用键合方法将1.55um InP基量子阱激光器在Si衬底的集成,并且实现了光场在Si介质光波导中的耦合[Park,H.,Fang,A.W.,Kodama,S.&Bowers,J.E(2005).“Hybrid silicon evanescent laser fabricated with asilicon waveguide and III–V off set quantum wells.”Optical Express 13,(9460).]。虽然上述通过键合获得的Si基发光器件的性能良好,但由于需要采用Ⅲ-Ⅴ族衬底外延生长增加了器件制备的成本并且产量也受到衬底尺寸的限制,无法实现大规模生产。键合的工艺流程也与传统的Si工艺不相匹配。然而,直接外延生长提供了一种实现Si基光电集成的更为简单有效的途径。MIT的J.F.Liu等人利用Si衬底上外延生长Ge薄膜的热膨胀系数不同在Ge外延层中引入张应变,并进一步通过n型掺杂填充L能谷最终得到电泵浦的Si基Ge激光器。但其性能依然无法达到实际应用水平[Liu J,Kimerling L C,MichelJ.Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration[J].Semiconductor Science and Technology,2012,27(9):094006.]。伦敦大学学院的H.Y.Liu教授课题组利用Ge作为中间层在Si衬底上外延生长并制备了室温连续激射的InAs/InGaAs阱中量子点有源区激光器[Lee A,Jiang Q,Tang M,et al.Continuous-waveInAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate withlow threshold current densities[J].Optics express,2012,20(20):22181-22187.]。Ge与Si可以无限互溶并且与GaAs的晶格常数几乎相同,Ge中间层有效的解决了Si衬底上外延生长GaAs的晶格失配问题。然而,上述方法的可靠性依然需要进一步的改善。H.Y.Liu教授课题组同时也Si衬底上直接外延生长并制备InAs/InGaAs阱中量子点有源区激光器,其中利用应变弛豫的大厚度的GaAs缓冲层和InGaAs/AlGaAs应变超晶格位错过滤层减少有源区的位错密度[Tang M,Chen S,Wu J,et al.1.3-μm InAs/GaAs quantum-dot lasersmonolithically grown on Si substrates using InAlAs/GaAs dislocation filterlayers[J].Optics express,2014,22(10):11528-11535.]。这同时也增加了器件制备的工艺复杂程度和光场耦合的难度。
与GaAs等III-V族材料不同,在Si衬底上外延生长Sb化物(尤其是AlSb)会在界面处自组装形成周期分布的压应变90度刃位错阵列(IMF),位错线在生长界面内传播,异质外延晶格失配应力在界面处就得到释放,不需要大厚度的缓冲层[Huang S H,BalakrishnanG,Khoshakhlagh A,et al.Simultaneous interfacial misfit array formation andantiphase domain suppression on miscut silicon substrate[J].Applied PhysicsLetters,2008,93(7):71102.]。同时AlSb与Si衬底也具有较GaAs更小的热失配等优点。同样的张应变IMF也可以在GaSb衬底上外延生长GaAs时得到,GaAs/GaSb界面的张应变失配应力在界面处得到释放,位错密度降低到106/cm2甚至更低[Huang S H,Balakrishnan G,Mehta M,et al.Epitaxial growth and formation of interfacial misfit array fortensile GaAs on GaSb[J].Applied physics letters,2007,90(16):161902.]。
通过以上异质外延生长模式的分析,可以得到一种解决Si与GaAs之间晶格失配问题的方法,从而形成本发明的构思。本发明拟利用GaSb/AlSb结构作为中间层,通过分别在AlSb/Si界面和GaAs/GaSb界面形成压应变和张应变IMF,使Si衬底与GaAs外延层之间的晶格失配得到释放最终获得Si基GaAs复合衬底。因此,本发明为Si基Ⅲ-Ⅴ光电耦合提供了一种新的可行性方案。
发明内容
本发明的目的在于提供一种硅基砷化镓复合衬底的制备方法,本发明所要解决的技术问题是提供一种用于制备Si基GaAs复合衬底的方法。通过将Sb化物(AlSb/GaSb)作为中间层,将压应变和张应变IMF结合解决Si衬底与GaAs外延层之间晶格失配问题。
由此可见,本发明的特征之一在于:利用产生两层IMF阵列的方法解决Si与GaAs材料体系的晶格失配问题;
本发明的特征之二在于:利用的IMF阵列中包含在Si衬底上生长AlSb形成AlSb/Si界面IMF阵列;
本发明的特征之三在于:利用的IMF阵列中包含在GaSb表面生长GaAs形成GaAs/GaSb界面IMF阵列;
本发明的特征之四在于:基于分子束外延方法首先在Si衬底上生长AlSb/Si IMF阵列,然后生长GaSb缓冲层,然后在GaSb缓冲层上生长GaAs/GaSb IFM阵列,从而完成从Si衬底向GaAs材料层的过渡,获得Si基GaAs复合衬底。
本发明提供一种利用分子束外延(MBE)技术制备硅Si基砷化镓GaAs复合衬底及其制备方法。该方法通过将锑Sb化物作为中间层,并在其上下表面分别形成压应变AlSb/Si和张应变GaAs/GaSb的界面失配位错阵列IMF使应变在两个界面处得到释放并且不会随厚度继续增加产生位错,从而解决GaAs与Si之间的晶格失配问题,最终得到硅基砷化镓复合衬底。本发明对于Si基Ⅲ-Ⅴ材料集成技术的发展提供了重要的实施途径。
上述的复合结构可以利用常规的分子束外延生长方法实现,操作工艺简单,易控制。
本发明所述的方法将AlSb/Si界面和GaAs/GaSb界面的压应变和张应变IMF结合到同一结构中,解决了Si衬底与GaAs外延层的晶格失配问题;由于晶格失配在两个界面处得到释放,可以显著降低所需缓冲层的厚度,从而为Si基光电耦合提供便利;可以用常规的分子束外延方法生长,操作简单,易控制。本发明为Ⅲ-Ⅴ族材料集成技术的发展提供了重要的实施途径。
附图说明
图1是AlSb/Si和GaAs/GaSb界面的压应变和张应变IMF原子结构示意图。
图2是GaSb/AlSb为中间层的Si基GaAs复合衬底的结构示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,本实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲述的内容后,本领域技术人员可对本发明做相应改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
以下描述为利用分子束外延生长方法制备Si基GaAs复合衬底的步骤,步骤中所提及的温度均为实际温度(非热偶直接读数),这些步骤以及温度对于具体的生长设备可以做相应的优化。采用的Si(100)衬底均为向[110]晶向斜切5°,先前研究表明5°斜切的衬底表面可以最大程度形成双原子层台阶,从而更好的消除外延生长过程中反相畴的产生。具体制备步骤如下:
(1)将Si衬底浸润在氢氟酸溶液中,除去表面的SiO2氧化层。
(2)将Si衬底传至预处理室,在真空环境下加热到500℃除去表面氢键及杂质。
(3)将Si衬底传至生长室,衬底温度加热至800℃脱去表面剩余氧化层并通过观察高能电子束衍射出现(2×2)再构表明完全脱氧。衬底温度保持800℃10分钟使衬底表面充分形成双原子层台阶以防止反相畴的产生。
(4)将衬底温度将至500℃,打开Al束源炉快门并控制时间使表面衬底1.04原子层厚度的Al并关闭Al束源炉快门。随后,打开Sb束源炉的快门使表面在Sb氛围下浸润10秒钟。随即打开Al束源炉快门控制时间生长5nm厚度的AlSb并关闭Al束源炉快门。此时在Si/AlSb界面已经形成周期排列的压应变IMF阵列,如图1所示。
(5)保持衬底温度不变,打开Ga束源炉快门,生长100nm厚度的GaSb层并关闭Ga束源炉。
(6)将衬底温度升至580℃,关闭Sb束源炉快门产生富Ga表面,此过程中高能电子束衍射由(1×3)再构变为(2×4)。随即打开As束源炉快门。
(7)为使得表面形成完整Ga-As键的同时防止腐蚀坑的产生,在As束源炉快门打开后随即打开Ga束源炉快门。使表面在As2氛围中的浸润时间短至0.1秒钟。保持衬底温度不变生长500nm厚度GaAs外延层,此时在GaAs/GaSb界面已经形成周期排列的张应变IMF阵列,如图1所示。最终得到表面平整的Si基GaAs复合衬底,结构如图2所示。
由图1可知,刃位错延界面传播周期分布形成IMF阵列。Si衬底表面双原子层台阶,配合在生长初期表面首先沉积一层Al原子层,这使得后续在台阶两侧生长的AlSb和GaSb有相同的Ⅲ族和Ⅴ族原子层排序,从而防止了反相畴的产生。
由图2可知压应变和张应变IMF阵列在同一结构中结合,解决了Si衬底与GaAs外延层之间的晶格失配问题。
必须强调的上面所述真空环境下加热到500℃,800℃脱去表面剩余氧化层等均为选用最佳实施温度或时间,具体可以在本领域所属的技术人员熟知的一定温度或时间内实施本发明,显然也属于本发明所欲保护的范围。同时,Ga束源炉,As束源炉快门开启时间及温度以及生成GaAs、GaSb、AlSb等厚度也属于本领域所所属的技术人员可以依本发明特点方便地选用和调配。

Claims (5)

1.一种硅基砷化镓复合衬底,其特征在于所述的复合衬底以锑化物为中间层、上、下表面分别形成压应变AlSb/Si和张应变GaAs/GaSb的界面失配位错阵列IMF,使应变在两个界面处得到释放,解决了GaAs与Si衬底之间晶格失配,制备所述的复合衬底的方法具体步骤是:
(1)将Si(100)衬底浸润在氢氟酸溶液中,除去表面的SiO2氧化层;
(2)将Si(100)衬底传至预处理室,在真空环境下加热到500 ℃除去表面氢键及杂质;
(3)将Si(100)衬底传至生长室,衬底温度加热至800 ℃脱去表面剩余氧化层并通过观察高能电子束衍射出现(2×2)再构表明完全脱氧,衬底温度保持800 ℃ 10分钟使衬底表面充分形成双原子层台阶以防止反相畴的产生;
(4)将衬底温度将至500 ℃,打开Al束源炉快门并控制时间使表面衬底1.04原子层厚度的Al并关闭Al束源炉快门,随后,打开Sb束源炉的快门使表面在Sb氛围下浸润10秒钟,随即打开Al束源炉快门控制时间生长5nm厚度的AlSb并关闭Al束源炉快门,在Si/AlSb界面已经形成周期排列的压应变IMF阵列;
(5)保持衬底温度不变,打开Ga束源炉快门,生长100nm厚度的GaSb层并关闭Ga束源炉;
(6)将衬底温度升至580 ℃,关闭Sb束源炉快门产生富Ga表面,此过程中高能电子束衍射由(1×3)再构变为(2×4),随即打开As束源炉快门;
(7)为使得表面形成完整Ga-As键的同时防止腐蚀坑的产生,在As束源炉快门打开后随即打开Ga束源炉快门,使表面在As2氛围中的浸润时间缩短,保持衬底温度不变生长500nm厚度GaAs外延层,在GaAs/GaSb界面形成周期排列的张应变IMF阵列,最终得到表面平整的Si基GaAs复合衬底;
Si(100)衬底为向[100]晶向斜切5°。
2.按权利要求1所述的复合衬底,其特征在于斜切的衬底表面最大程度形成双原子层台阶,以利于消除外延生长过程中反相畴的产生。
3.按权利要求1所述的复合衬底,其特征在于形成的复合衬底不会随厚度的继续增加而产生位错。
4.制备如权利要求1-3中任一项所述的复合衬底的方法,其特征在于具体步骤是:
(1)将Si(100)衬底浸润在氢氟酸溶液中,除去表面的SiO2氧化层;
(2)将Si(100)衬底传至预处理室,在真空环境下加热到500 ℃除去表面氢键及杂质;
(3)将Si(100)衬底传至生长室,衬底温度加热至800 ℃脱去表面剩余氧化层并通过观察高能电子束衍射出现(2×2)再构表明完全脱氧,衬底温度保持800 ℃ 10分钟使衬底表面充分形成双原子层台阶以防止反相畴的产生;
(4)将衬底温度将至500 ℃,打开Al束源炉快门并控制时间使表面衬底1.04原子层厚度的Al并关闭Al束源炉快门,随后,打开Sb束源炉的快门使表面在Sb氛围下浸润10秒钟,随即打开Al束源炉快门控制时间生长5nm厚度的AlSb并关闭Al束源炉快门,在Si/AlSb界面已经形成周期排列的压应变IMF阵列;
(5)保持衬底温度不变,打开Ga束源炉快门,生长100nm厚度的GaSb层并关闭Ga束源炉;
(6)将衬底温度升至580 ℃,关闭Sb束源炉快门产生富Ga表面,此过程中高能电子束衍射由(1×3)再构变为(2×4),随即打开As束源炉快门;
(7)为使得表面形成完整Ga-As键的同时防止腐蚀坑的产生,在As束源炉快门打开后随即打开Ga束源炉快门,使表面在As2氛围中的浸润时间缩短,保持衬底温度不变生长500nm厚度GaAs外延层,在GaAs/GaSb界面形成周期排列的张应变IMF阵列,最终得到表面平整的Si基GaAs复合衬底;
Si(100)衬底为向[100]晶向斜切5°。
5.按权利要求4所述的方法,其特征在于步骤(7)所述表面As气氛中浸润时间短至0.1秒。
CN201610153371.2A 2016-03-17 2016-03-17 一种硅基砷化镓复合衬底的制备方法 Active CN105826169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610153371.2A CN105826169B (zh) 2016-03-17 2016-03-17 一种硅基砷化镓复合衬底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610153371.2A CN105826169B (zh) 2016-03-17 2016-03-17 一种硅基砷化镓复合衬底的制备方法

Publications (2)

Publication Number Publication Date
CN105826169A CN105826169A (zh) 2016-08-03
CN105826169B true CN105826169B (zh) 2019-02-01

Family

ID=56523670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610153371.2A Active CN105826169B (zh) 2016-03-17 2016-03-17 一种硅基砷化镓复合衬底的制备方法

Country Status (1)

Country Link
CN (1) CN105826169B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146320A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 硅基衬底、衬底基板及其制造方法、光电器件
CN113823551A (zh) * 2020-06-19 2021-12-21 中国科学院半导体研究所 一种在GaAs衬底上生长GaSb外延片的方法及GaAs基衬底
CN114300556B (zh) * 2021-12-30 2024-05-28 中国科学院苏州纳米技术与纳米仿生研究所 外延结构、外延生长方法及光电器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481578A (zh) * 2000-12-18 2004-03-10 Ħ��������˾ 包括单晶膜的半导体结构
CN102427068A (zh) * 2011-12-02 2012-04-25 中国科学院上海微系统与信息技术研究所 单片集成具有晶格失配的晶体模板及其制作方法
US20140225064A1 (en) * 2013-02-11 2014-08-14 California Institute Of Technology Barrier infrared detectors on lattice mismatch substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481578A (zh) * 2000-12-18 2004-03-10 Ħ��������˾ 包括单晶膜的半导体结构
CN102427068A (zh) * 2011-12-02 2012-04-25 中国科学院上海微系统与信息技术研究所 单片集成具有晶格失配的晶体模板及其制作方法
US20140225064A1 (en) * 2013-02-11 2014-08-14 California Institute Of Technology Barrier infrared detectors on lattice mismatch substrates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. H. Huang et al..《Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb》.《APPLIED PHYSICS LETTERS》.2007,第90卷第161902-1-3页. *
S. H. Huang et al..《Simultaneous interfacial misfit array formation and antiphase domain suppression on miscut silicon substrate》.《APPLIED PHYSICS LETTERS》.2008,第93卷第071102-1-3页. *

Also Published As

Publication number Publication date
CN105826169A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
Chen et al. Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates
Lee et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates
US6329063B2 (en) Method for producing high quality heteroepitaxial growth using stress engineering and innovative substrates
Shi et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si
TWI246116B (en) Process for growing ZnSe Epitaxy layer on Si substrate and semiconductor structure thereby
Wei et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm
CN104769467B (zh) 半导体装置
CN101295753B (zh) 用于Ⅲ-V族化合物器件的低温Au-In-Au键合方法
US7153761B1 (en) Method of transferring a thin crystalline semiconductor layer
Tournié et al. Metamorphic III–V semiconductor lasers grown on silicon
US20020052061A1 (en) Silicon wafer with embedded optoelectronic material for monolithic OEIC
Han et al. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator
CN105826169B (zh) 一种硅基砷化镓复合衬底的制备方法
US9890472B2 (en) Monolithic integrated lattice mismatched crystal template and preparation method thereof
Geng et al. High-speed InGaAs photodetectors by selective-area MOCVD toward optoelectronic integrated circuits
Wei et al. Reliable InAs quantum dot lasers grown on patterned Si (001) substrate with embedded hollow structures assisted thermal stress relaxation
Li et al. Telecom InGaAs/InP quantum well lasers laterally grown on silicon-on-insulator
Yang et al. III–V compound materials and lasers on silicon
US20140016659A1 (en) Semiconductor Device and Fabrication Method
Hu et al. Electrically-pumped 1.31 μm MQW lasers by direct epitaxy on wafer-bonded InP-on-SOI substrate
CN111262127B (zh) 一种硅基InGaAs激光器衬底的制备方法、衬底和激光器
Liang et al. InAs/GaAs quantum dot laser epitaxially grown on on-axis (001) GaAsOI substrate
Heidelberger et al. Efficient Optical Coupling between III-V Semiconductor and SiN x Waveguides via Heteroepitaxial Integration
Chen et al. III-V quantum dot lasers epitaxially grown on Si
US20220255297A1 (en) An optoelectronic semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230505

Address after: 215000 558 FENHU Road, Wujiang District, Suzhou, Jiangsu

Patentee after: SUZHOU KUNYUAN PHOTOELECTRIC CO.,LTD.

Address before: 200050 No. 865, Changning Road, Shanghai, Changning District

Patentee before: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES