CN105825438A - 一种基于海面粗糙度的海上风电场风能评估方法 - Google Patents

一种基于海面粗糙度的海上风电场风能评估方法 Download PDF

Info

Publication number
CN105825438A
CN105825438A CN201610209440.7A CN201610209440A CN105825438A CN 105825438 A CN105825438 A CN 105825438A CN 201610209440 A CN201610209440 A CN 201610209440A CN 105825438 A CN105825438 A CN 105825438A
Authority
CN
China
Prior art keywords
wind
roughness
marine
survey
topography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610209440.7A
Other languages
English (en)
Inventor
彭秀芳
项雯
刘欣良
李剑锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Energy Engineering Group Jiangsu Power Design Institute Co Ltd
Original Assignee
China Energy Engineering Group Jiangsu Power Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Energy Engineering Group Jiangsu Power Design Institute Co Ltd filed Critical China Energy Engineering Group Jiangsu Power Design Institute Co Ltd
Priority to CN201610209440.7A priority Critical patent/CN105825438A/zh
Publication of CN105825438A publication Critical patent/CN105825438A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种基于海面粗糙度的海上风电场风能评估方法,包括步骤1,收集基本资料;步骤2,检验基本资料;步骤3,分析测风数据;步骤4,根据分析后的测风数据制作测风资料文件;步骤5,计算各局部海域粗糙度值;步骤6,根据地形图和各局部海域粗糙度值,制作地形地貌文件;步骤7,风电场风能评估。本发明既可以实现实际工程中有关海面粗糙度简化取值的目的,又能在一定程度上解决传统匀粗糙度法在海上风能评估中计算结果准确性较低的问题,对整个风电场经济效益的合理判定起着至关重要的作用。

Description

一种基于海面粗糙度的海上风电场风能评估方法
技术领域
本发明涉及一种基于海面粗糙度的海上风电场风能评估方法,属于海上风电场风能评估领域。
背景技术
近几年来,海上风电场发展迅速,丹麦、德国、西班牙、瑞典等国家均在建设大型海上风电场,还有许多国家正在制定近海风电的发展计划。我国海岸线长,海上风能资源丰富。与陆地风电场相比,海上风电场具有节约土地资源、风速高且持续、没有复杂地形对气流的影响等优点。众所周知,风电场的风能资源是影响风电场的经济效益的一个重要因素,风能资源的测量与评估是建设风电场成败的关键所在,尤其是对于投资风险更大的海上风电场,如何可靠地测量与预测海上风电场的风能资源情况显得尤为重要。
海面粗糙度是影响海上风能评估的一个重要参数,与陆地粗糙度不同的是,海面粗糙度不稳定,主要取决于实时波浪的大小,而风与波浪之间的互相作用又受到风速、水深、离岸距离、大气稳定等因素的影响。然而,目前在海上风能资源评估中未充分考虑到这些因素,尤其在实际工程应用中大多都是简单地将海面粗糙度一律确定为零或一个均值。将传统的零粗糙度或均值计算方法应用于实际海上风电工程虽然非常简单方便,但该方法通常存在以偏概全的缺陷,尤其对于有特殊变化的局部海域来说,风能评估结果往往不能准确反映该局部区域的实际变化情况,因而对整个风电场经济效益评估的准确性存在较大影响。
那么在实际海上风电工程中,如何利用普遍易得的基本工程资料来设置粗糙度值、体现不同海域粗糙度变化情况并提高整体风能评估结果的准确性?随着海上风电的发展,此问题更加突出,急需得到解决。
发明内容
为了解决上述技术问题,本发明提供了一种基于海面粗糙度的海上风电场风能评估方法。
为了达到上述目的,本发明所采用的技术方案是:
一种基于海面粗糙度的海上风电场风能评估方法,包括以下步骤,
步骤1,收集基本资料;
所述基本资料包括研究海域内所有测风塔/气象站的测风数据、场址区域及附近海域的地形图;
步骤2,检验基本资料;
步骤3,分析测风数据;
步骤4,根据分析后的测风数据制作测风资料文件;
步骤5,计算各局部海域粗糙度值;
步骤6,根据地形图和各局部海域粗糙度值,制作地形地貌文件;
步骤7,风电场风能评估。
基本资料检验包括测风数据有效完整性检验和地形图准确性检验;测风数据有效完整性检验是指对各测风塔/气象站的测风数据分别进行统计分析,剔除缺测和无效测风数据后,分别计算各测风塔/气象站的测风数据有效完整率是否大于K%,若满足要求,则测风数据检验合格,否则对不满足要求的测风塔/气象站中的缺测和无效测风数据进行插补修正,然后重新检验直至全部测风塔/气象站的测风数据有效完整率大于K%;地形图准确性检验是指对收集的地形图是否涵盖场址区域及附近海域的真实情况、有无关键地形的缺测问题进行核实,若地形图准确全面,则进行下一步计算,否则重新获取所缺的地形图。
K=90。
步骤5中,计算各局部海域粗糙度值的过程为,
首先根据分析后的测风数据计算L米高度平均风速然后根据公式计算各局部海域粗糙度值;
其中i表示各测风塔/气象站编号,为海域粗糙度值,f(·)表示一种以海上L米高度实测风速为变量的函数表达式。
L=10。
步骤6中,制作地形地貌文件的过程为,
首先根据准确的地形图以及各局部海域的粗糙度计算值,初步绘制场址区域及附近海域的粗糙度线,并定出粗糙度线两侧的粗糙度值;然后以某个测风点的测风资料文件为基础采用风资源模拟软件推出整个区域风资源模拟计算结果;最后检验其他测风点处风速的模拟计算值与实测值的误差是否小于ε,若不满足误差要求,则调整粗糙度线形状及位置,并重新对粗糙度线进行赋值,重新进行整个区域风资源模拟计算,直到其他测风点风速的模拟计算值与实测值的误差小于ε为止。
1%≤ε≤1.5%。
本发明所达到的有益效果:1、本发明对前期海上基本资料的需求相对比较简单常规,容易获取,这给实际工程中前期资料的准备工作带来了较大便利,在一定程度上能够缩短资料收集时间,降低工作难度;2、本发明可以实现实际工程中有关海面粗糙度简化取值的目的,并通过不断调整粗糙度线的方式使得模拟出的局部海域粗糙度变化规律更接近实际情况,避免了传统匀粗糙度法通常存在的以偏概全的缺陷,尤其是针对有特殊变化的局部海域,对提高整个海上区域风能评估结果的准确性具有非常明显的优势,为工程项目的开展提供了参考;3、本发明经过几个典型海上风电工程的实施证明,风能资源评估结果比较接近真实值,可操作性强,操作过程也比较简单方便,为海上风电工程风能资源的初步评估提供理论帮助。
附图说明
图1为本发明的流程图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,一种基于海面粗糙度的海上风电场风能评估方法,包括以下步骤:
步骤1,收集基本资料。
基本资料包括研究海域内所有测风塔/气象站的测风数据、场址区域及附近海域的地形图。
步骤2,检验基本资料。
收集的基本资料是否全面、能否直接使用需要经过检验确定,是确保后续工作正确开展的前提,基本资料检验包括测风数据有效完整性检验和地形图准确性检验。
测风数据有效完整性检验是指对各测风塔/气象站的测风数据分别进行统计分析,剔除缺测和无效测风数据后,分别计算各测风塔/气象站的测风数据有效完整率是否大于K%,若满足要求,则测风数据检验合格,否则对不满足要求的测风塔/气象站中的缺测和无效测风数据进行插补修正,然后重新检验直至全部测风塔/气象站的测风数据有效完整率大于K%,其中K最优取值为90。
地形图准确性检验是指对收集的地形图是否涵盖场址区域及附近海域的真实情况、有无关键地形的缺测问题进行核实,若地形图准确全面,则进行下一步计算,否则重新获取所缺的地形图。
步骤3,分析测风数据。
步骤4,根据分析后的测风数据制作测风资料文件。
步骤5,计算各局部海域粗糙度值。
计算各局部海域粗糙度值的过程为:
首先根据分析后的测风数据计算L米高度平均风速然后根据公式计算各局部海域粗糙度值,;
其中i表示各测风塔/气象站编号,为海域粗糙度值,f(·)表示一种以海上L米高度实测风速为变量的函数表达式,L最优取值为10,k为vonkarman常数,大部分学者认为近似取0.35。
步骤6,根据地形图和各局部海域粗糙度值,制作地形地貌文件。
制作的地形地貌文件准确性是否高是影响海上风电场风能评估结果准确性的重要制约因素,关键在于如何将现有的地形图资料处理成适用于软件计算的等效文件。
制作地形地貌文件的过程为:
首先根据准确的地形图以及各局部海域的粗糙度计算值,初步绘制场址区域及附近海域的粗糙度线,并定出粗糙度线两侧的粗糙度值;然后以某个测风点的测风资料文件为基础采用风资源模拟软件推出整个区域风资源模拟计算结果;最后检验其他测风点处风速的模拟计算值与实测值的误差是否小于ε,若不满足误差要求,则调整粗糙度线形状及位置,并重新对粗糙度线进行赋值,重新进行整个区域风资源模拟计算,直到其他测风点风速的模拟计算值与实测值的误差小于ε为止;其中,1%≤ε≤1.5%,当测点风速较大时,建议ε取下限值,当测点风速较大时,建议ε取上限值,具体ε的取值判定标准可根据实际情况在1%~1.5%范围内自行设定。
步骤7,风电场风能评估。
上述不仅对前期海上基本资料的要求相对较低,还可以实现实际工程中有关海面粗糙度简化取值的目的,与传统的匀粗糙度计算方法相比,通过不断调整粗糙度线的方式使得模拟出的局部海域粗糙度变化规律更接近实际情况,避免传统匀粗糙度法通常存在的以偏概全的缺陷,尤其是针对有特殊变化的局部海域,对提高整个海上区域风能评估结果的准确性具有非常明显的优势,为相关海上风电工程项目的开展提供了参考,经过几个典型海上风电工程的实施证明,风能资源评估结果比较接近真实值,可操作性强,操作过程也比较简单方便,为海上风电工程风能资源的初步评估提供理论帮助。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

1.一种基于海面粗糙度的海上风电场风能评估方法,其特征在于:包括以下步骤,
步骤1,收集基本资料;
所述基本资料包括研究海域内所有测风塔/气象站的测风数据、场址区域及附近海域的地形图;
步骤2,检验基本资料;
步骤3,分析测风数据;
步骤4,根据分析后的测风数据制作测风资料文件;
步骤5,计算各局部海域粗糙度值;
步骤6,根据地形图和各局部海域粗糙度值,制作地形地貌文件;
步骤7,风电场风能评估。
2.根据权利要求1所述的一种基于海面粗糙度的海上风电场风能评估方法,其特征在于:基本资料检验包括测风数据有效完整性检验和地形图准确性检验;
测风数据有效完整性检验是指对各测风塔/气象站的测风数据分别进行统计分析,剔除缺测和无效测风数据后,分别计算各测风塔/气象站的测风数据有效完整率是否大于K%,若满足要求,则测风数据检验合格,否则对不满足要求的测风塔/气象站中的缺测和无效测风数据进行插补修正,然后重新检验直至全部测风塔/气象站的测风数据有效完整率大于K%;
地形图准确性检验是指对收集的地形图是否涵盖场址区域及附近海域的真实情况、有无关键地形的缺测问题进行核实,若地形图准确全面,则进行下一步计算,否则重新获取所缺的地形图。
3.根据权利要求2所述的一种基于海面粗糙度的海上风电场风能评估方法,其特征在于:K=90。
4.根据权利要求1所述的一种基于海面粗糙度的海上风电场风能评估方法,其特征在于:步骤5中,计算各局部海域粗糙度值的过程为,
首先根据分析后的测风数据计算L米高度平均风速然后根据公式计算各局部海域粗糙度值;
其中i表示各测风塔/气象站编号,为海域粗糙度值,f(·)表示一种以海上L米高度实测风速为变量的函数表达式。
5.根据权利要求4所述的一种基于海面粗糙度的海上风电场风能评估方法,其特征在于:L=10。
6.根据权利要求1所述的一种基于海面粗糙度的海上风电场风能评估方法,其特征在于:步骤6中,制作地形地貌文件的过程为,
首先根据准确的地形图以及各局部海域的粗糙度计算值,初步绘制场址区域及附近海域的粗糙度线,并定出粗糙度线两侧的粗糙度值;然后以某个测风点的测风资料文件为基础采用风资源模拟软件推出整个区域风资源模拟计算结果;最后检验其他测风点处风速的模拟计算值与实测值的误差是否小于ε,若不满足误差要求,则调整粗糙度线形状及位置,并重新对粗糙度线进行赋值,重新进行整个区域风资源模拟计算,直到其他测风点风速的模拟计算值与实测值的误差小于ε为止。
7.根据权利要求6所述的一种基于海面粗糙度的海上风电场风能评估方法,其特征在于:1%≤ε≤1.5%。
CN201610209440.7A 2016-04-06 2016-04-06 一种基于海面粗糙度的海上风电场风能评估方法 Pending CN105825438A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610209440.7A CN105825438A (zh) 2016-04-06 2016-04-06 一种基于海面粗糙度的海上风电场风能评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610209440.7A CN105825438A (zh) 2016-04-06 2016-04-06 一种基于海面粗糙度的海上风电场风能评估方法

Publications (1)

Publication Number Publication Date
CN105825438A true CN105825438A (zh) 2016-08-03

Family

ID=56526693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610209440.7A Pending CN105825438A (zh) 2016-04-06 2016-04-06 一种基于海面粗糙度的海上风电场风能评估方法

Country Status (1)

Country Link
CN (1) CN105825438A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296462A (zh) * 2016-08-18 2017-01-04 中国能源建设集团江苏省电力设计院有限公司 一种基于双测风塔数据的既有风电场粗糙度值确定方法
CN106324275A (zh) * 2016-08-05 2017-01-11 国家海洋局第二海洋研究所 一种基于双视角光学遥感图像的海面风速探测方法
CN106408446A (zh) * 2016-09-06 2017-02-15 河海大学 一种近海风电场风能计算方法
CN106548414A (zh) * 2016-11-11 2017-03-29 中国能源建设集团江苏省电力设计院有限公司 一种海上风电场发电量计算方法
CN107194141A (zh) * 2017-03-24 2017-09-22 中国农业大学 一种区域风能资源精细化评估方法
CN107767030A (zh) * 2017-09-25 2018-03-06 浙江大学 一种基于多源遥感卫星风速校正的海上风能资源评估方法
CN113505406A (zh) * 2021-07-12 2021-10-15 中国海洋石油集团有限公司 一种海上平台挡风墙高度的设计方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797109B2 (en) * 2007-04-30 2010-09-14 Mote Marine Laboratory Method for determining and reporting the presence of red tide at beaches

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797109B2 (en) * 2007-04-30 2010-09-14 Mote Marine Laboratory Method for determining and reporting the presence of red tide at beaches

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
彭秀芳: ""风电场微观选址及数值模拟"", 《中国优秀硕士论文全文数据库》 *
彭秀芳等: ""海上风电场风能计算中关于海面粗糙度问题的探讨"", 《太阳能学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324275A (zh) * 2016-08-05 2017-01-11 国家海洋局第二海洋研究所 一种基于双视角光学遥感图像的海面风速探测方法
CN106296462A (zh) * 2016-08-18 2017-01-04 中国能源建设集团江苏省电力设计院有限公司 一种基于双测风塔数据的既有风电场粗糙度值确定方法
CN106296462B (zh) * 2016-08-18 2019-05-31 中国能源建设集团江苏省电力设计院有限公司 一种基于双测风塔数据的既有风电场粗糙度值确定方法
CN106408446A (zh) * 2016-09-06 2017-02-15 河海大学 一种近海风电场风能计算方法
CN106408446B (zh) * 2016-09-06 2019-07-12 河海大学 一种近海风电场风能计算方法
CN106548414A (zh) * 2016-11-11 2017-03-29 中国能源建设集团江苏省电力设计院有限公司 一种海上风电场发电量计算方法
CN106548414B (zh) * 2016-11-11 2020-03-10 中国能源建设集团江苏省电力设计院有限公司 一种海上风电场发电量计算方法
CN107194141A (zh) * 2017-03-24 2017-09-22 中国农业大学 一种区域风能资源精细化评估方法
CN107194141B (zh) * 2017-03-24 2020-04-24 中国农业大学 一种区域风能资源精细化评估方法
CN107767030A (zh) * 2017-09-25 2018-03-06 浙江大学 一种基于多源遥感卫星风速校正的海上风能资源评估方法
CN113505406A (zh) * 2021-07-12 2021-10-15 中国海洋石油集团有限公司 一种海上平台挡风墙高度的设计方法

Similar Documents

Publication Publication Date Title
CN105825438A (zh) 一种基于海面粗糙度的海上风电场风能评估方法
US11649803B2 (en) Method of identification and compensation of inherent deviation of yaw error of wind turbine based on true power curve
Kalmikov et al. Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis
CN104036121B (zh) 基于概率分布转移的测风数据风速订正方法
Zhang et al. Analysis of wind characteristics and wind energy potential in complex mountainous region in southwest China
CN106650618A (zh) 一种基于随机森林模型的人口数据空间化方法
Juan et al. Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas
CN102254239A (zh) 基于微地形风场分布及台风叠加效应的电网风灾预警系统
CN111967205A (zh) 一种基于风加速因子的测风塔微观选址方法
CN106779201A (zh) 一种考虑高原山区风机位置的风速建模方法
CN108491630A (zh) 一种基于大气稳定度风向标准差法的风速外推方法
CN106296462B (zh) 一种基于双测风塔数据的既有风电场粗糙度值确定方法
Shao et al. A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China
CN106649987B (zh) 一种测风塔设立方案的定量分析方法
CN110598939A (zh) 一种提高测风效率及测风系统可靠性的方法
Bashaer et al. Investigation and analysis of wind turbines optimal locations and performance in Iraq
WO2022033490A1 (zh) 一种通过添加k源项来校正标准k-ε模型的方法
CN111080003B (zh) 一种适应复杂山地风电场的测风塔规划选址方法
CN111666725A (zh) 一种适应非复杂地形风电场的测风塔规划选址方法及系统
CN106408446B (zh) 一种近海风电场风能计算方法
WO2022166510A1 (zh) 风电场前期测风塔规划选址方法、系统、装置及存储介质
CN111753680B (zh) 一种基于高分辨率卫星数据的河流生态流量保障程度遥感快速判别方法
Dicopoulos et al. Weather Research and Forecasting model validation with NREL specifications over the New York/New Jersey Bight for offshore wind development
CN113283100B (zh) 一种陆上风资源数字信息化开发方法
Agharabi et al. Optimal location of microturbines in low-rise building blocks for sustainable wind energy utilization (case study: Qazvin city)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160803

RJ01 Rejection of invention patent application after publication