CN105823432A - 非连续加工表面系统误差和随机误差分离方法 - Google Patents

非连续加工表面系统误差和随机误差分离方法 Download PDF

Info

Publication number
CN105823432A
CN105823432A CN201610266532.9A CN201610266532A CN105823432A CN 105823432 A CN105823432 A CN 105823432A CN 201610266532 A CN201610266532 A CN 201610266532A CN 105823432 A CN105823432 A CN 105823432A
Authority
CN
China
Prior art keywords
error
random
random error
systematic
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610266532.9A
Other languages
English (en)
Other versions
CN105823432B (zh
Inventor
张发平
杨吉彬
吴迪
张凌雲
张体广
张田会
阎艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201610266532.9A priority Critical patent/CN105823432B/zh
Publication of CN105823432A publication Critical patent/CN105823432A/zh
Application granted granted Critical
Publication of CN105823432B publication Critical patent/CN105823432B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种非连续加工表面系统误差和随机误差分离方法,属于机械加工领域。本发明针对现有方法无法应用于非连续表面误差分离的问题,提供一种高效的非连续加工表面系统误差和随机误差分离方法。该方法包含系统误差和随机误差的初步分离和精确分离两个步骤:通过划分网格和插值拟合从非连续加工表面形貌误差中获取系统误差,再将表面形貌误差和系统误差求差获取随机误差,得到初步分离结果;通过不断增加网格数量,认定系统误差信息熵稳定时的系统误差和随机误差分离结果为精确分离结果。本发明适用于对分布着孔、槽的非连续加工表面进行误差分离;且对误差分离的效率高,分离结果精确。

Description

非连续加工表面系统误差和随机误差分离方法
技术领域
本发明涉及一种非连续加工表面系统误差和随机误差分离方法,属于机械加工领域。
背景技术
零件在加工过程必然会引入加工误差,对零件的加工精度造成一定程度的影响。加工过程引入的误差包括两类:系统误差和随机误差。系统误差是由加工过程中特定模式误差源作用而形成的,例如热误差、定位和装夹误差等;随机误差是由加工过程工艺系统内部和外部的无规律噪声作用形成的。
为了提高零件的加工精度,需要对引入的加工误差以误差补偿的方式抵消,实现误差补偿需要事先确定待补偿的误差的规律。系统误差由于是由特定的误差源作用形成的,其在空间的表现是满足一定规律的,可以利用误差补偿的方式消除;而随机误差是由不确定的因素形成的,规律难寻,不是误差补偿的对象。因此,通过误差补偿提高零件加工精度的首要条件是将零件加工后的系统误差和随机误差分离开。
当前大部分的误差分离是以连续的零件表面为研究对象,而实际上更多的零件表面分布着孔、槽等,是非连续的表面。对连续表面使用插值、拟合得到系统误差的方法对于非连续表面是无效的。这是因为算法中的变量默认是连续的,这样会导致在不连续的位置也产生对应的插值、拟合结果。因此,有必要研究针对非连续表面的插值、拟合算法。
发明内容
本发明针对现有方法无法应用于非连续表面误差分离的问题,提供一种高效的非连续加工表面系统误差和随机误差分离方法。
本发明的目的是通过下述技术方案实现的。
非连续加工表面系统误差和随机误差分离方法的具体步骤如下:
步骤1.非连续加工表面误差的初步分离
1-1小三角形面片的获取
首先要通过测量获取的非连续加工表面形貌误差E的数据,利用Delaunay三角剖分算法对表面形貌的测量数据进行操作,得到多个小三角形面片。每个小三角形面片对应的三个顶点V1,V2,V3,三个顶点V1,V2,V3分别有三维坐标:V1=(Vx1,Vy1,Vz1),V2=(Vx2,Vy2,Vz2),V3=(Vx3,Vy3,Vz3)。
1-2网格的划分
对加工表面进行网格划分,将表面划分为多个小的长方形网格。
1-3网格节点高度值的拟合
将每个小三角形面片投影到XY平面上。计算长方形网格节点到其所在的小三角形面片投影的三个顶点的距离权重w,w是一个包含三个元素的向量,w=(w1,w2,w3)。wi(i=1,2,3)的值与长方形网格节点到小三角形面片投影顶点的距离成反比,且有w1+w2+w3=1。
长方形网格节点对应的拟合高度值
Z=w1×Vz1+w2×Vz2+w3×Vz3(1)
1-4系统误差和随机误差的初步分离
所有网格节点的拟合高度值集合Es={Z1,Z2,…ZN}构成了系统误差Es,N表示全部的网格节点数目。测量获取的非连续加工表面形貌误差E为系统误差与随机误差之和,则随机误差由式(2)求得
Er=E-Es(2)
步骤2.非连续加工表面误差的精确分离方法
2-1系统误差和随机误差的信息熵计算
基于1-2中的网格数量,初步分离得到系统误差和随机误差。将误差值映射到(0,256)区间范围内,通过式(3)得到系统误差和随机误差的信息熵。
H s = Σ i = 0 256 - 1 P s i log 2 P s i H r = Σ i = 0 256 - 1 P r i log 2 P r i - - - ( 3 )
其中,Psi和Pri分别表示系统误差和随机误差第i个映射值出现的概率。
2-2系统误差和随机误差的精确分离
逐渐增加网格数量,重复步骤1和步骤2-1,观察系统误差和随机误差信息熵的波动情况,直到两次计算的系统误差的信息熵稳定。通过此过程,认定系统误差信息熵稳定时的系统误差和随机误差分离结果为精确结果。
有益效果
1、本发明的非连续加工表面系统误差和随机误差分离方法,适用于对分布着孔、槽的非连续加工表面进行误差分离。
2、本发明的非连续加工表面系统误差和随机误差分离方法,对误差的分离效率高,分离结果精确。
附图说明
图1为通过测量获取的非连续加工表面形貌误差部分数据;
图2为获取的多个小三角形面片;
图3为系统误差和随机误差信息熵随网格数不同的波动情况;
图4为系统误差和随机误差精确的分离结果;
图5为系统误差的自相关函数图像;
图6为随机误差的自相关函数图像;
图7为本发明的操作流程图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明:
实施例1
非连续加工表面系统误差和随机误差分离方法,具体步骤如下:
步骤1.非连续加工表面误差的初步分离方法
1-1小三角形面片的获取
首先要通过测量获取非连续加工表面形貌误差E的数据,如图1所示。利用Delaunay三角剖分算法对表面形貌的测量数据进行操作,得到多个小三角形面片,如图2所示。每个小三角形面片对应的三个顶点V1,V2,V3,三个顶点V1,V2,V3分别有三维坐标:V1=(Vx1,Vy1,Vz1),V2=(Vx2,Vy2,Vz2),V3=(Vx3,Vy3,Vz3)。
1-2网格的划分
对加工表面进行网格划分,图1、图2中的虚线表示网格。现将表面划分为11×5共55个小的长方形网格。
1-3网格节点高度值的拟合
将每个小三角形面片投影到XY平面上。计算长方形网格节点到其所在的小三角形面片投影的三个顶点的距离权重w,w是一个包含三个元素的向量,w=(w1,w2,w3)。wi(i=1,2,3)的值与长方形网格节点到小三角形面片投影顶点的距离成反比,且有w1+w2+w3=1。
长方形网格节点对应的拟合高度值
Z=w1×Vz1+w2×Vz2+w3×Vz3(1)
1-4系统误差和随机误差的初步分离
所有网格节点的拟合高度值集合Es={Z1,Z2,…ZN}构成了系统误差Es,N表示全部的网格节点数目。测量获取的非连续加工表面形貌误差E为系统误差与随机误差之和,则随机误差由式(2)求得
Er=E-Es(2)
步骤2.非连续加工表面误差的精确分离方法
2-1系统误差和随机误差的信息熵计算
基于1-2中的网格数量,初步分离得到系统误差和随机误差。将误差值映射到(0,256)区间范围内,通过式(3)得到系统误差和随机误差的信息熵。
H s = Σ i = 0 256 - 1 P s i log 2 P s i H r = Σ i = 0 256 - 1 P r i log 2 P r i - - - ( 3 )
Psi和Pri分别表示系统误差和随机误差第i个映射值出现的概率。
2-2系统误差和随机误差的精确分离
逐渐增加网格数量,重复步骤1和步骤2-1,观察系统误差和随机误差信息熵的波动情况,如表1和图3所示。在网格总数为1980时,系统误差的信息熵稳定,此时获取的系统误差和随机误差的准确度高,系统误差和随机误差如图4所示。
表1系统误差和随机误差的信息熵与网格数量变化关系
通过计算得到的系统误差和随机误差的自相关函数,得到各自的自相关图像,如图5和图6所示。可以看出,系统误差的自相关图像具有多个峰值,表明有多种模态;而随机误差的自相关图像则只有在初始位置的峰值,其余位置无峰值,表明随机误差属于噪声成分。系统误差和随机误差的自相关函数图像证明了本发明提出的误差分离方法的准确性。

Claims (2)

1.非连续加工表面系统误差和随机误差分离方法,其特征在于:具体步骤如下:
步骤一、小三角形面片的获取
首先要通过测量获取的非连续加工表面形貌误差E的数据,利用Delaunay三角剖分算法对表面形貌的测量数据进行操作,得到多个小三角形面片;每个小三角形面片对应的三个顶点V1,V2,V3,三个顶点V1,V2,V3分别有三维坐标:V1=(Vx1,Vy1,Vz1),V2=(Vx2,Vy2,Vz2),V3=(Vx3,Vy3,Vz3);
步骤二、网格的划分
对加工表面进行网格划分,将表面划分为多个小的长方形网格;
步骤三、网格节点高度值的拟合
将每个小三角形面片投影到XY平面上;计算长方形网格节点到其所在的小三角形面片投影的三个顶点的距离权重w,w是一个包含三个元素的向量,w=(w1,w2,w3);wi(i=1,2,3)的值与长方形网格节点到小三角形面片投影顶点的距离成反比,且有w1+w2+w3=1;
长方形网格节点对应的拟合高度值
Z=w1×Vz1+w2×Vz2+w3×Vz3(1)
步骤四、系统误差和随机误差的分离
所有网格节点的拟合高度值集合Es={Z1,Z2,…ZN}构成了系统误差Es,N表示全部的网格节点数目;测量获取的非连续加工表面形貌误差E为系统误差与随机误差之和,则随机误差由式(2)求得
Er=E-Es(2)。
2.非连续加工表面系统误差和随机误差分离方法,其特征在于:具体步骤如下:
步骤1.非连续加工表面误差的初步分离
1-1小三角形面片的获取
首先要通过测量获取的非连续加工表面形貌误差E的数据,利用Delaunay三角剖分算法对表面形貌的测量数据进行操作,得到多个小三角形面片;每个小三角形面片对应的三个顶点V1,V2,V3,三个顶点V1,V2,V3分别有三维坐标:V1=(Vx1,Vy1,Vz1),V2=(Vx2,Vy2,Vz2),V3=(Vx3,Vy3,Vz3);
1-2网格的划分
对加工表面进行网格划分,将表面划分为多个小的长方形网格;
1-3网格节点高度值的拟合
将每个小三角形面片投影到XY平面上;计算长方形网格节点到其所在的小三角形面片投影的三个顶点的距离权重w,w是一个包含三个元素的向量,w=(w1,w2,w3);wi(i=1,2,3)的值与长方形网格节点到小三角形面片投影顶点的距离成反比,且有w1+w2+w3=1;
长方形网格节点对应的拟合高度值
Z=w1×Vz1+w2×Vz2+w3×Vz3(1)
1-4系统误差和随机误差的初步分离
所有网格节点的拟合高度值集合Es={Z1,Z2,…ZN}构成了系统误差Es,N表示全部的网格节点数目;测量获取的非连续加工表面形貌误差E为系统误差与随机误差之和,则随机误差由式(2)求得
Er=E-Es(2)
步骤2.非连续加工表面误差的精确分离方法
2-1系统误差和随机误差的信息熵计算
基于1-2中的网格数量,初步分离得到系统误差和随机误差;将误差值映射到(0,256)区间范围内,通过式(3)得到系统误差和随机误差的信息熵;
其中,Psi和Pri分别表示系统误差和随机误差第i个映射值出现的概率;
2-2系统误差和随机误差的精确分离
逐渐增加网格数量,重复步骤1和步骤2-1,观察系统误差和随机误差信息熵的波动情况,直到两次计算的系统误差的信息熵稳定;通过此过程,认定信息熵稳定时的系统误差和随机误差分离结果为精确结果。
CN201610266532.9A 2016-04-26 2016-04-26 非连续加工表面系统误差和随机误差分离方法 Expired - Fee Related CN105823432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610266532.9A CN105823432B (zh) 2016-04-26 2016-04-26 非连续加工表面系统误差和随机误差分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610266532.9A CN105823432B (zh) 2016-04-26 2016-04-26 非连续加工表面系统误差和随机误差分离方法

Publications (2)

Publication Number Publication Date
CN105823432A true CN105823432A (zh) 2016-08-03
CN105823432B CN105823432B (zh) 2018-06-19

Family

ID=56527501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610266532.9A Expired - Fee Related CN105823432B (zh) 2016-04-26 2016-04-26 非连续加工表面系统误差和随机误差分离方法

Country Status (1)

Country Link
CN (1) CN105823432B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437151A (en) * 1982-04-16 1984-03-13 Deere & Company Coordinate measuring machine inspection and adjustment method
CN102554704A (zh) * 2011-12-29 2012-07-11 渤海造船厂集团有限公司 非连续平面平面度在线测量系统和方法
CN102853757A (zh) * 2012-09-24 2013-01-02 大连海事大学 一种平面形状误差在线测量系统和方法
CN102853780A (zh) * 2012-09-07 2013-01-02 厦门大学 抛光工件表面轮廓各频段误差的分离方法
CN103192292A (zh) * 2013-04-11 2013-07-10 济南大学 基于加工工件曲面形貌信息的数控机床误差辨识分离方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437151A (en) * 1982-04-16 1984-03-13 Deere & Company Coordinate measuring machine inspection and adjustment method
CN102554704A (zh) * 2011-12-29 2012-07-11 渤海造船厂集团有限公司 非连续平面平面度在线测量系统和方法
CN102853780A (zh) * 2012-09-07 2013-01-02 厦门大学 抛光工件表面轮廓各频段误差的分离方法
CN102853757A (zh) * 2012-09-24 2013-01-02 大连海事大学 一种平面形状误差在线测量系统和方法
CN103192292A (zh) * 2013-04-11 2013-07-10 济南大学 基于加工工件曲面形貌信息的数控机床误差辨识分离方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄浩 等: "轴对称非球面加工误差分离及补偿技术", 《机械工程学报》 *

Also Published As

Publication number Publication date
CN105823432B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
EP3444560B1 (en) Three-dimensional scanning system and scanning method thereof
WO2021129317A1 (zh) 一种基于法向量的点云平滑光顺滤波方法
CN106875435B (zh) 获取深度图像的方法及系统
CN102654391B (zh) 基于光束平差原理的条纹投影三维测量系统及其标定方法
CN110006372B (zh) 一种基于局部优化的三维点云平面度计算方法
US9185401B2 (en) Method and apparatus for camera network calibration with small calibration pattern
CN103256916B (zh) 一种基于最小区域的零件平面度误差评定方法
CN103900583A (zh) 用于即时定位与地图构建的设备和方法
CN104392426A (zh) 一种自适应的无标志点三维点云自动拼接方法
CN104903677A (zh) 用于将使用不同深度成像技术生成的深度图像合并的方法和装置
WO2014059250A1 (en) System and method to emulate finite element model based prediction of in-plane distortions due to semiconductor wafer chucking
EP3859395A1 (en) Three-dimensional image sensing system and related electronic device, and time-of-flight ranging method
CN102436676A (zh) 一种智能视频监控的三维重建方法
CN103994746A (zh) 三坐标测量机测量平面度的测点选取方法
WO2023241374A1 (zh) 双目立体匹配方法、计算机存储介质以及电子设备
Tushev et al. Architecture of industrial close-range photogrammetric system with multi-functional coded targets
CN103913114B (zh) 双目视觉系统间的位置关联方法
CN111047652A (zh) 一种快速的多tof相机外参标定方法和装置
CN109041209B (zh) 基于rssi的无线传感器网络节点定位误差优化方法
CN105823432A (zh) 非连续加工表面系统误差和随机误差分离方法
Zhu et al. A simple approach of range-based positioning with low computational complexity
CN110779544B (zh) 一种多无人机自定位和对目标定位的双任务深度配合方法
JPWO2021193672A5 (zh)
CN104680016A (zh) 基于几何优化逼近的抛物线轮廓最小区域拟合方法
Steger Estimating the fundamental matrix under pure translation and radial distortion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180619

Termination date: 20190426

CF01 Termination of patent right due to non-payment of annual fee