CN105822516A - 提高霍尔推力器电离效率的气体流动控制方法 - Google Patents

提高霍尔推力器电离效率的气体流动控制方法 Download PDF

Info

Publication number
CN105822516A
CN105822516A CN201610239531.5A CN201610239531A CN105822516A CN 105822516 A CN105822516 A CN 105822516A CN 201610239531 A CN201610239531 A CN 201610239531A CN 105822516 A CN105822516 A CN 105822516A
Authority
CN
China
Prior art keywords
gas
steam vent
outlet structure
gas distributor
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610239531.5A
Other languages
English (en)
Other versions
CN105822516B (zh
Inventor
丁永杰
魏立秋
于达仁
李鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610239531.5A priority Critical patent/CN105822516B/zh
Publication of CN105822516A publication Critical patent/CN105822516A/zh
Application granted granted Critical
Publication of CN105822516B publication Critical patent/CN105822516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0087Electro-dynamic thrusters, e.g. pulsed plasma thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

提高霍尔推力器电离效率的气体流动控制方法,涉及等离子体推进技术领域。为了解决现有霍尔推力器放电通道内部中性气体停留时间过短导致的电离效率低的问题。采用气体分配器、导向出气结构或气体分配器和导向出气结构,气体分配器和导向出气结构均为环形结构且能使气体具有周向速度分量,气体分配器和导向出气结构均固定于放电通道的上游部,气体分配器的轴线、导向出气结构的轴线和放电通道的轴线均重合,气体分配器位于上游部的上游,导向出气结构位于上游部的下游。本发明有效的增加电离效率,本发明适用于霍尔推力器。

Description

提高霍尔推力器电离效率的气体流动控制方法
技术领域
本发明涉及等离子体推进技术领域。
背景技术
电推进具有比冲高、寿命长、结构紧凑、体积小、污染轻等优点,因此逐渐受到航天界的注意和青睐。其中霍尔推力器和离子推力器是目前应用最为广泛的空间电推进装置。霍尔推力器是利用电场与磁场的共同作用将电能转化为工质动能的一种功能转化装置,阴极发射的部分电子进入放电室,在正交的径向磁场与轴向电场的共同作用下做指向阳极的周向漂移,漂移方向与电场和磁场方向有关,漂移过程中会与从气体分配器出来的Xe原子碰撞,电离Xe原子。电离产生的离子由于质量大,其运动轨迹基本不受磁场影响,在轴向电场的作用下其沿轴向高速喷出,从而产生推力。在此过程中电子通过各种传导机制到达阳极,在通道内实现了稳定的等离子体放电过程,形成了持续稳定的推力。
目前制约霍尔推力器性能进一步提升的关键技术之一就是电离效率问题。阴极发射的电子,在向阳极运动的过程中从轴向电场中加速获得能量,当能量高于工质原子电离阀值的电子与原子碰撞时,原子被电离。电离效率与电子温度,电子-原子碰撞频率,中性原子停留时间相关。为保证工质充分电离,必须保证中性气体在通道内停留时间足够长,与做周向霍尔漂移运动的电子充分碰撞电离。中性气体的控制主要通过改变气体分配器或通道结构来实现,特别是气体分配器的设计。现有气体分配器喷气主要依赖于多个小直径孔,以实现径向、轴向喷气,但中性气体在通道内的停留时间仍然不够长,电离效率仍然很低。
发明内容
本发明是为了解决现有霍尔推力器放电通道内部中性气体停留时间过短导致的电离效率低的问题,从而提供提高霍尔推力器电离效率的气体流动控制方法。
提高霍尔推力器电离效率的气体流动控制方法,采用气体分配器、导向出气结构或气体分配器和导向出气结构,气体分配器和导向出气结构均为环形结构且能使气体具有周向速度分量,气体分配器和导向出气结构均固定于放电通道的上游部,气体分配器的轴线、导向出气结构的轴线和放电通道的轴线均重合,气体分配器位于上游部的上游,导向出气结构位于上游部的下游。
一方面,中性气体流经气体分配器或导向出气结构后都可以获得一定的周向速度分量,同时在放电通道前后压差的作用下轴向加速,表现为绕通道内壁面的螺旋线运动,绕行方向与气体分配器或导向出气结构的气流偏转方向有关;而由霍尔推力器的工作原理可知,放电通道内部同时存在正交的径向磁场与轴向电场,阴极发射的部分电子进入放电通道,在正交电磁场的共同作用下做指向阳极的周向漂移,控制磁场方向使电子漂移方向与中性原子周向旋转方向相反,增加了电子-原子碰撞频率。另一方面,中性气体流经气体分配器或导向出气结构,轴向速度分量有一定程度减小,增加了中性原子在放电通道中的停留时间,因此提高了霍尔推力器的电离效率。
本发明的有益效果:
一、电离效率的提高
增加中性气体周向速度分量,中性原子与电子的反向螺旋线运动增加了碰撞几率,同时减小了轴向速度分量,增加了通道内部中性气体停留时间,相当于增加了放电通道内部的中性气体密度,经证实电离效率增长了5%。
二、推力和比冲的增加
电离效率的提高,意味相同工质流量产生更多离子,离子在电场加速作用下产生推力,因此增加了霍尔推力器的推力及比冲。
本发明适用于霍尔推力器。
附图说明
图1是背景技术中的霍尔推力器的结构示意图;
1为推进剂入口,2为气体分配器,3为放电通道,4为阳极,5为磁力线,6为外线圈,7为内线圈,8为附加线圈,P为放电通道的轴线;
图2是具体实施方式一中的采用具有周向出气结构的气体分配器的放电通道内部原子数分布图;横坐标为相对位置,纵坐标为气体密度值,单位为个/立方米;
图3是具体实施方式一中的采用具有轴向出气结构的气体分配器的放电通道内部原子数分布图;横坐标为相对位置,纵坐标为气体密度值,单位为个/立方米;
图4是具体实施方式一中的采用具有径向出气结构的气体分配器的放电通道内部原子数分布图;横坐标为相对位置,纵坐标为气体密度值,单位为个/立方米;
图5是具体实施方式二中的气体分配器的立体结构示意图;
图6是具体实施方式二中的气体分配器的主视图;
图7是图6的A-A向剖示图;
图8是图5的B-B向示意图;
图9是图7中C的局部放大图;9-3为内壁上的排气孔,9-4外壁上的排气孔;
图10是具体实施方式五中的气体分配器的立体结构示意图;
图11是具体实施方式五中的气体分配器的主视图;
图12是图11的D-D向剖示图;
图13是图12中E的局部放大图;9-5为第一排的排气孔,9-6为第二排的排气孔;
图14是具体实施方式五中的导向出气结构的立体结构示意图;
图15是具体实施方式五中的导向出气结构的主视图;
图16是图15的左视图;
图17为具体实施方式一中的气体分配器和导向出气结构在环形固定件中的立体结构示意图;
图18为具体实施方式一中的气体分配器和导向出气结构在环形固定件中的主视图;
图19为图18的左视图;
图20为图19的F-F向剖示图,11为气体分配器,12为导向出气结构。
具体实施方式
具体实施方式一:参照图2至图4、图17至图20具体说明本实施方式,本实施方式所述的提高霍尔推力器电离效率的气体流动控制方法,采用气体分配器、导向出气结构或气体分配器和导向出气结构,气体分配器和导向出气结构均为环形结构且能使气体具有周向速度分量,气体分配器和导向出气结构均固定于放电通道的上游部,气体分配器的轴线、导向出气结构的轴线和放电通道的轴线均重合,气体分配器位于上游部的上游,导向出气结构位于上游部的下游。
如图2至图4为利用COMSOL软件模拟得到的放电通道内部原子数分布情况,图2对应采用本实施方式的具有周向出气结构的气体分配器,图3对应采用现有技术存在的具有轴向出气结构的气体分配器,图4对应采用现有技术存在的具有径向出气结构的气体分配器,可以看出采用本实施方式的气体分配器,放电通道内的气体密度大于其他两种现有出气方式。
气体分配器和导向出气结构均通过环形固定件固定于霍尔推力器中,如图17至图20所示。环形固定件的内径、外径分别与放电通道内外径相等。
具体实施方式二:本实施方式是对具体实施方式一所述的提高霍尔推力器电离效率的气体流动控制方法作进一步说明,本实施方式中,气体分配器包括多组气体分配室9和分配器基体10,分配器基体10为圆环结构,多组气体分配室9在分配器基体10的周向均匀分布,每组气体分配室9包括至少一级缓冲器和排气孔;各级缓冲器依次沿轴向分布;
每级缓冲器包括至少一个进气孔9-1和缓冲腔9-2;
进气孔与缓冲腔依次沿轴向分布,进气孔9-1与缓冲腔9-2相通,最后一级缓冲腔9-2上设有使气体具有周向速度分量的排气孔。
图9中包括两级缓冲器,气体由一级进气孔进入一级缓冲腔,均化后由二级进气孔进入二级缓冲腔,充分均化后经由排气孔喷入放电通道。中性气体具有一定周向速度喷入放电通道,同时在通道前后压差的作用下轴向加速,表现为绕通道内壁面的螺旋线运动;阴极发射的部分电子进入放电室,在正交的径向磁场与轴向电场的共同作用下做指向阳极的周向漂移,控制磁场方向使电子漂移方向与中性原子周向旋转方向相反,增强电子-原子碰撞频率。
二级进气孔的数量无严格限制,可为30-60个;排气孔的数量无严格限制,保证出气均匀即可。
具体实施方式三:参照图5至图9具体说明本实施方式,本实施方式是对具体实施方式二所述的提高霍尔推力器电离效率的气体流动控制方法作进一步说明,本实施方式中,排气孔设置在缓冲腔的内壁、外壁或内壁和外壁上,所述多组气体分配室9的排气孔形成至少一排排气孔,每排排气孔在分配器基体10的内壁或外壁的周向均匀分布,内壁上的排气孔和外壁上的排气孔的轴线均平行于垂直于气体分配器轴向的横向平面,内壁上的排气孔和外壁上的排气孔的倾斜方向相反,外壁上的排气孔的轴线与气体分配器径向的夹角为a,内壁上的排气孔的轴线与气体分配器径向的夹角为β,a=β。
a与β相同,保证工质具有相同的周向速度分量,保证工质电离均匀。
具体实施方式四:参照图8具体说明本实施方式,本实施方式是对具体实施方式三所述的提高霍尔推力器电离效率的气体流动控制方法作进一步说明,本实施方式中,45°≤a≤85°。
排气孔的轴线与气体分配器径向的夹角理论上越大越好(越大越接近完全周向速度喷气),本实施方式的角度范围为45°-85°。
具体实施方式五:参照图10至图13具体说明本实施方式,本实施方式是对具体实施方式二所述的提高霍尔推力器电离效率的气体流动控制方法作进一步说明,本实施方式中,排气孔设置在缓冲腔的下游端面上,所述多组气体分配室9的排气孔形成至少一排排气孔,每排排气孔在气体分配器的下游端面的周向均匀分布,排气孔轴线与气体分配器轴线的夹角为γ。
具体实施方式六:本实施方式是对具体实施方式五所述的提高霍尔推力器电离效率的气体流动控制方法作进一步说明,本实施方式中,45°≤γ≤85°。
具体实施方式七:参照图14至图16具体说明本实施方式,本实施方式是对具体实施方式一所述的提高霍尔推力器电离效率的气体流动控制方法作进一步说明,本实施方式中,导向出气结构包括内圆环13、外圆环15和多个导向板14,内圆环13和外圆环15之间均匀固定多个导向板14,导向板14与导向出气结构轴线的夹角的范围为45°-85°。
中性气体流经具有气流偏转作用的导向板14可以获得周向速度分量,在放电通道前后压差的作用下轴向加速,轨迹为绕通道内壁面的螺旋线运动。导向出气结构的布置灵活,可以调整导向出气结构的轴向位置,避免中性气体到达霍尔推力器电离区前,由于原子间相互碰撞以及和壁面碰撞导致周向速度分量消失的问题。导向板14偏转角度气流的偏转角度越大,偏转角度越大越好,本实施方式的角度范围45-85度。导向板14焊接在内圆环13和外圆环15之间。
具体实施方式八:本实施方式是对具体实施方式七所述的提高霍尔推力器电离效率的气体流动控制方法作进一步说明,本实施方式中,导向板14采用弯扭叶片实现。

Claims (8)

1.提高霍尔推力器电离效率的气体流动控制方法,其特征在于,采用气体分配器、导向出气结构或气体分配器和导向出气结构,气体分配器和导向出气结构均为环形结构且能使气体具有周向速度分量,气体分配器和导向出气结构均固定于放电通道的上游部,气体分配器的轴线、导向出气结构的轴线和放电通道的轴线均重合,气体分配器位于上游部的上游,导向出气结构位于上游部的下游。
2.根据权利要求1所述的提高霍尔推力器电离效率的气体流动控制方法,其特征在于,气体分配器包括多组气体分配室(9)和分配器基体(10),分配器基体(10)为圆环结构,多组气体分配室(9)在分配器基体(10)的周向均匀分布,每组气体分配室(9)包括至少一级缓冲器和排气孔;各级缓冲器依次沿轴向分布;
每级缓冲器包括至少一个进气孔(9-1)和缓冲腔(9-2);
进气孔与缓冲腔依次沿轴向分布,进气孔(9-1)与缓冲腔(9-2)相通,最后一级缓冲腔(9-2)上设有使气体具有周向速度分量的排气孔。
3.根据权利要求2所述的提高霍尔推力器电离效率的气体流动控制方法,其特征在于,排气孔设置在缓冲腔的内壁、外壁或内壁和外壁上,所述多组气体分配室(9)的排气孔形成至少一排排气孔,每排排气孔在分配器基体(10)的内壁或外壁的周向均匀分布,内壁上的排气孔和外壁上的排气孔的轴线均平行于垂直于气体分配器轴向的横向平面,内壁上的排气孔和外壁上的排气孔的倾斜方向相反,外壁上的排气孔的轴线与气体分配器径向的夹角为a,内壁上的排气孔的轴线与气体分配器径向的夹角为β,a=β。
4.根据权利要求3所述的提高霍尔推力器电离效率的气体流动控制方法,其特征在于,45°≤a≤85°。
5.根据权利要求2所述的提高霍尔推力器电离效率的气体流动控制方法,其特征在于,排气孔设置在缓冲腔的下游端面上,所述多组气体分配室(9)的排气孔形成至少一排排气孔,每排排气孔在气体分配器的下游端面的周向均匀分布,排气孔轴线与气体分配器轴线的夹角为γ。
6.根据权利要求5所述的提高霍尔推力器电离效率的气体流动控制方法,其特征在于,45°≤γ≤85°。
7.根据权利要求1所述的提高霍尔推力器电离效率的气体流动控制方法,其特征在于,导向出气结构,包括内圆环(13)、外圆环(15)和多个导向板(14),内圆环(13)和外圆环(15)之间均匀固定多个导向板(14),导向板(14)与导向出气结构轴线的夹角的范围为45°-85°。
8.根据权利要求7所述的提高霍尔推力器电离效率的气体流动控制方法,其特征在于,导向板(14)采用弯扭叶片实现。
CN201610239531.5A 2016-04-18 2016-04-18 提高霍尔推力器电离效率的气体流动控制方法 Active CN105822516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610239531.5A CN105822516B (zh) 2016-04-18 2016-04-18 提高霍尔推力器电离效率的气体流动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610239531.5A CN105822516B (zh) 2016-04-18 2016-04-18 提高霍尔推力器电离效率的气体流动控制方法

Publications (2)

Publication Number Publication Date
CN105822516A true CN105822516A (zh) 2016-08-03
CN105822516B CN105822516B (zh) 2020-03-06

Family

ID=56526155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610239531.5A Active CN105822516B (zh) 2016-04-18 2016-04-18 提高霍尔推力器电离效率的气体流动控制方法

Country Status (1)

Country Link
CN (1) CN105822516B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640569A (zh) * 2016-11-21 2017-05-10 北京控制工程研究所 一种易装配的双层孔板式气体分配器
CN107165793A (zh) * 2017-06-12 2017-09-15 北京航空航天大学 一种电推进发动机气体分配器
WO2018071472A1 (en) * 2016-10-11 2018-04-19 Hayes Thomas Allen Radial electro-magnetic system for the conversion of small hydrocarbon molecules to larger hydrocarbon molecules using a rotational chemical reactor/separator chamber
CN108457827A (zh) * 2018-03-16 2018-08-28 哈尔滨工业大学 一种磁聚焦霍尔推力器的旋流出气结构
CN108953087A (zh) * 2018-08-07 2018-12-07 金群英 一种包括多个储气室的霍尔推进器
CN109026580A (zh) * 2018-08-07 2018-12-18 柳盼 一种霍尔推进器气体推进剂的输送方法
CN112012897A (zh) * 2020-08-12 2020-12-01 北京控制工程研究所 一种霍尔推力器高温端轴向间隙调整结构
CN113357109A (zh) * 2021-06-30 2021-09-07 哈尔滨工业大学 一种射频离子推力器点火装置
CN114412740A (zh) * 2022-02-25 2022-04-29 哈尔滨工业大学 霍尔推力器的轴对称进气结构
CN114458565A (zh) * 2022-04-12 2022-05-10 国科大杭州高等研究院 一种霍尔推力器供气管路的气路分压绝缘方法及其应用
CN114837909A (zh) * 2022-06-08 2022-08-02 北京星辰空间科技有限公司 一种霍尔电推力器阳极气体分配器
CN115711208A (zh) * 2022-11-22 2023-02-24 哈尔滨工业大学 一种适合高比冲后加载霍尔推力器的供气结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456011B1 (en) * 2001-02-23 2002-09-24 Front Range Fakel, Inc. Magnetic field for small closed-drift ion source
CN102493937A (zh) * 2011-12-15 2012-06-13 哈尔滨工业大学 能自清洗放电通道污染膜的霍尔推力器及其自清洗方法
RU2458249C1 (ru) * 2011-03-31 2012-08-10 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Способ очистки рабочей части ускорительного канала стационарного плазменного двигателя от продуктов эрозии

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456011B1 (en) * 2001-02-23 2002-09-24 Front Range Fakel, Inc. Magnetic field for small closed-drift ion source
RU2458249C1 (ru) * 2011-03-31 2012-08-10 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Способ очистки рабочей части ускорительного канала стационарного плазменного двигателя от продуктов эрозии
CN102493937A (zh) * 2011-12-15 2012-06-13 哈尔滨工业大学 能自清洗放电通道污染膜的霍尔推力器及其自清洗方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018071472A1 (en) * 2016-10-11 2018-04-19 Hayes Thomas Allen Radial electro-magnetic system for the conversion of small hydrocarbon molecules to larger hydrocarbon molecules using a rotational chemical reactor/separator chamber
CN106640569A (zh) * 2016-11-21 2017-05-10 北京控制工程研究所 一种易装配的双层孔板式气体分配器
CN106640569B (zh) * 2016-11-21 2019-10-22 北京控制工程研究所 一种易装配的双层孔板式气体分配器
CN107165793B (zh) * 2017-06-12 2019-10-01 北京航空航天大学 一种电推进发动机气体分配器
CN107165793A (zh) * 2017-06-12 2017-09-15 北京航空航天大学 一种电推进发动机气体分配器
CN108457827A (zh) * 2018-03-16 2018-08-28 哈尔滨工业大学 一种磁聚焦霍尔推力器的旋流出气结构
CN109026580A (zh) * 2018-08-07 2018-12-18 柳盼 一种霍尔推进器气体推进剂的输送方法
CN108953087A (zh) * 2018-08-07 2018-12-07 金群英 一种包括多个储气室的霍尔推进器
CN112012897A (zh) * 2020-08-12 2020-12-01 北京控制工程研究所 一种霍尔推力器高温端轴向间隙调整结构
CN113357109A (zh) * 2021-06-30 2021-09-07 哈尔滨工业大学 一种射频离子推力器点火装置
CN114412740A (zh) * 2022-02-25 2022-04-29 哈尔滨工业大学 霍尔推力器的轴对称进气结构
CN114412740B (zh) * 2022-02-25 2022-11-01 哈尔滨工业大学 霍尔推力器的轴对称进气结构
CN114458565A (zh) * 2022-04-12 2022-05-10 国科大杭州高等研究院 一种霍尔推力器供气管路的气路分压绝缘方法及其应用
CN114837909A (zh) * 2022-06-08 2022-08-02 北京星辰空间科技有限公司 一种霍尔电推力器阳极气体分配器
CN115711208A (zh) * 2022-11-22 2023-02-24 哈尔滨工业大学 一种适合高比冲后加载霍尔推力器的供气结构

Also Published As

Publication number Publication date
CN105822516B (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
CN105822516A (zh) 提高霍尔推力器电离效率的气体流动控制方法
US9897079B2 (en) External discharge hall thruster
RU2620880C2 (ru) Двигатель на эффекте холла
CN102678500B (zh) 一种磁等离子体推力器
CN111852802B (zh) 一种霍尔效应环型离子推力器
US9854660B2 (en) Ion accelerators
JPH04229996A (ja) 閉電子ドリフトを持つプラズマ加速器
CN104093978A (zh) 霍尔效应推进器
CN103397991A (zh) 一种基于多级尖端会切磁场的等离子体推力器
US9394889B2 (en) Chemical-electromagnetic hybrid propeller with variable specific impulse
CN111219307B (zh) 一种霍尔推力器阳极结构
CN108457827A (zh) 一种磁聚焦霍尔推力器的旋流出气结构
CN111219308A (zh) 一种电离和加速分离的双阴极霍尔推力器
CN112727720A (zh) 一种基于旋转磁场加速的无电极等离子体推力器
CN106693876A (zh) 一种超声速喷管
CN111306024B (zh) 一种基于侧壁会切磁场的微波离子推进装置
CN115711209B (zh) 补偿式气体分配器及电推力器
WO2017119501A1 (ja) プラズマ加速装置およびプラズマ加速方法
WO2023027679A1 (ru) Стационарный ионно-плазменный двигатель
CN111765149A (zh) 一种基于电场作用的轴向扰动的涡环发生器
CN109915282B (zh) 应用于火箭基组合循环发动机的自适应火箭喷管
CN116412095A (zh) 霍尔推力器的轴对称供气气体分配器
CN114576654B (zh) 一种航空发动机、燃烧室及其头部结构
CN114607531B (zh) 一种中心筒外圈开槽的小流量针栓式喷注器
CN112718283B (zh) 真空电扫多场赋能超音速沉积喷枪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant