CN105813743B - 丁二烯短链聚合催化剂前体的制备 - Google Patents

丁二烯短链聚合催化剂前体的制备 Download PDF

Info

Publication number
CN105813743B
CN105813743B CN201480066623.7A CN201480066623A CN105813743B CN 105813743 B CN105813743 B CN 105813743B CN 201480066623 A CN201480066623 A CN 201480066623A CN 105813743 B CN105813743 B CN 105813743B
Authority
CN
China
Prior art keywords
short chain
catalyst
chain polymerization
palladium
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480066623.7A
Other languages
English (en)
Other versions
CN105813743A (zh
Inventor
H·N·洛奈
J·L·克林肯贝格
J·R·布里格斯
S·E·豪斯
M·C·范恩格乐
L·G·赖特
G·巴尔
W·汉森
J·富埃尔特斯卡贝略
I·伦吉尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN105813743A publication Critical patent/CN105813743A/zh
Application granted granted Critical
Publication of CN105813743B publication Critical patent/CN105813743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2419Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising P as ring member
    • B01J31/2438Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising P as ring member and further hetero atoms as ring members, excluding the positions adjacent to P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2461Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as ring members in the condensed ring system or in a further ring
    • B01J31/248Bridged ring systems, e.g. 9-phosphabicyclononane
    • B01J31/2485Tricyclic systems, e.g. phosphaadamantanes and hetero analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/38Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes
    • C07C2/40Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes of conjugated dienes
    • C07C2/403Catalytic processes
    • C07C2/406Catalytic processes with hydrides or organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

使用含有1‑甲氧基‑2,7‑辛二烯和烷醇的溶剂共混物而非单独所述烷醇来制备适用于丁二烯短链聚合的催化剂前体。

Description

丁二烯短链聚合催化剂前体的制备
本申请案主张2013年12月13日提交的美国临时申请案第61/915,781号的权益。
技术领域
本发明大体上涉及丁二烯短链聚合催化剂前体的制备。
背景技术
美国专利(US)8,558,030 B2揭示一种用于使丁二烯短链聚合的方法,其包括在钯催化剂和由式PAr3表示的膦配位体存在下,使丁二烯与由式ROH表示的有机羟基化合物接触,其中R是被取代或未被取代的C1-C20烃基,并且有机羟基化合物在反应流体中不是丙三醇,其中每一Ar独立地是在至少一个邻位置上具有氢原子的被取代或未被取代的芳基,至少两个Ar基是邻烃基氧基取代的芳基。膦配位体具有总计2、3、4、5或6个被取代或未被取代的C1-C20烃基氧基,并且任选地,Ar基上的两个邻近取代基可以键结以形成5元到7元环。
制备用于使丁二烯短链聚合以产生1-辛烯的催化剂前体的典型方法涉及将1当量的乙酰丙酮钯([Pd(acac)2])和2当量的三芳基膦(PAr3)(例如,三苯基膦(TPP)或三(5-氯-2-甲氧苯基)膦(TCMPP))分批地溶解于甲醇中。这种前体通过也在前催化剂溶液配制期间添加的乙酸稳定化,产生可溶于甲醇并且呈+2氧化态的盐。在短链聚合反应条件下,含钯(Pd)(II)催化剂前体似乎在1,3-丁二烯存在下由甲醇中的甲氧基钠促进剂还原成表示为[Pd(PPh3)2]的钯(0)双膦络合物。随后添加1,3-丁二烯导致形成(PPh3)1-钯-(辛二烯基)络合物或(PPh3)2-钯-(辛二烯基)络合物。进一步与甲醇的反应导致形成1-甲氧基-2,7-辛二烯(MOD-1)或3-甲氧基-1,7-辛二烯(MOD-3)。在如25摄氏度(℃)到60℃范围内的低温下,由于钯(II)物质还原成活性钯(0)络合物,因此反应可以包括诱导期。这种还原可以比短链聚合反应更缓慢地发生,并且因此在短链聚合反应达到最大速率之前产生诱导期。需要减少、优选地基本上减少并且更优选消除诱导期。
Hausoul等人在“在1,3-丁二烯的Pd/PR3-催化短链聚合中便捷获取关键反应性中间物(Facile Access to Key Reactive Intermediates in the Pd/PR3-CalalyzedTelomerization of 1,3-Butadiene)”,《德国应用化学(Angew.Chem.Int.Ed)》,2010,49,7971-7975中指出1,3-二烯的钯催化短链聚合是重要的原子的有效转化,其提供经济上有吸引力的途径以产生C8大宗化学品,如1-辛醇和1-辛烯。Hausoul报道了催化剂络合物的制备,所述催化剂络合物包括膦配位体,如PPh3(三苯基膦)、TOMPP(三(2-甲氧苯基)膦)和TPPTS(3,3′,3″-次膦基三(苯磺酸)三钠盐)。制备使用溶剂混合物,如二氯甲烷和甲醇的1∶1体积混合物。
Benn等人在“1,3-二烯的钯催化反应中的中间物。2.(η1,η3-辛二烯二基)钯络合物的制备和结构(Intermediates in the Palladium-Catalyzed Reactions of 1,3-Dienes.2.Preparation and Structure of(η1,η3-Octadiendiyl)palladiumComplexes)”,《有机金属化合物(Organometallics)》1985,4,1945-1953中报道了通过使双(n3-2-甲基烯丙基)钯与供体配位体和丁二烯或异戊二烯反应,并且四氢呋喃(THF)作为溶剂,来制备一系列(η1,η3-辛二烯二基)钯络合物,[Pd(L)(η1,η3-C8H12)]和[Pd(L)η1,η3-Me2C8H10)]。
Behr等人在“在丁二烯的短链聚合反应中辛二烯基桥接的钯的双金属络合物作为中间物(Octadienyl-Bridged Bimetallic Complexes of Palladium as Intermediatesin Telomerization Reactions of Butadiene)”,《有机金属化合物》1986,5,514-518中论述了使用如甲醇、THF或苯的溶剂来制备标题化合物。
Hausoul等人在“1,3-丁二烯与基于生物质量的醇的钯/TOMPP催化短链聚合的机制研究:关于膦烷基化的可逆性(Mechanistic Study of the Pd/TOMPP-CatalyzedTelomerization of 1,3-Butadiene with Biomass-Based Alcohols:On theReversibility of Phosphine Alkylation)”,《催化化学(ChemCatChem)》2011,3,845-852中公开若干催化剂系统的测试,其中重点在于Pd/TOMPP(三(2-甲氧苯基)膦)。-
Vollmüller等人在用于合成精细化学品的钯催化反应,16,丁二烯与甲醇的高度有效的钯催化短链聚合(Palladium-Catalyzed Reactions for the Synthesis of FineChemicals,16,Highly Efficient Palladium-Catalyzed Telomerization of Butadienewith Methanol)”,《高级合成催化剂(Adv.Synth.Catal.)》2001,343,第1期,第29-33页中详述了在氩气下使用甲醇来由三苯基膦和乙酸钯(II)制备催化剂前体。
Jackstell等人在“用于1,3-丁二烯的钯催化短链聚合的工业上可行的催化剂系统(An Industrially Viable Catalyst System for Palladium-CatalyzedTelomerizations of 1,3-Butadiene with Alcohols)”,《欧洲化学杂志(Chem.Eur.J.)》2004,10,3891-3900中描述了在制备催化剂前体中使用甲醇。
Vollmüller等人在“用于合成精细化学品的钯催化反应,14,丁二烯与甲醇的钯催化短链聚合中的化学和区位选择性的控制(Palladium-Catalyzed Reactions for theSynthesis of Fine Chemicals,14,Control of Chemo-and Regioselectivity in thePalladium-Catalyzed Telomerization of Butadiene with Methanol)-《催化和机制(Catalysis and Mechanism)》,2000,8,1825-1832中使用单(膦)钯(0)-二烯丙基醚络合物-Ar3P-Pd(CH2=CHCH2)2O-作为催化剂,以在亲核试剂(在这种情况下为甲醇)存在下使1,3-二烯(尤其丁二烯)二聚合。MOD-1是初级产物,但MOD-3和其它物质作为副产物存在。Vollmüller等人陈述在进入催化剂循环之前,催化剂不需要被活化(例如,通过配位体分解、还原等),但未论述预催化剂的稳定性。
Hausoul等人在“1,3-丁二烯的Pd/TOMPP-催化短链聚合的机制研究:芳香族溶剂对双膦络合物形成和区位选择性的影响(Mechanistic study of the Pd/TOMPP-Catalyzed Telomerization of 1,3-Butadiene:Influence of Aromatic Solvents onBis-Phosphine Complex Formation and Regio Selectivity)”,《有机金属化合物》,2013,32,第5047-5057页中对1,3-丁二烯与酚(如对甲酚、愈创木酚和甲氧甲酚)的Pd/TOMPP-催化短链聚合进行了报道。
欧洲专利说明书(EP)0 561 779 B1(Bohley等人)涉及一种用于制备1-辛烯的方法。所述方法包含:i)在包含钯的短链聚合催化剂和叔磷配位体化合物存在下,使1,3-丁二烯与伯脂肪族醇(例如,甲醇、乙醇、丙醇、丁醇、乙二醇、丙二醇和丙三醇)或具有式R-H的芳香族羟基化合物(例如,酚、苯甲醇、甲氧甲酚、二甲酚、萘酚,多羟基化合物,如间苯二酚、对苯二酚和邻苯二酚,以及经烷基、烷氧基和/或卤素取代的芳香族化合物,如甲氧基酚和对氯酚)反应,以形成式CH2=CH-CH2-CH2-CH2-CH=CH-CH2-R的1-取代-2,7-辛二烯,其中R表示伯脂肪族醇或芳香族羟基化合物的残基;ii)在氢化催化剂存在下使1-取代-2,7-辛二烯经历氢化,以形成式CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-R的1-取代辛烷;和iii)在适合催化剂存在下分解1-取代辛烷以形成1-辛烯。钯(II)化合物和钯(0)络合物均可以用作催化剂。催化剂促进剂,如碱金属或碱土金属盐似乎有利。′779教示在所述方法中可以使用将溶解1,3-丁二烯、含活性氢的化合物和催化剂、配位体和任选的促进剂组分的任何溶剂。合适的惰性溶剂是(环)-烷烃;芳香族化合物;极性溶剂,如叔醇、酰胺、腈化合物、酮、酯化合物、醚化合物、二甲亚砜、环丁砜和水。虽然温度不关键,但其通常在环境温度与150℃之间,优选50-100℃,并且更优选70-100℃。压力不关键,但一般在1与40巴之间,优选在5与30巴之间并且最优选在10与20巴之间。
发明内容
在一些方面,本发明是一种用于制备用于使丁二烯短链聚合的短链聚合催化剂前体的方法,其包含在足以产生催化剂前体溶液的条件下,将1当量乙酰丙酮钯和1到3当量的膦溶解于包含甲醇和1-甲氧基-2,7-辛二烯的溶剂共混物中,所述催化剂前体溶液包含以式子表示为[(ArnPR(3-n))xPdY]或[(ArnPR(3-n))xPdY]+的芳基膦-钯辛二烯基络合物,其中R是烷基或具有1个到12个碳原子的含杂原子烷基部分,Ar是芳基部分或被取代的芳基部分,x=1或2,n=1、2或3,并且Y是衍生自甲氧基辛二烯的配位体,并且其中例示性配位体在不存在电荷时包括1-甲氧基-2,7-辛二烯(MOD-1),或当存在正电荷时是辛二烯基。由这种方法产生的催化剂前体出人意料地直接进入不需要活化步骤或诱导期的短链聚合反应器催化循环。活化步骤的消除相当于转化率和容量的增加。另外,这种催化剂前体比在不存在1-甲氧基-2,7-辛二烯(MOD-1)的情况下制备的催化剂前体更稳定。在正常的预催化剂存放条件(0.1wt%到1wt%的Pd含量,0℃到100℃、优选5℃到60℃范围内的温度,和0psig(0KPa)到30psig(206.8KPa)范围内的压力)下,Pd(II)络合物缓慢地还原成中性钯(0)络合物,如Pd(PPh3)3或Pd(TCMPP)2(CH2=C{(C=O)Me}2。这些Pd络合物基本上比最初形成的Pd络合物更难溶于甲醇中,并且可以沉淀于它们所接触的过程设备表面,导致堵塞。MOD-1的添加赋予一定程度的抗性以形成所述不可溶络合物,由此相对于仅甲醇作为溶剂的催化剂前体制备来改良方法可操作性和可靠性。
在一些方面,本发明是一种用于制备用于使丁二烯短链聚合的短链聚合催化剂前体的方法,其包含在足以产生催化剂前体溶液的条件下,将1当量乙酰丙酮钯和1到3当量、优选1到2当量的叔膦配位体溶解于包含甲醇和任选的1-甲氧基-2,7-辛二烯的溶剂中,其中叔膦配位体以式子表示为R1PR2,并且其中R1是芳基部分或被取代的芳基部分或烷基部分或具有1个到12个碳原子的含杂原子烷基部分,其中杂原子是氧,并且R2独立地是杂环氧杂金刚烷基。
含膦的杂环氧杂金刚烷基(PR2)适合地如下文所示示意性地表示,其中R1如上文所定义:
例示性杂环氧杂金刚烷基配位体是1,3,5,7-四甲基-6-苯基-2,4,8-三氧杂-6-磷杂金刚烷(TMPTPA)。
在一些方面,足以产生催化剂前体溶液的条件包括0摄氏度(℃)到100℃、优选5℃到60℃范围内的温度。
在一些方面,膦的当量数是1或2。
在一些方面,溶剂共混物具有以总溶剂共混物重量计,0.1重量百分比(wt%)到50wt%范围内的1-甲氧基-2,7-辛二烯含量。在相关方面中,溶剂共混物具有以总溶剂共混物重量计10wt%到25wt%范围内的1-甲氧基-2,7-辛二烯含量。
在一些方面,催化剂前体溶液具有按钯金属计以总催化剂前体溶液重量计在0.02wt%到2wt%、优选0.02wt%到1.5wt%、更优选0.1wt%到1wt%并且再更优选地0.25wt%到0.6wt%范围内的钯浓度。
在一些方面,足以产生上文所指出的前体的条件包括1当量/钯到500当量/钯的MOD-1浓度,0℃到100℃范围内的温度,和1小时到1000小时范围内的反应时间。一般说来,随着温度和MOD-1浓度中的任一者或两者的增加,前体形成变得更快速。可以调节任一者或两者来为转化率提供适宜时间。一般来说为了商用,适宜地前体以2-100小时形成,但这不是绝对必要的。100小时或小于100小时的反应时间可以在30℃到60℃的温度下实现,其中MOD-1浓度是10-50wt%(以0.1重量百分比的钯计,约75-400摩尔当量)。本发明的各种方面的方法具有效用,因为它们产生催化剂前体,其进入短链聚合反应之前需要极少的诱导时间,优选地不需要诱导时间。
适用于方法并且适用于制备催化剂前体的配位体包括以式子表示为ArnPR(3-n)的叔芳基膦,其中n=1-3,并且Ar独立地选自由被取代或未被取代的芳香族基团组成的群组。用于被取代的芳香族基团的例示性取代基包括烷基、芳基、烷芳基、芳烷基、烷氧基、卤、硅烷基和氨基。叔芳基膦可以与其它被取代或被取代的碳环或杂环芳香族或脂肪族环稠合。R选自被取代或未被取代的烷基的群组,并且可以含有额外杂原子,如氧、氮、硅和硫。在n=1情况下,R基可以连接以形成碳环状或杂环状环或聚碳环状或聚杂环状环。此外,R和Ar基可以连接以形成环。
其它合适的配位体包括以式子表示为R1PR2的叔膦,其中R1是芳基部分或被取代的芳基部分或烷基部分或含杂原子烷基部分,并且R2独立地是杂环氧杂金刚烷基。用于被取代的芳香族基团的例示性取代基包括烷基、芳基、烷芳基、芳烷基、烷氧基、卤、硅烷基和氨基。当R1是烷基时,合适的基团包括伯、仲或叔C1-C12(一个到十二个碳原子)基,其中的每一个可以含有杂原子,如氧、氮、硅和硫。在制备催化剂前体溶液中,所述其它合适的配位体得益于使用含有MOD-1的溶剂共混物,但它们中的一些在无MOD-1(它们的性能为可接受的)的情况下足够快速地反应。
通过在足以制备一定量的催化剂前体的条件下,在最低程度上,使Pd来源(优选乙酰丙酮钯)、一个或多个当量的叔膦配位体、烷醇(优选甲醇)和甲氧基辛二烯(优选1-甲氧基-2,7-辛二烯)混在一起来制备催化剂前体溶液,所述催化剂前体含有或包含钯、叔芳基膦配位体和衍生自甲氧基辛二烯的配位体,并且可以由式[(ArnPR(3-n))xPdY]0或[(ArnPR(3-n))xPdY]+表示,其中n=1-3,并且x=1或2,并且Y是衍生自甲氧基辛二烯的配位体。在本发明的一些方面中,配位体Y可以是辛二烯基。条件包括上文所指出的那些条件。
在制备催化剂前体溶液中,甲氧基辛二烯的合适的量在约0.1wt%(在0.1重量%钯下,约1摩尔当量)到50wt%(在0.1重量百分比的钯下,约400摩尔当量)范围内,在每一种情况下重量百分比以总催化剂前体溶液重量计。溶剂共混物具有以总溶剂共混物重量计,优选10重量百分比到50重量百分比范围内的1-甲氧基-2,7-辛二烯含量。在最低程度上,量足以将用于形成催化剂前体溶液的以上最少组分中的至少一些转化成催化剂前体,其中足以将所有所述组分转化成催化剂前体的量为优选的。在后一种情况下,使用的甲氧基辛二烯的量至少为钯量的当量摩尔化学计算量。举例来说,如果Pd构成0.1wt%的催化剂溶液,那么甲氧基辛二烯应以至少0.1wt%的量存在,每一wt%以总催化剂溶液重量计。相对于Pd量,更大量的甲氧基辛二烯可以并且频繁地用以尤其引起MOD-1改质的催化剂前体以比在当量摩尔化学计算量下可以获得的速率更快的速率形成。
具体实施方式
通用实验程序
在用于进行短链聚合反应的通用程序中,将二正丁基醚(GC内标)(Bu2O)、甲醇、甲基环己烷(MeCy)溶剂、如下文详述所制备的预催化剂储备溶液(1毫升(mL))和0.5mL的0.01932摩尔浓度的甲氧基钠(有时称为甲醇钠)(NaOMe)于甲醇中的溶液放置在费歇尔-波特(Fischer-Porter)瓶中。除非另外说明,否则以14摩尔浓度水平存在的MeOH进行反应,调整瓶子中的其它组分(也称为“试剂”)以考虑反应化学的变化。用配备有隔膜端口的阀密封瓶子。手套箱外,将大约5mL丁二烯蒸馏进入气密注射器,通过在将丁二烯经由隔膜用注射器针头注入瓶子之前和之后称重注射器来确定注射器中丁二烯的实际量,所述注射器针头放置在瓶子内容物表面的下方。将含丁二烯的瓶子放置在配备有磁性搅拌棒的预加热油浴(如下文所示,40℃、60℃或70℃)中,并且使得瓶子的内容物反应经选择的时间段(例如,4小时)。在开始反应后30分钟、1小时、2小时和4小时对瓶子内容物取样,以产生转化率对比时间曲线,来判定是否存在或不存在诱导期。使用配备有气密阀的24英寸(61cm)针头来从瓶子抽取样品以用于气相色谱分析。
实例(Ex)1:制备TCMPP预催化剂储备溶液
使用手套箱,将0.0147克(g)(0.0000483摩尔)的乙酰丙酮钯[(Pd(acac)2]、0.0440g(0.0000966摩尔)配位体、0.134g(0.00096摩尔)MOD-1和0.25mL乙酸(AcOH)于甲醇(0.1932M)中的储备溶液溶解于大约24.75mL甲醇中,到25mL总体积,并且使用前使得所得预催化剂储备溶液在环境温度(名义上25℃)下搅拌至少三天。将配位体示意性地表示为:
比较实例(CEx)A:
如Ex 1中制备预催化剂储备溶液,但省略MOD-1。Ex 2
在40℃下使用Ex 1中所制备的预催化剂储备溶液来进行短链聚合反应。在下表1中展示分析结果。
表1
CEx B
重复Ex 2,但使用CEx A中所制备的预催化剂储备溶液的等分试样。在下表2中展示分析结果。
表2
CEx C
重复Ex 1,但将MOD-1的量从10当量/钯变到约1200当量/钯,并且使用每摩尔当量的Pd(acac)2一摩尔当量的TCMPP。
CEx D:重复Ex 3,但省略MOD-1。1CEx E
在70℃下使用CEx C中所制备的预催化剂溶液的等分试样来进行短链聚合反应。在下表3中展示分析结果。
表3
CEx F
在70℃下使用CEx D中所制备的预催化剂溶液的等分试样来进行短链聚合反应。在下表4中展示分析结果。
表4
这些比较实例经包括以表明预催化剂的MOD-1改质低效的条件。在这些实例中,与未改质的相反实例相比,MOD-1改质的预催化剂不太有效并且转化更少的丁二烯。很可能在相对于钯1000+当量MOD-1的这个方案内,存在MOD-1的显著抑制。
Ex 3:
重复Ex 1,但使用在下文示意性地表示的配位体1,3,5,7-四甲基-6-苯基-2,4,8-三氧杂-6-磷杂金刚烷(TMPTPA)而非TCMPP。
由这种溶液制备两种预催化剂储备溶液。
Ex 3.1:
对于第一预催化剂储备溶液,取25mL溶液中的5mL并且添加(0.0170g,0.000122摩尔)MOD-1以提供预催化剂储备溶液。
Ex 3.2
对于第二预催化剂储备溶液,使用如所制备的Ex 3的储备溶液的等分试样。
Ex 4
在40℃下使用Ex 5.1中所制备的预催化剂储备溶液的等分试样来进行短链聚合反应。在下表5中展示分析结果。
表5
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 13.4 93.6 12.5
1小时 33.1 95.5 31.6
2小时 45.1 95.3 42.9
4小时 56.9 95.1 54.1
CEx G
重复Ex 4,但使用Ex 3.2的预催化剂储备溶液的等分试样。在下表6中展示分析结果。
表6
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 1.9 61.6 1.2
1小时 2.0 65.8 1.3
2小时 4.8 84.1 4.0
4小时 44.0 95.2 41.9
Ex 5.
使用来自Ex 3.1的预催化剂储备溶液,但改变通用程序以包括1.0mL甲氧基钠储备溶液和12mL甲醇。在40℃下进行短链聚合反应。在下表7中展示分析结果。
表7
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 41.1 96.0 39.5
1小时 51.5 95.7 49.2
2小时 65.1 95.3 62.0
4小时 76.7 95.1 72.9
CEx H
重复Ex 5但使用来自Ex 3.2的预催化剂储备溶液。在下表8中展示分析结果。
表8
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 3.1 76.3 2.4
1小时 7.3 88.2 6.4
2小时 9.6 90.3 8.7
4小时 65.3 95.1 62.1
Ex 6
重复Ex 1,但使用以配位体的一半摩尔浓度的配位体TMPTPA。
CEx I
重复Ex 6但不添加MOD-1。
Ex 7
在40℃下使用来自Ex 6的预催化剂储备溶液的等分试样来进行短链聚合反应。在下表9中展示分析结果。
表9
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 64.1 94.7 60.7
1小时 77.9 95.2 74.9
2小时 84.1 95.1 80.0
4小时 90.0 95.0 85.5
CEx J
在40℃下使用来自CEx I的预催化剂溶液的等分试样来进行短链聚合反应。在下表10中展示分析结果。
表10
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 33.6 92.9 31.2
1小时 54.3 94.6 51.4
2小时 71.0 95.0 67.4
4小时 81.3 94.7 77.0
Ex 8:
重复Ex 1,但将配位体变成在下文示意性地表示的1,3,5,7-四甲基-6-(2-甲氧苯基)-2,4,8-三氧杂-6-磷杂金刚烷(TMPTPA-OMe),将MOD-1当量的量变到10,并且将TMPTPA-OMe的摩尔当量减到一半(1当量/Pd)。:
CEx K
重复Ex 8,但省略MOD-1。
Ex 9
在40℃下使用Ex 8中所制备的预催化剂溶液的等分试样来进行短链聚合反应。在下表11中展示分析结果。
表11
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 15.2 95.1 14.5
1小时 36.3 96.4 35.0
2小时 63.6 96.7 61.5
4小时 81.2 96.7 78.5
CEx L
在40℃下使用CEx K中所制备的预催化剂溶液的等分试样来进行短链聚合反应。在下表12中展示分析结果。
表12
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 1.5 74.0 1.1
1小时 4.6 89.9 4.1
2小时 18.2 95.4 17.4
4小时 50.7 96.5 48.9
Ex 10
在70℃下使用Ex 8中所制备的预催化剂溶液的等分试样来进行短链聚合反应。在下表13中展示分析结果。
表13
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 70.9 94.9 67.3
1小时 83.4 95.0 79.2
2小时 90.2 94.9 85.6
4小时 93.0 94.9 88.3
CEx M
在70℃下使用CEx K中所制备的预催化剂溶液的等分试样来进行短链聚合反应。在下表14中展示分析结果。
表14
时间 丁二烯转化率(%) MOD-1选择率(%) MOD-1产率(%)
30min 55.5 94.5 52.4
1小时 73.6 94.5 69.6
2小时 89.0 94.5 84.1
4小时 95.3 94.5 90.1
从以上实例和比较实例的回顾出现值得注意的几点。第一,在催化剂前体准备在短链聚合中起活性作用之前,MOD-1添加到甲醇以产生溶剂共混物使得持续时间至少实质性地降低,并且在一些情况下使得诱导期消除。第二,在低于70℃的反应温度下,使用溶剂共混物(甲醇和MOD-1)来制备短链聚合催化剂前体使得相对于在不存在MOD-1(仅甲醇)的情况下制备的短链聚合催化剂前体所获得的转化率丁二烯总转化率增加至少10%。第三,短链聚合催化剂前体是稳定的,因为其在实例(Ex 1-12)中所规定的条件下未形成从溶液沉淀出的固体,然而在除使用甲醇而非甲醇和MOD-1的共混物以外的相同条件下,可视觉辨别的量的短链聚合催化剂前体有效地从溶液沉淀出。本发明短链聚合催化剂前体的增强的稳定性具有经济益处,因为可以降低其制备所用的配位体的量。
Ex 11:制备MOD-1改质的催化剂
使用1加仑实验室反应器来制备预催化剂溶液。操作反应器,其中反应器夹套设定点温度是35℃,并且甲醇冷凝器设定点温度是5℃。用53.9g TCMPP和17.9g Pd(acac)2装载反应器,并且随后在0.5scfh(14.2升/小时)下用N2吹扫反应器。用1480.5g甲醇装载溶剂储罐并且用N2喷射储罐。在18mL/min下历经30分钟将419g甲醇转移到反应器中。在580rpm下开始搅拌反应器内容物。在152mL/min下历经7分钟将额外838g甲醇转移到反应器中。在持续搅拌下将乙酸水溶液(3.71g乙酸+1.59g水)添加到反应器中。在151mL/min下历经6分钟将剩余甲醇(223.5g)、随后493.5g MOD-1添加到反应器中。将反应器N2吹扫速率降低到0.15-0.25scfh(4.3-7.1升/小时)。整体预催化剂组成表示为:1.00/2.01/1.04的Pd/TCMPP/乙酸摩尔比和0.31wt%的钯浓度。允许预催化剂溶液在35℃下在580rpm下搅拌22天,在第1天、第8天、第15天和第22天对预催化剂溶液进行取样以用于短链聚合活性评估。视觉观测展示历经578小时的时段无固体沉淀的迹象。
在第1天使用Pressure-lokTM气密注射器取反应器内容物的样品,并且将样品转移到维持于小于1ppm氧气下的手套箱中。通过P31 NMR光谱分析(在-40℃下,400兆赫(MHz),历经2到4小时的采集时间,添加大约10%的D4甲醇作为锁溶剂)定期确定所述样品的组成。通过加热的溶剂浴或通过手套箱空调来控制反应器内容物温度。在反应的时间标度内定期进行温度测量,以确认温度被控制到±1℃。在一些情况下,添加内标三苯基氧化膦,因此可以确定绝对浓度。P31 NMR组成数据参见下表15。
表15
*TCMPP如果是游离配位体,那么TCMPP氧化物是氧化膦,鏻是[(2-OMe,5-Cl-C6H3)3P(CH2CH=CHCH2CH2CH2CH=CH2)]+,初始预催化剂是{(2-OMe,5-Cl-C6H3)3P}2Pd(乙酰基丙酮酸盐)]+,MOD-1改质的催化剂是[(ArnPR(3-n))xPdY],
这个Ex 11(具有MOD-1添加)展示初始预催化剂历经约70小时转化成MOD-1改质的催化剂,其后不发生其它显著变化。无显示形成[Pd(TCMPP)2(CH2=C{(C=O)Me}2]的可辨别迹象。
下表16展示与不经MOD-1处理的控制催化剂的性能相比较,MOD-1改质的催化剂的催化剂活性和选择率。
表16
这个数据展示预催化剂转化成新的稳定的络合物,[(ArnPR(3-n))xPdY],其在60℃下在短链聚合中呈现经改良活性,其中诱导期减少。
CEx K-O:来自未改质预催化剂溶液的固体沉淀
重复Ex 11,其中钯络合物的变化如下表17中所示并且消除MOD-1。对催化剂溶液的目视检查展示固体([Pd(TCMPP)2(CH2=C{(C=O)Me}2)在338小时时在1加仑反应器中在20℃下开始从溶液沉淀出,其中初始钯浓度为大约0.31重量百分比。在较小标度下在手套箱中在另外类似的条件下,从溶液的沉淀在大约310小时时开始(CEx L)。下表17展示未由MOD-1添加改质的催化剂的沉淀时间。
表17
CEx K-O展示缺乏使用MOD-1的改质,固体沉淀发生,使得最初形成的预催化剂转化成新的很大程度上不可溶的物质,[Pd(TCMPP)2(CH2=C{(C=O)Me}2]。不可溶的物质可以反过来结垢过程设备。
CEx P
将2wt%经分离固体[Pd(TCMPP)2(CH2=C{(C=O)Me}2]添加到新鲜制备的预催化剂溶液中,并且在手套箱中搅拌半小时,以使得固体溶解并且实现固-液平衡。立即的P31NMR分析展示在室温(名义上20℃)下溶液中的钯(0)络合物浓度是0.08wt%。
Ex 12
在手套箱中,将脱气冰乙酸(AcOH)(55.3μL)溶解于脱气MeOH中,到5mL体积(0.1932M AcOH于MeOH中)以形成AcOH溶液。将乙酰丙酮钯(II)(Pd(acac)2)(0.0110g,0.0000362摩尔)、2,3-(二氢苯并呋喃-7-基)二苯基膦(DHBDPP,下文说明)(0.0220g,0.0000724摩尔)和0.1875mL的AcOH溶液溶解于15.0mL MeOH和3.6mL MOD-1中,以形成预催化剂储备溶液。使用前,使得预催化剂溶液在25℃下搅拌6天。
将二丁基醚(Bu2O,5mL)、12.8M MeOH(10.96mL)、无水脱气甲基环己烷(MeCy,1.6mL)、预催化剂储备溶液(1mL)和甲氧基钠(NaOMe)(1.0mL)于MeOH(0.01932M)中的溶液的一部分添加到费舍尔-波特瓶中。用配备有隔膜端口的阀密封费舍尔-波特瓶。
使用以上所指出的通用实验程序,40℃温度,4小时的反应时间和在30分钟、60分钟、120分钟和240分钟时抽样,随后GC分析,以评估MOD-1改质的预催化剂的性能。针对所述性能的概述,参见下表18。
CEx Q
重复Ex 12,但消除MOD-1添加,将乙酰丙酮钯(II)((Pd(acac)2)的量变到0.0980g(0.00003217摩尔),DHBDPP的量变到0.0196g(0.00006441摩尔)并且AcOH溶液变成0.167mLAcOH于16.5mL MeOH中。
Ex 13
重复Ex 12,但将油浴温度变到60℃。
CEx R
重复CEx Q,但将油浴温度变到60℃。
Ex 14
重复Ex 12,但具有以下变化:在制备预催化剂溶液中,使用以下量:0.0147g(0.0000483摩尔)Pd(acac)2,0.250mL的AcOH储备溶液,20mL MeOH和4.75mLMOD-1;用三苯基膦(TPP,下文示意性地展示)(0.0253g,0.0000965摩尔)取代DHBDPP;使用前使得预催化剂老化7天;和在装载费舍尔-波特瓶中,使用0.5mL的甲氧基钠于MeOH(0.01932M)和11.46mL MeOH中的溶液。
CEx S
重复Ex 1,但具有以下变化:在制备预催化剂溶液中,使用以下量:0.0147g(0.0000483英里)Pd(acac)2,0.250mL AcOH储备溶液和24.75mL MeOH。用TPP(0.0253g,0.0000965摩尔)取代DHBDPP。在装载费舍尔-波特瓶中,使用0.5mL的甲氧基钠于MeOH(0.01932M)和11.46mL MeOH中的溶液。
Ex 15
重复Ex 14,但加热油浴60℃。
CEx T
重复CEx S,但加热油浴60℃。
表18
表18中的数据说明几点。第一,将MOD-1添加到DHDDPP和TPP的预催化剂溶液中产生催化竞争性络合物,导致丁二烯转化率的初始速率比不含有MOD-1的预催化剂溶液快的多(对于表18中的所有实例,比较30分钟时间点)。第二,将MOD-1添加到DHDDPP和TPP的预催化剂溶液中产生4小时反应时间后转化成产物的较高的整体转化率。第三,MOD-1改质的预催化剂不影响方法的选择率。因此,对于所有所表明的情况,用MOD-1改质DHDDPP和TPP的预催化剂溶液最终产生所需产物的较高产率。

Claims (13)

1.一种使丁二烯短链聚合的方法,所述方法包括:
制备用于丁二烯短链聚合的短链聚合催化剂前体,包括在足以产生催化剂前体溶液的条件下,将1当量乙酰丙酮钯和1到3当量的膦溶解于包含甲醇和1-甲氧基-2,7-辛二烯的溶剂共混物中,所述催化剂前体溶液包含以式子表示为[(ArnPR(3-n))xPdY]或[(ArnPR(3-n))xPdY]+的芳基膦-钯辛二烯基络合物,其中R是烷基或具有1个到12个碳原子的含杂原子烷基部分,Ar是芳基部分或被取代的芳基部分,x=1或2,n=1、2或3,并且Y是衍生自甲氧基辛二烯的配位体;
将至少所述短链聚合催化剂前体与丁二烯合并以使丁二烯短链聚合。
2.根据权利要求1所述的方法,其中所述条件包括0摄氏度到100摄氏度范围内的温度。
3.根据权利要求1所述的方法,其中所述条件包括5摄氏度到60摄氏度范围内的温度。
4.根据权利要求1到3中任一项所述的方法,其中膦的当量数是1或2。
5.根据权利要求1所述的方法,其中所述溶剂共混物具有以总溶剂共混物重量计0.1重量百分比到50重量百分比范围内的1-甲氧基-2,7-辛二烯含量。
6.根据权利要求5所述的方法,其中所述溶剂共混物具有以总溶剂共混物重量计10重量百分比到25重量百分比范围内的1-甲氧基-2,7-辛二烯含量。
7.根据权利要求1所述的方法,其中所述催化剂前体溶液具有按钯金属计以总催化剂前体溶液重量计在0.02重量百分比到2重量百分比范围内的钯浓度。
8.根据权利要求7所述的方法,其中所述催化剂前体溶液具有按钯金属计以总催化剂前体溶液重量计在0.1重量百分比到1重量百分比范围内的钯浓度。
9.根据权利要求1到8中任一项所述的方法,其中在5℃到60℃范围内的温度和超过0.1重量百分比的钯浓度下,所述短链聚合催化剂前体在溶液中保持至少360小时的时段。
10.根据权利要求1所述的方法,其中所述配位体在不存在电荷时包括1-甲氧基-2,7-辛二烯,或当存在正电荷时是辛二烯基。
11.一种用于制备用于丁二烯短链聚合的短链聚合催化剂前体的方法,其包含在足以产生催化剂前体溶液的条件下,将1当量乙酰丙酮钯和1到3当量的叔膦配位体溶解于包含甲醇和1-甲氧基-2,7-辛二烯的溶剂中,其中所述叔膦配位体以式子表示为R1PR2,并且其中R1是芳基部分或被取代的芳基部分或烷基部分或具有1个到12个碳原子的含杂原子烷基部分,并且R2独立地是杂环氧杂金刚烷基。
12.根据权利要求11所述的方法,其中所述杂环氧杂金刚烷基如下文所示示意性地表示:
13.根据权利要求12所述的方法,其中所述杂环氧杂金刚烷基配位体是1,3,5,7-四甲基-6-苯基-2,4,8-三氧杂-6-磷杂金刚烷或1,3,5,7-四甲基-6-(2-甲氧苯基)-2,4,8-三氧杂-6-磷杂金刚烷。
CN201480066623.7A 2013-12-13 2014-12-04 丁二烯短链聚合催化剂前体的制备 Active CN105813743B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361915781P 2013-12-13 2013-12-13
US61/915781 2013-12-13
PCT/US2014/068483 WO2015088867A2 (en) 2013-12-13 2014-12-04 Butadiene telomerization catalyst precursor preparation

Publications (2)

Publication Number Publication Date
CN105813743A CN105813743A (zh) 2016-07-27
CN105813743B true CN105813743B (zh) 2019-06-21

Family

ID=52347391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480066623.7A Active CN105813743B (zh) 2013-12-13 2014-12-04 丁二烯短链聚合催化剂前体的制备

Country Status (7)

Country Link
US (2) US10569262B2 (zh)
EP (2) EP3741769B1 (zh)
CN (1) CN105813743B (zh)
BR (1) BR112016013233B1 (zh)
CA (2) CA2933342C (zh)
ES (2) ES2836348T3 (zh)
WO (1) WO2015088867A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2933342C (en) 2013-12-13 2021-11-09 Dow Global Technologies Llc Butadiene telomerization catalyst precursor preparation
BR112017021125B1 (pt) 2015-04-10 2021-06-01 Dow Global Technologies Llc Composição de catalisador útil para catalisar a telomerização do butadieno, processo para a preparação de uma composição de catalisador útil para catalisar a telomerização do butadieno e processo para telomerização do butadieno

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341175A (zh) * 2009-03-04 2012-02-01 切夫里昂菲利普化学有限责任公司 选择性氢化催化剂及其制备和使用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7919182A (en) * 1981-01-19 1982-07-29 Goodyear Aerospace Corp. Parking brake
IT1240737B (it) 1990-04-02 1993-12-17 Snam Progetti Sistema catalitico e procedimento per la produzione selettiva di isoprenil-alchileteri da isoprene
WO1992010450A1 (en) * 1990-12-13 1992-06-25 Dow Benelux N.V. Process for producing 1-octene
EP2321244B1 (en) 2008-08-12 2016-12-21 Dow Global Technologies LLC Improved process for telomerization of butadiene
EP2655305B1 (en) 2010-12-21 2019-09-04 Dow Global Technologies LLC Process for telomerization of butadiene using a mono-orthoalkoxy substituted catalyst
CA2933342C (en) 2013-12-13 2021-11-09 Dow Global Technologies Llc Butadiene telomerization catalyst precursor preparation
BR112017021125B1 (pt) 2015-04-10 2021-06-01 Dow Global Technologies Llc Composição de catalisador útil para catalisar a telomerização do butadieno, processo para a preparação de uma composição de catalisador útil para catalisar a telomerização do butadieno e processo para telomerização do butadieno

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341175A (zh) * 2009-03-04 2012-02-01 切夫里昂菲利普化学有限责任公司 选择性氢化催化剂及其制备和使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Facile Access to Key Reactive Intermediates in the Pd/PR3-Catalyzed Telomerization of 1,3-Butadiene;Peter J. C. Hausoul等;《Angew. Chem. Int. Ed.》;20100910;第49卷;第7972–7975页

Also Published As

Publication number Publication date
EP3741769B1 (en) 2023-06-28
EP3080136A2 (en) 2016-10-19
US10751706B2 (en) 2020-08-25
US20200147596A1 (en) 2020-05-14
CA2933342C (en) 2021-11-09
WO2015088867A2 (en) 2015-06-18
ES2953829T3 (es) 2023-11-16
BR112016013233A2 (pt) 2017-08-08
EP3741769A1 (en) 2020-11-25
US10569262B2 (en) 2020-02-25
CN105813743A (zh) 2016-07-27
CA3133814A1 (en) 2015-06-18
WO2015088867A3 (en) 2015-11-12
CA2933342A1 (en) 2015-06-18
US20160271601A1 (en) 2016-09-22
EP3080136B1 (en) 2020-10-28
BR112016013233B1 (pt) 2021-05-04
ES2836348T3 (es) 2021-06-24
CA3133814C (en) 2024-05-21

Similar Documents

Publication Publication Date Title
Dong et al. Cooperative catalytic methoxycarbonylation of alkenes: uncovering the role of palladium complexes with hemilabile ligands
Pinaka et al. Using sustainable metals to carry out “green” transformations: Fe-and Cu-catalyzed CO2 monetization
Hu et al. Room temperature aerobic oxidation of alcohols using CuBr2 with TEMPO and a tetradentate polymer based pyridyl-imine ligand
Aydemir et al. Novel neutral phosphinite bridged dinuclear ruthenium (II) arene complexes and their catalytic use in transfer hydrogenation of aromatic ketones: X-ray structure of a new Schiff base, N3, N3′-di-2-hydroxybenzylidene-[2, 2′] bipyridinyl-3, 3′-diamine
Ahlsten et al. Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature
Perrone et al. Beneficial effect of a secondary ligand on the catalytic difunctionalization of vinyl arenes with boron and CO2
Edouard et al. Aryl ether cleavage by group 9 and 10 transition metals: stoichiometric studies of selectivity and mechanism
Kovacs et al. Kinetic investigation of the cleavage of n-butyryl-or isobutyrylcobalt tetracarbonyl with hydridocobalt tetracarbonyl or dihydrogen
CN105813743B (zh) 丁二烯短链聚合催化剂前体的制备
González-Sebastián et al. Nickel-catalyzed reductive hydroesterification of styrenes using CO2 and MeOH
Ounkham et al. Aqueous‐Phase Nitrile Hydration Catalyzed by an In Situ Generated Air‐Stable Ruthenium Catalyst
CN107973812B (zh) 一种制备芳基硼酸新戊二醇酯类化合物的方法
Nolla‐Saltiel et al. Hydrophosphination of Activated Alkenes by a Cobalt (I) Pincer Complex
Ma et al. Multinuclear Zn (II)-arylhydrazone complexes as catalysts for cyanosilylation of aldehydes
Aydemir et al. New active ruthenium (II) complexes based N3, N3′-bis (diphenylphosphino)-2, 2′-bipyridine-3, 3′-diamine and P, P′-diphenylphosphinous acid-P, P′-[2, 2′-bipyridine]-3, 3′-diyl ester ligands for transfer hydrogenation of aromatic ketones by propan-2-ol
CN116283501A (zh) 一种新型联苯四齿亚膦酸酯配体的制备及其在混合/醚后碳四氢甲酰化反应中的应用
Briggs et al. Palladium-catalyzed 1, 3-butadiene telomerization with methanol. Improved catalyst performance using bis-o-methoxy substituted triarylphosphines
Stevenson et al. C–C bond migration in the cycloisomerization of 1, 6-enynes
Ma et al. Mixed Alkyl/Aryl Diphos Ligands for Iron‐Catalyzed Negishi and Kumada Cross Coupling Towards the Synthesis of Diarylmethane
EP3280690B1 (en) Butadiene telomerization catalyst and preparation thereof
Hunter et al. [Cp* IrCl2] 2 catalyzed hydroborations of alkenes using a bulky dioxaborocine
Zhang et al. Reactivity and kinetic–mechanistic studies of regioselective reactions of rhodium porphyrins with unactivated olefins in water that form β-hydroxyalkyl complexes and conversion to ketones and epoxides
Melero et al. Selective reduction of a Pd pincer PCP complex to well-defined Pd (0) species
Mendes et al. Furans and pyrans derivatives from the hydroformylation of ethyl ricinoleate and castor oil
JP2012153663A (ja) アリルシラン類の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant