CN105808844A - 片上对称电感的射频模型 - Google Patents

片上对称电感的射频模型 Download PDF

Info

Publication number
CN105808844A
CN105808844A CN201610129781.3A CN201610129781A CN105808844A CN 105808844 A CN105808844 A CN 105808844A CN 201610129781 A CN201610129781 A CN 201610129781A CN 105808844 A CN105808844 A CN 105808844A
Authority
CN
China
Prior art keywords
eddy current
substrate
equivalent circuit
electric capacity
substrate eddy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610129781.3A
Other languages
English (en)
Other versions
CN105808844B (zh
Inventor
张健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201610129781.3A priority Critical patent/CN105808844B/zh
Publication of CN105808844A publication Critical patent/CN105808844A/zh
Application granted granted Critical
Publication of CN105808844B publication Critical patent/CN105808844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种片上对称电感的射频模型,所述射频模型适于模拟所述片上对称电感的衬底涡流效应,所述片上对称电感和半导体衬底之间隔离有介质层,所述射频模型包括N个衬底涡流等效电路,以及N‑1个衬底涡流变化等效电路,适于模拟所述片上对称电感的外圈与内圈的衬底涡流变化趋势,N≥1。采用上述方案可以提高片上对称电感的品质因子Q及其电感值的模拟精度。

Description

片上对称电感的射频模型
技术领域
本发明涉及集成电路制造领域,尤其涉及一种片上对称电感的射频模型。
背景技术
射频电感器件是如互补金属氧化物半导体(ComplementaryMetalOxideSemiconductor,CMOS)等集成电路上的重要元件,广泛应用在压控振荡器及低噪声放大器等各种射频电路中。随着电路性能的不断提高,电路结构通常具有平衡、差分的形式,在这些电路中,那些原本在单端电路中一端接地的射频电感就转变成两端分别接入差分信号的差分电感。由于差分电感两端的信号有相同的幅度和相反的相位,这就要求差分电感的电气性能尽量对称,因此差分电感通常具有对称的集合形状,也被成为对称电感。
片上射频电感器件即为多个金属螺旋线圈,金属螺旋线圈会在其相应的半导体衬底上产生电感线圈电流,电感线圈电流会在衬底中形成磁场耦合引起的涡流以及电场耦合引出的位移电流。为了更好地制作片上射频电感器件,如果能够先得到一个片上射频电感器件的准确模型,通过模型模拟出片上射频电感器件的各种性质,从而能确定片上射频电感器件在制作过程中的各种参数,相比于先制作出一个片上射频电感器件的样品,然后再测试该样品是否符合要求的方法,采用模型进行模拟的方法能够大大加快片上射频电感器件的设计和制作速率,提高工作效率。因此建立一个片上射频电感器件的准确模型成为片上射频电感器件的设计过程中的一个关键。
但是,采用现有的片上对称电感的衬底涡流的模型,在模拟片上对称电感的品质因子Q及其电感值L时精度很低,尤其在信号频率较高时,这种精度低的情况尤为明显。
发明内容
本发明解决的问题是如何提高片上对称电感的品质因子Q及其电感值的模拟精度。
为解决上述问题,本发明实施例提供一种片上对称电感的射频模型,所述射频模型适于模拟所述片上对称电感的衬底涡流效应,所述片上对称电感和半导体衬底之间隔离有介质层,所述射频模型包括N个衬底涡流等效电路,以及N-1个衬底涡流变化等效电路,适于模拟所述片上对称电感的外圈与内圈的衬底涡流变化趋势,N≥1。
可选地,所述衬底涡流由所述片上对称电感的外圈至内圈逐渐减小。
可选地,所述衬底涡流等效电路包括:介质层电容、衬底电容和衬底电阻,其中:
所述衬底电容与所述衬底电阻并联后,与所述介质层电容串联;介质层电容为所述电感和所述半导体衬底之间由介质层产生的电容,衬底电容和衬底电阻分别为所述电感的所述半导体衬底产生的电容和电阻。
可选地,任意的所述衬底涡流变化等效电路,包括第一耦合电容、第二耦合电容及耦合电阻其中至少一个。
可选地,所述衬底涡流变化等效电路包括第一衬底涡流变化等效电路,所述第一衬底涡流变化等效电路包括所述第一耦合电容,且与所述第一衬底涡流变化等效电路直接相邻的衬底涡流等效电路与所述片上对称电感的几何中心的线圈对应时,所述第一耦合电容,一端与所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与所述衬底涡流等效电路中的另一个的所述介质层电容的输出端耦接。
可选地,所述衬底涡流变化等效电路包括第二衬底涡流变化等效电路和第三衬底涡流变化等效电路,其中第二衬底涡流变化等效电路和第三衬底涡流变化等效电路均包括所述第一耦合电容,且与所述第二衬底涡流变化等效电路和所述第三衬底涡流变化等效电路直接相邻的衬底涡流等效电路与所述片上对称电感的几何中心的线圈均不对应时,所述第二衬底涡流变化等效电路中的第一耦合电容与所述第三衬底涡流变化等效电路中的第一耦合电容与所述衬底涡流等效电路的连接关系呈镜像对称结构,其中所述第二衬底涡流变化等效电路中的第一耦合电容的一端与其中一个所述衬底涡流等效电路中的所述介质层电容的输出端耦接,另一端与另一个所述衬底涡流等效电路中的所述介质层电容的输入端耦接。
可选地,所述衬底涡流变化等效电路包括所述第二耦合电容,所述第二耦合电容一端与直接相邻的、两个所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与其中另一个的所述介质层电容的输出端耦接。
可选地,所述衬底涡流变化等效电路包括所述耦合电阻,所述耦合电阻一端与直接相邻的、两个所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与其中另一个的所述介质层电容的输出端耦接。
与现有技术相比,本发明的技术方案具有以下优点:
由于片上对称电感的衬底涡流呈现不均匀分布,故通过在射频模型中增加N-1个衬底涡流变化等效电路,来模拟所述片上对称电感的外圈与内圈的衬底涡流变化趋势,可以提高片上对称电感的品质因子Q及其电感值的模拟精度。
附图说明
图1是现有技术中的一种片上对称电感的模型示意图;
图2是采用图1中示出的模型对片上对称电感的衬底涡流效应进行模拟时所得到的电感感值L与测试频率f之间的关系仿真示意图;
图3是采用图1中示出的模型对片上对称电感的衬底涡流效应进行模拟时所得到的品质因子Q与测试频率f之间的关系仿真示意图;
图4是本发明实施例中的一种片上对称电感的射频模型的结构示意图;
图5是本发明实施例中的一种衬底涡流等效电路的结构示意图;
图6是本发明实施例中的一种片上对称电感的射频模型的结构示意图;
图7是本发明实施例中的一种衬底涡流变化等效电路的结构示意图;
图8是采用图6中示出的模型对片上对称电感的衬底涡流效应进行模拟时所得到的电感L与测试频率f之间的关系仿真示意图;
图9是采用图6中示出的模型对片上对称电感的衬底涡流效应进行模拟时所得到的品质因子Q与测试频率f之间的关系仿真示意图。
具体实施方式
片上射频电感器件即为多个金属螺旋线圈,金属螺旋线圈会在其相应的半导体衬底上产生电感线圈电流,电感线圈电流会在衬底中形成磁场耦合引起的涡流以及电场耦合引出的位移电流。
为了更好地制作片上射频电感器件,如果能够先得到一个片上射频电感器件的准确模型,通过模型模拟出片上射频电感器件的各种性质,从而能确定片上射频电感器件在制作过程中的各种参数,相比于先制作出一个片上射频电感器件的样品,然后再测试该样品是否符合要求的方法,采用模型进行模拟的方法能够大大加快片上射频电感器件的设计和制作速率,提高工作效率。因此建立一个片上射频电感器件的准确模型成为片上射频电感器件的设计过程中的一个关键。
为使得本领域技术人员更好地理解和实现本发明,图1示出了现有技术中的一种片上对称电感的模型,所述模型包括两部分,11为第一模拟等效电路,适于模拟片上对称电感非衬底涡流之外的其它效应的等效电路,12为第二模拟等效电路,适于模拟片上对称电感在衬底中产生的衬底涡流效应的等效电路。
相应地,图2及图3示出了采用图1中示出的模型对片上对称电感的衬底涡流效应进行模拟时所得到的结果,图2中的横坐标表示所述片上对称电感的测试频率,纵坐标表示所述片上电感的感值;图3中的横坐标表示所述片上对称电感的测试频率,纵坐标表示所述片上电感的品质因子Q;图2及图3中的曲线21及31表示采用现有技术的模型得到的模拟曲线,曲线22及32表示实际测试得到的数据所拟合出的曲线。比较图2中的曲线21及22可知,采用现有模型模拟电感时,模拟电感值L的结果精度很低,比较图3中的曲线31与曲线32,模拟品质因子Q的结果精度很低,并且在信号频率较高时,这种精度低的情况尤为明显。
为解决以上所述问题,本发明实施例提供了片上对称电感的射频模型,由于片上对称电感的衬底涡流呈现不均匀分布,故所述模型通过在射频模型中增加N-1个衬底涡流变化等效电路,来模拟所述片上对称电感的外圈与内圈的衬底涡流变化趋势,可以提高片上对称电感的品质因子Q及其电感值的模拟精度。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
以下示出了本发明实施例中的一种片上对称电感的射频模型的结构示意图,所述射频模型适于模拟所述片上对称电感的衬底涡流效应,所述片上对称电感和半导体衬底之间隔离有介质层,如图4所示,所述射频模型可以包括N个衬底涡流等效电路,依次为41至4N,以及N-1个衬底涡流变化等效电路,依次为51至5(N-1)。所述衬底涡流变化等效电路适于模拟所述片上对称电感的外圈与内圈的衬底涡流变化趋势,N≥1。
需要说明的是,所述衬底涡流变化等效电路可以模拟所述电感的涡流变化趋势,也就是说,可以模拟所述电感的涡流逐渐变大的趋势,也可以模拟所述电感的涡流逐渐变小的趋势。在本发明一实施例中,所述衬底涡流由所述片上对称电感的外圈至内圈逐渐减小。
在所述模型中,若模拟所述片上对称电感在射频条件下工作时的场景,在所述片上对称电感的金属线圈和半导体衬底之间都设置有对应的电路结构,即和衬底涡流效应有关的等效电路,任意一个金属线圈段所对应的衬底涡流等效电路结构都如图5所示,所述衬底涡流等效电路包括:介质层电容501、衬底电容502和衬底电阻503,所述衬底电容502与所述衬底电阻503并联后,与所述介质层电容501串联,所述介质层电容501为所对应的金属线圈段和衬底之间由介质层产生的电容,所述衬底电容502和所述衬底电阻503分别为对应的金属线圈段的衬底产生的电容和电阻。
在具体实施中,任意的所述衬底涡流变化等效电路,可以包括第一耦合电容、第二耦合电容及耦合电阻其中至少一个。比如衬底涡流变化等效电路可以只是包括第一耦合电容,也可以只是包括第二耦合电容,还可以只是包括耦合电阻,也可以同时包括第一耦合电容和第二耦合电容,也可以同时包括第一耦合电容和耦合电阻,也可以同时包括第二耦合电容和耦合电阻,还可以同时包括第一耦合电容、第二耦合电容及耦合电阻。
在具体实施中,所述衬底涡流变化等效电路可以有N个,为便于后续说明,将其中一个称作为第一衬底涡流变化等效电路,所述第一衬底涡流变化等效电路可以包括所述第一耦合电容,且在与所述第一衬底涡流变化等效电路直接相邻的衬底涡流等效电路与所述片上对称电感的几何中心的线圈对应时,所述第一耦合电容,一端可以与所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,同时另一端与所述衬底涡流等效电路中的另一个的所述介质层电容的输出端耦接。
也就是说,如果所述第一衬底涡流变化等效电路包括第一耦合电容,且有两个衬底涡流等效电路,分别叫做左与右衬底涡流等效电路,其中所述左衬底涡流等效电路与所述第一衬底涡流变化等效电路直接相邻,且位于其左边,所述右衬底涡流等效电路域所述第一衬底涡流变化等效电路直接相邻,且位于其右边,当所述左及右衬底涡流等效电路与所述片上对称电感的几何中心的线圈对应时,所述第一衬底涡流变化等效电路中的第一耦合电容的一端可以与所述左衬底涡流等效电路中所述介质层电容的输出端耦接,同时另一端与所述右衬底涡流等效电路中的所述介质层电容的输出端耦接,也可以与所述右衬底涡流等效电路中所述介质层电容的输出端耦接,同时另一端与所述左衬底涡流等效电路中的所述介质层电容的输出端耦接。
在具体实施中,所述衬底涡流变化等效电路可以包括2个衬底涡流变化等效电路,为便于说明,分别称作第二衬底涡流变化等效电路和第三衬底涡流变化等效电路,其中第二衬底涡流变化等效电路和第三衬底涡流变化等效电路均可以包括所述第一耦合电容,当与所述第二衬底涡流变化等效电路和所述第三衬底涡流变化等效电路直接相邻的衬底涡流等效电路与所述片上对称电感的几何中心的线圈均不对应时,所述第二衬底涡流变化等效电路中的第一耦合电容与所述第三衬底涡流变化等效电路中的第一耦合电容与所述衬底涡流等效电路的连接关系呈镜像对称结构。
其中所述第二衬底涡流变化等效电路中的第一耦合电容的一端与其中一个所述衬底涡流等效电路中的所述介质层电容的输出端耦接,另一端与另一个所述衬底涡流等效电路中的所述介质层电容的输入端耦接,由于其镜像对称关系,故所述第三衬底涡流变化等效电路中的第一耦合电容的一端与其中一个所述衬底涡流等效电路中的所述介质层电容的输入端耦接,另一端与另一个所述衬底涡流等效电路中的所述介质层电容的输出端耦接
在具体实施中,所述衬底涡流变化等效电路可以包括所述第二耦合电容,所述第二耦合电容一端与直接相邻的、两个所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与其中另一个的所述介质层电容的输出端耦接。
在具体实施中,所述衬底涡流变化等效电路可以包括所述耦合电阻,所述耦合电阻一端与直接相邻的、两个所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与其中另一个的所述介质层电容的输出端耦接。
为使得本领域技术人员更好地理解和实现本发明,以下示出了本发明实施例中的一种片上对称电感的射频模型的结构示意图,如图6所示,需要说明的是,图6中示出的射频模型与图1示出的射频模型模拟的是同一个片上对称电感,所述图6可以包括上下两个部分,上半部分是所述片上对称电感除了衬底涡流效应外的其它效应的模拟电路,适于模拟所述片上对称电感在射频环境下工作时,所产生的其它效应,比如趋肤效应等,下半部分包括4个衬底涡流等效电路,分别为衬底涡流等效电路61、62、63、及64,及3个衬底涡流变化等效电路,分别为衬底涡流变化等效电路65、66及67。
其中,所述衬底涡流等效电路61可以包括介质层电容C11、衬底电容C12和衬底电阻R13,所述衬底涡流等效电路62可以包括介质层电容C21、衬底电容C22和衬底电阻R23,所述衬底涡流等效电路63可以包括介质层电容C31、衬底电容C32和衬底电阻R33,所述衬底涡流等效电路64可以包括介质层电容C41、衬底电容C42和衬底电阻R43。
任意一个所述衬底涡流变化等效电路的结构如图7中的70所示,在本发明一实施例中,所述衬底涡流变化等效电路70可以同时包括第一耦合电容C1、第二耦合电容C2及耦合电阻R1。
可以理解的是,图6中的任意所述衬底涡流变化等效电路的结构都可以如7中的70所示,但是每个衬底涡流变化等效电路中的组件的具体参数可能会有所不同。具体而言,比如图6中的所述衬底涡流变化等效电路65包括第一耦合电容C51、第二耦合电容C52及耦合电阻R53,所述衬底涡流变化等效电路66包括第一耦合电容C61、第二耦合电容C62及耦合电阻R63,所述衬底涡流变化等效电路67包括第一耦合电容C71、第二耦合电容C72及耦合电阻R73。所述第一耦合电容C51、第一耦合电容C61及第一耦合电容C71可能不同。
结合图6和图7可知,衬底涡流等效电路62及63与所述片上对称电感的几何中心的线圈对应,故衬底涡流变化等效电路66的第一耦合电容C61在一端可以与所述衬底涡流等效电路62的介质层电容C21的输出端耦接,在另一端可以与所述衬底涡流等效电路63的介质层电容C31输出端耦接。
而对于衬底涡流变化等效电路65,与之直接相邻的两个衬底涡流等效电路61及62并非与所述片上对称电感的几何中心处的线圈对应,故所述衬底涡流等效变化电路65的一端可以与所述衬底涡流等效电路61的介质层电容C11输出端耦接,在另一端可以与所述衬底涡流等效电路63的介质层电容C31输入端耦接。同理,可以看到所述衬底涡流变化等效电路66中的第一耦合电容与所述衬底涡流等效电路65的连接关系呈镜像对称结构,在此不再赘述。
当衬底涡流变化等效电路包括所述第二耦合电容时,比如衬底涡流变化等效电路66,其的第二耦合电容C62一端与所述衬底涡流等效电路62中的所述介质层电容C21的输出端耦接,另一端与所述衬底涡流等效电路63的所述介质层电容C31的输出端耦接。
当衬底涡流变化等效电路包括所述耦合电阻时,比如衬底涡流变化等效电路67,其的第二耦合电容C72一端与所述衬底涡流等效电路63中的所述介质层电容C31的输出端耦接,另一端与所述衬底涡流等效电路64的所述介质层电容C41的输出端耦接。
采用本发明实施例中的片上对称电感的模型,具有更高的模拟精度。如图8及9所示,图8示出了测试频率与电感的感值之间的关系,图9示出了测试频率与电感的品质因子之间的关系,其中,曲线81及91表示通过模型得到的曲线,曲线82及92表示直接根据实际的测试结果得到的拟合曲线。
比较图8中的曲线81及82可知,利用本发明实施例中的模型来模拟电感,所得到的表示感值L的曲线82与实际测试所得到的曲线81的基本一致,比较图9中的曲线91与曲线92可以看到,利用本发明实施例中的模型来模拟电感,所得到的品质因子Q的曲线与实际测试所得到的曲线的基本一致,也就是说,由于片上对称电感的衬底涡流呈现不均匀分布,故通过在射频模型中增加N-1个衬底涡流变化等效电路,来模拟所述片上对称电感的外圈与内圈的衬底涡流变化趋势,可以提高片上对称电感的品质因子Q及其电感值的模拟精度。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (8)

1.一种片上对称电感的射频模型,其特征在于,所述射频模型适于模拟所述片上对称电感的衬底涡流效应,所述片上对称电感和半导体衬底之间隔离有介质层,所述射频模型包括N个衬底涡流等效电路,以及N-1个衬底涡流变化等效电路,适于模拟所述片上对称电感的外圈与内圈的衬底涡流变化趋势,N≥1。
2.根据权利要求1所述的片上对称电感的射频模型,其特征在于,所述衬底涡流由所述片上对称电感的外圈至内圈逐渐减小。
3.根据权利要求2所述的片上对称电感的射频模型,其特征在于,所述衬底涡流等效电路包括:介质层电容、衬底电容和衬底电阻,其中:
所述衬底电容与所述衬底电阻并联后,与所述介质层电容串联;介质层电容为所述电感和所述半导体衬底之间由介质层产生的电容,衬底电容和衬底电阻分别为所述电感的所述半导体衬底产生的电容和电阻。
4.根据权利要求3所述的片上对称电感的射频模型,其特征在于,任意的所述衬底涡流变化等效电路,包括第一耦合电容、第二耦合电容及耦合电阻其中至少一个。
5.根据权利要求4所述的片上对称电感的射频模型,其特征在于,所述衬底涡流变化等效电路包括第一衬底涡流变化等效电路,所述第一衬底涡流变化等效电路包括所述第一耦合电容,且与所述第一衬底涡流变化等效电路直接相邻的衬底涡流等效电路与所述片上对称电感的几何中心的线圈对应时,所述第一耦合电容,一端与所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与所述衬底涡流等效电路中的另一个的所述介质层电容的输出端耦接。
6.根据权利要求5所述的片上对称电感的射频模型,其特征在于,所述衬底涡流变化等效电路包括第二衬底涡流变化等效电路和第三衬底涡流变化等效电路,其中第二衬底涡流变化等效电路和第三衬底涡流变化等效电路均包括所述第一耦合电容,且与所述第二衬底涡流变化等效电路和所述第三衬底涡流变化等效电路直接相邻的衬底涡流等效电路与所述片上对称电感的几何中心的线圈均不对应时,所述第二衬底涡流变化等效电路中的第一耦合电容与所述第三衬底涡流变化等效电路中的第一耦合电容与所述衬底涡流等效电路的连接关系呈镜像对称结构,其中所述第二衬底涡流变化等效电路中的第一耦合电容的一端与其中一个所述衬底涡流等效电路中的所述介质层电容的输出端耦接,另一端与另一个所述衬底涡流等效电路中的所述介质层电容的输入端耦接。
7.根据权利要求4-6任一项所述的片上对称电感的射频模型,其特征在于,所述衬底涡流变化等效电路包括所述第二耦合电容,所述第二耦合电容一端与直接相邻的、两个所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与其中另一个的所述介质层电容的输出端耦接。
8.根据权利要求4-6任一项所述的片上对称电感的射频模型,其特征在于,所述衬底涡流变化等效电路包括所述耦合电阻,所述耦合电阻一端与直接相邻的、两个所述衬底涡流等效电路中的其中一个的所述介质层电容的输出端耦接,另一端与其中另一个的所述介质层电容的输出端耦接。
CN201610129781.3A 2016-03-08 2016-03-08 片上对称电感的射频模型 Active CN105808844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610129781.3A CN105808844B (zh) 2016-03-08 2016-03-08 片上对称电感的射频模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610129781.3A CN105808844B (zh) 2016-03-08 2016-03-08 片上对称电感的射频模型

Publications (2)

Publication Number Publication Date
CN105808844A true CN105808844A (zh) 2016-07-27
CN105808844B CN105808844B (zh) 2019-01-04

Family

ID=56467846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610129781.3A Active CN105808844B (zh) 2016-03-08 2016-03-08 片上对称电感的射频模型

Country Status (1)

Country Link
CN (1) CN105808844B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235279A (ja) * 2003-01-28 2004-08-19 Nec Electronics Corp インダクタ素子のシミュレーション方法及びその等価回路
CN101149762A (zh) * 2006-09-20 2008-03-26 上海华虹Nec电子有限公司 一种用于片上电感的高频等效电路结构及其参数计算方法
CN102156792A (zh) * 2011-05-04 2011-08-17 华东师范大学 片上电感集总模型
CN103730335A (zh) * 2012-10-12 2014-04-16 上海华虹宏力半导体制造有限公司 片上变压器的衬底涡流的射频模型方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235279A (ja) * 2003-01-28 2004-08-19 Nec Electronics Corp インダクタ素子のシミュレーション方法及びその等価回路
CN101149762A (zh) * 2006-09-20 2008-03-26 上海华虹Nec电子有限公司 一种用于片上电感的高频等效电路结构及其参数计算方法
CN102156792A (zh) * 2011-05-04 2011-08-17 华东师范大学 片上电感集总模型
CN103730335A (zh) * 2012-10-12 2014-04-16 上海华虹宏力半导体制造有限公司 片上变压器的衬底涡流的射频模型方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邹欢欢: "RF-CMOS片上螺旋电感模型及模型库的开发", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Also Published As

Publication number Publication date
CN105808844B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN103310031B (zh) 用于建模硅通孔的系统和方法
CN1825507B (zh) 使用电感相同布局的电感布局
Huang et al. Frequency-independent asymmetric double-$ pi $ equivalent circuit for on-chip spiral inductors: Physics-based modeling and parameter extraction
Sieiro et al. A physical frequency-dependent compact model for RF integrated inductors
CN110221237A (zh) 一种电容式电压互感器谐波电压测量方法和装置
CN106712738A (zh) 根据频率响应要求设计声微波滤波器的方法
US9032355B2 (en) System and method for integrated transformer synthesis and optimization using constrained optimization problem
Nomura et al. Straightforward modeling of complex permeability for common mode chokes
Takahashi et al. A novel simulation model for common-mode inductors based on permeance-capacitance analogy
Alberto Circuit model of a resonator array for a WPT system by means of a continued fraction
CN105808844A (zh) 片上对称电感的射频模型
CN109241578B (zh) 低通滤波器设计方法及装置
US7949975B2 (en) Apparatus and method of extracting equivalent circuit of T-type transmission circuit
JP2004235279A (ja) インダクタ素子のシミュレーション方法及びその等価回路
Kapur et al. Modeling of integrated RF passive devices
CN102156792A (zh) 片上电感集总模型
CN109711038A (zh) Mom电容失配模型及其提取方法
Goto et al. New on-chip de-embedding for accurate evaluation of symmetric devices
CN108038322A (zh) 一种spice集中模型的建模方法及系统
US7107555B2 (en) Method and apparatus for designing high-frequency circuit, and display method for use in designing high-frequency circuit
CN107545081A (zh) 一种rf螺旋电感高精度集总参数模型及参数提取方法
Kuo et al. Analytical calculation for DC inductances of rectangular spiral inductors with finite metal thickness in the PEEC formulation
CN104952850A (zh) 一种射频测试结构及射频测试方法
CN107332534A (zh) 一种滤波功分器的电路结构及其设计方法
CN104578755B (zh) 电源式电磁干扰抑制滤波器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant