CN105807285A - 多区域测距方法、测距装置及终端 - Google Patents

多区域测距方法、测距装置及终端 Download PDF

Info

Publication number
CN105807285A
CN105807285A CN201610254839.7A CN201610254839A CN105807285A CN 105807285 A CN105807285 A CN 105807285A CN 201610254839 A CN201610254839 A CN 201610254839A CN 105807285 A CN105807285 A CN 105807285A
Authority
CN
China
Prior art keywords
pulse signal
target area
light pulse
light source
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610254839.7A
Other languages
English (en)
Other versions
CN105807285B (zh
Inventor
黄晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Microphone Holdings Co Ltd
Original Assignee
Shenzhen Jinli Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jinli Communication Equipment Co Ltd filed Critical Shenzhen Jinli Communication Equipment Co Ltd
Priority to CN201610254839.7A priority Critical patent/CN105807285B/zh
Publication of CN105807285A publication Critical patent/CN105807285A/zh
Application granted granted Critical
Publication of CN105807285B publication Critical patent/CN105807285B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明实施例公开一种多区域测距方法,包括:通过至少一个光源发射覆盖至少两个目标区域的高频光脉冲信号,并记录每一个目标区域对应的高频光脉冲信号的发射时间;通过至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,并记录每一个目标区域对应的反射光脉冲信号的接收时间;根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。另,本发明实施例还公开一种多区域测距装置及一种终端。所述多区域测距方法可以实现多个区域的距离测量,提升终端的对焦速度和成像效果。

Description

多区域测距方法、测距装置及终端
技术领域
本发明涉及光学技术领域,尤其涉及一种多区域测距方法、测距装置及终端。
背景技术
飞行时间(TimeofFlight,TOF)技术是一种成熟的双向测距技术,其被广泛应用于军事、勘测及辅助成像等领域。基于TOF的测距应用大都是通过设置一对一的光源及光电感应器,由光源发出经调制的红外激光,红外激光遇到目标物体后反射并由光电感应器接收,再通过计算发射出红外激光和接收到反射红外激光的时间差,来换算目标物体的距离。例如,在智能手机的辅助成像应用中,通过TOF测距以确定被拍摄的目标物体与相机镜头之间的距离,进而可根据该距离实现相机的快速对焦,以提升智能手机的成像速度及质量。
目前,在将TOF应用到智能手机的辅助成像过程中时,通常只配备了单组光源和光电感应器,从而只能实现单个距离的测量。在这种情况下,当用户利用TOF测距进行辅助对焦的过程中,若目标物体偏离所述TOF测距传感器的测距区域,则可能会导致对焦失败,从而影响成像质量。此外,现有的TOF测距传感器均是将光电感应单元和计算单元集成,例如意法半导体公司的vl6180x传感器,若需要使前置摄像头和后置摄像头同时支持TOF测距辅助对焦,则需要为前置摄像头和后置摄像头各配备一颗集成有计算单元的TOF测距传感器。
发明内容
本发明提供一种多区域测距方法、测距装置及终端,以实现多个区域的距离测量。
一种多区域测距方法,包括:
通过至少一个光源发射覆盖至少两个目标区域的高频光脉冲信号,并记录每一个目标区域对应的高频光脉冲信号的发射时间;
通过至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,并记录每一个目标区域对应的反射光脉冲信号的接收时间;
根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。
一种多区域测距装置,包括:
至少一个光源,用于发射覆盖至少两个目标区域的高频光脉冲信号;
至少一个光电探测器,用于接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号;
测距处理器,用于记录每一个目标区域对应的高频光脉冲信号的发射时间和反射光脉冲信号的接收时间;并
根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。
一种终端,包括至少一个摄像头及多区域测距装置,所述摄像头与所述多区域测距装置电性连接,用于通过所述多区域测距装置测量至少两个目标区域内的目标物体与所述终端之间的距离,并根据所述距离调整所述至少一个摄像头的拍摄参数。
所述多区域测距方法、测距装置及终端通过所述至少一个光源发射可以覆盖至少两个目标区域的高频光脉冲信号,并通过所述至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,从而可以根据每个目标区域对应的高频光脉冲信号的发射时间及对应的反射光脉冲信号的接收时间来计算所述至少两个目标区域内的目标物体与测距装置之间的距离,从而实现了多个目标区域内目标物体的距离测量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的多区域测距方法的流程示意图;
图2是本发明第二实施例提供的多区域测距装置的第一种结构示意图;
图3是本发明第二实施例提供的多区域测距装置的第二种结构示意图;
图4是本发明第二实施例提供的多区域测距装置的第三种结构示意图;
图5是本发明第二实施例提供的多区域测距装置的第四种结构示意图;
图6是本发明第二实施例提供的多区域测距装置的第五种结构示意图;
图7是本发明第三实施例提供的终端的结构示意图;
图8是本发明第三实施例提供的终端的另一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明第一实施例提供一种多区域测距方法,包括:
步骤S11:通过至少一个光源发射覆盖至少两个目标区域的高频光脉冲信号,并记录每一个目标区域对应的高频光脉冲信号的发射时间;
步骤S12:通过至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,并记录每一个目标区域对应的反射光脉冲信号的接收时间;
步骤S13:根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。
其中,所述至少一个光源可以是近红外激光源或者经调制的高频脉冲光源,其可以发射出高频光脉冲信号。所述高频光脉冲信号在传播过程中遇到目标物体时会被目标物体反射形成所述反射光脉冲信号。所述光电探测器可以是光电二极管,其可以接收由目标物体反射回的反射光脉冲信号。所述光源与所述光电探测器可间隔设置于所述测距装置上,所述测距装置通过记录所述高频光脉冲信号的发射时间及对应目标区域的反射光脉冲信号的接收时间,即可根据高频光脉冲信号的传播速度和所述发射时间与接收时间的时间差,计算对应目标区域的目标物体与测距装置之间的距离。可以理解,所述至少两个目标区域可以是同一个目标物体上的两个不同的区域,也可以是不同目标物体上的任一区域。
在一种可选实施方式中,所述通过至少一个光源发射覆盖至少两个目标区域的高频光脉冲信号,包括:
通过一个光源发射覆盖至少两个目标区域的高频光脉冲信号;或者,
通过与至少两个目标区域对应数量的光源发射覆盖所述至少两个目标区域的高频光脉冲信号,其中,每一个光源发射的高频光脉冲信号覆盖一个目标区域。
具体地,若通过一个光源发射覆盖至少两个目标区域的高频光脉冲信号,则所述光源为广角光源,即该光源发射出的高频光脉冲信号呈锥状分散开,并可同时覆盖所述至少两个目标区域,从而被每一个所述目标区域内的目标物体反射形成对应目标区域的反射光脉冲信号。在该实施方式中,通过一个广角光源即可实现覆盖多个所述目标区域,从而可以在较低的硬件成本条件下实现多个目标区域的距离测量。若通过与至少两个目标区域对应数量的光源发射覆盖所述至少两个目标区域的高频光脉冲信号,则每一个光源所发射出的高频光脉冲信号可以覆盖一个所述目标区域,并被每一个所述目标区域内的目标物体反射形成对应目标区域的反射光脉冲信号。在该实施方式中,通过与目标区域对应数量的光源分别发射覆盖一个目标区域的高频光脉冲信号,相对于采用广角光源的实施方式,每个光源分别覆盖一个区域,从而可以使的整个测距装置覆盖的目标区域范围更广,从而实现大范围的目标区域测距。可以理解,所述光源可以为近红外激光源或者经调制的高频脉冲光源。
可以理解,当通过与至少两个目标区域对应数量的光源发射覆盖所述至少两个目标区域的高频光脉冲信号时,可以通过光源选通开关择一选通每一个所述光源;并通过每一个所述光源分别发射覆盖不同目标区域的高频光脉冲信号。具体地,可通过选通控制信号控制所述光源选通开关快速切换每一个所述光源单独发射高频光脉冲信号,以测量被该光源发射的高频光脉冲信号覆盖的目标区域内的目标物体与测距装置之间的距离。
在一种可选实施方式中,所述通过至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,包括:
通过一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号;或者,
通过与至少两个目标区域对应数量的光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,其中,每一个光电探测器接收一个目标区域内的目标物体反射回的反射光脉冲信号。
具体地,若通过一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,则所述光电探测器为广角光电探测器,即该光电探测器可以接收大角度范围内的反射光脉冲信号,从而可以通过一个光电探测器接收所述至少两个目标区域内的目标物体反射回的反射光脉冲信号。在该实施方式中,通过一个广角光电探测器即可接收多个目标区域的目标物体反射回的反射光脉冲信号,从而可以在较低的硬件成本条件下实现多个目标区域的距离测量。若通过与至少两个目标区域对应数量的光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,则每一个所述光电探测器对应接收一个所述目标区域内的目标物体反射回的反射光脉冲信号。在该实施方式中,通过与目标区域对应数量的光电探测器分别接收一个目标区域内的目标物体反射回的反射光脉冲信号,相对于采用广角光电探测器的实施方式,接收范围更广,从而可以使的整个测距装置覆盖的目标区域范围更广,从而实现大范围的目标区域测距。
可以理解,当通过与至少两个目标区域对应数量的光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号时,可以通过信号选择器择一选通每一个所述光电探测器;并通过每一个所述光电探测器分别接收不同目标区域内的目标物体反射回的反射光脉冲信号。具体地,可通过选通控制信号控制所述信号选择器快速切换每一个所述光电探测器单独接收反射光脉冲信号,以测量对应于该反射光脉冲信号的目标区域内的目标物体与测距装置之间的距离。
在一种可选实施方式中,所述根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离,包括:
计算每一个所述目标区域对应的接收时间和发射时间的时间差;
根据所述时间差和所述高频光脉冲信号的传播速度,计算每一个所述目标区域内的目标物体与所述测距装置之间的距离。
在本实施例中,所述测距装置还包括测距处理器,该测距处理器用于记录每一个目标区域对应的高频光脉冲信号的发射时间和反射光脉冲信号的接收时间;并根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。具体地,若一个目标区域对应的高频光脉冲信号的发射时间为t1,反射光脉冲信号的接收时间为t2,所述高频光脉冲信号的传播速度为c,则该目标区域内的目标物体与所述测距装置之间的距离为L=c*(t2-t1)/2。
本发明第二实施例提供一种多区域测距装置,包括:
至少一个光源,用于发射覆盖至少两个目标区域的高频光脉冲信号;
至少一个光电探测器,用于接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号;
测距处理器,用于记录每一个目标区域对应的高频光脉冲信号的发射时间和反射光脉冲信号的接收时间;并
根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。
请参阅图2,在一种可选实施方式中,提供一种多区域测距装置20,包括两个光源21、两个光电探测器23及测距处理器25。其中,两个所述光源21通过一光源选通开关27与所述测距处理器25选通连接,所述光源选通开关27由光源选通信号控制,以根据所述光源选通信号择一选通每一个所述光源21,即择一控制两个所述光源21中的一个与所述测距处理器25电性连接,每一个所述光源21分别用于发射覆盖不同目标区域的高频光脉冲信号。可以理解,所述光源选通信号可以由上层应用提供,例如相机应用。两个所述光电探测器23通过一信号选择器29与所述测距处理器25选通连接,所述信号选择器29由探测选通信号控制,以根据所述探测选通信号择一选通每一个所述光电探测器23,及择一控制两个所述光电探测器23中的一个与所述测距处理器25电性连接,每一个所述光电探测器23分别用于接收不同目标区域内的目标物体反射回的反射光脉冲信号。可以理解,所述光源选通信号可以由上层应用提供,例如相机应用。此外,所述测距处理器25由光源控制信号控制,以在所述光源控制信号的控制下,触发与所述测距处理器25电性连接的光源21发射高频光脉冲信号。可以理解,所述光源控制信号也可以由上层应用提供,例如相机应用。所述测距处理器25记录所述光源21发射高频光脉冲信号的发射时间,并记录所述光电探测器23接收反射光脉冲信号的接收时间,进而根据所述发射时间和所述接收时间以及所述高频光脉冲信号的传播速度计算并输出目标区域内的目标物体与测距装置20之间的距离。
在本实施例中,所述测距处理器25包括:
时差计算单元251,用于计算每一个所述目标区域对应的接收时间和发射时间的时间差;
距离计算单元253,用于根据所述时间差和所述高频光脉冲信号的传播速度,计算每一个所述目标区域内的目标物体与所述测距装置之间的距离。可以理解,所述测距处理器25可以写入并运行用户程序,所述时差计算单元251及所述距离计算单元253均可通过软件编程实现。
在该实施方式中,通过与目标区域对应数量的光源分别发射覆盖一个目标区域的高频光脉冲信号,并通过与目标区域对应数量的光电探测器分别接收一个目标区域内的目标物体反射回的反射光脉冲信号,每个光源分别覆盖一个区域,从而可以使的整个测距装置覆盖的目标区域范围更广,从而实现大范围的目标区域测距。
请一并参阅图3和图4,在一种可选实施方式中,提供一种多区域测距装置30,包括两个光源31、一个光电探测器33及测距处理器35。其中,两个所述光源31通过一光源选通开关37与所述测距处理器35选通连接,所述光源选通开关37由光源选通信号控制,以根据所述光源选通信号择一选通每一个所述光源31,即择一控制两个所述光源31中的一个与所述测距处理器35电性连接,每一个所述光源31分别用于发射覆盖不同目标区域的高频光脉冲信号。可以理解,所述光源选通信号可以由上层应用提供,例如相机应用。所述光电探测器33与所述测距处理器35电性连接。在本实施例中,所述光电探测器33为广角光电探测器,即该光电探测器33可以接收大角度范围内的反射光脉冲信号,从而可以通过一个光电探测器33接收由所述两个所述光源31发射的高频光脉冲信号所覆盖的目标区域内的目标物体反射回的反射光脉冲信号,如图4所示,两个所述光源31分别间隔设置于所述光电探测器33的两侧。所述测距处理器35由光源控制信号控制,以在所述光源控制信号的控制下,触发与所述测距处理器35电性连接的光源31发射高频光脉冲信号。其中,所述光源控制信号也可以由上层应用提供,例如相机应用。可以理解,所述光源31并不限定于两个,还可以是三个、四个等,从而可以覆盖更多的目标区域,通过所述选通开光27择一选通所述光源31,从而可以实现多个目标区域内目标物体与测距装置30之间的距离测量。其中,所述测距处理器35的结构及功能与图2所示测距处理器25相同,此处不再赘述。
在该实施方式中,通过一个广角光电探测器即可接收多个目标区域的目标物体反射回的反射光脉冲信号,从而可以在较低的硬件成本条件下实现多个目标区域的距离测量。
请一并参阅图5和图6,在一种可选实施方式中,提供一种多区域测距装置50,包括光源51、两个光电探测器53及测距处理器55。其中,所述光源51与所述测距处理器55电性连接。在本实施例中,所述光源51为广角光源,即该光源51发射出的高频光脉冲信号呈锥状分散开,并可同时覆盖两个不同的目标区域,如图6所示。两个所述光电探测器53通过一信号选择器59与所述测距处理器55选通连接,所述信号选择器59由探测选通信号控制,以根据所述探测选通信号择一选通每一个所述光电探测器53,及择一控制两个所述光电探测器53中的一个与所述测距处理器55电性连接,每一个所述光电探测器53分别用于接收不同目标区域内的目标物体反射回的反射光脉冲信号。可以理解,所述光源选通信号可以由上层应用提供,例如相机应用。此外,所述测距处理器55由光源控制信号控制,以在所述光源控制信号的控制下,触发所述光源51发射高频光脉冲信号。其中,所述光源控制信号也可以由上层应用提供,例如相机应用。可以理解,所述光电探测器53并不限定于两个,还可以是三个、四个等,所述光源51发射的高频光脉冲信号也并不限于覆盖两个目标区域,还可以是三个、四个等,通过所述信号选择器59择一选通所述光电探测器53,从而可以实现多个目标区域内目标物体与测距装置50之间的距离测量。其中,所述测距处理器55的结构及功能与图2所示测距处理器25相同,此处不再赘述。
在该实施方式中,通过一个广角光源即可实现覆盖多个所述目标区域,从而可以在较低的硬件成本条件下实现多个目标区域的距离测量。
请一并参阅图7和图8,本发明第三实施例提供一种终端70,包括至少一个摄像头及前述任意一种实施方式所述的多区域测距装置,所述摄像头与所述多区域测距装置电性连接,用于通过所述多区域测距装置测量至少两个目标区域内的目标物体与所述终端之间的距离,并根据所述距离调整所述至少一个摄像头的拍摄参数。
在一种可选实施方式中,所述终端70包括的多区域测距装置为图2所示实施方式中所述的多区域测距装置20,其具体组成及功能可参照图2所示实施方式中的相关描述。所述终端70包括第一摄像头71和第二摄像头73,所述第一摄像头71与一第一光源211及一第一光电探测器231间隔设置,以通过所述第一光源211及所述第一光电探测器231测量第一目标区域内的目标物体与所述终端70之间的第一距离,并根据所述第一距离调整所述第一摄像头71的拍摄参数;所述第二摄像头73与一第二光源213及一第二光电探测器233间隔设置,以通过所述第二光源213及所述第二光电探测器233测量第二目标区域内的目标物体与所述终端70之间的第二距离,并根据所述第二距离调整所述第二摄像头73的拍摄参数。其中,所述终端70可以为智能手机、平板电脑等终端,所述第一摄像头71可以为后置摄像头,所述第二摄像头73可以为前置摄像头。
在本实施例中,当所述终端70开启相机应用,并切换至所述第一摄像头71拍摄时,所述相机应用输出光源选通信号及探测选通信号分别选通与所述第一摄像头71间隔设置的所述第一光源211及所述第一光电探测器231,从而可通过所述多区域测距装置测量第一目标区域(即所述第一摄像头71的取景区域)内的目标物体与所述终端70之间的第一距离,并根据所述第一距离调整所述第一摄像头71的拍摄参数,例如焦距;当所述终端70切换至所述第二摄像头73拍摄时,所述相机应用输出光源选通信号及探测选通信号分别选通与所述第二摄像头73间隔设置的所述第二光源213及所述第二光电探测器233,从而可通过所述多区域测距装置测量第二目标区域(即所述第二摄像头73的取景区域)内的目标物体与所述终端70之间的第二距离,并根据所述第二距离调整所述第二摄像头73的拍摄参数,例如焦距。
所述多区域测距方法、测距装置及终端通过所述至少一个光源发射可以覆盖至少两个目标区域的高频光脉冲信号,并通过所述至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,从而可以根据每个目标区域对应的高频光脉冲信号的发射时间及对应的反射光脉冲信号的接收时间来计算所述至少两个目标区域内的目标物体与测距装置之间的距离,从而实现了多个目标区域内目标物体的距离测量,有利于提升所述终端的对焦速度和成像效果,并降低生产成本。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。本发明所有实施例中的模块或子模块,可以通过通用集成电路,例如CPU(CentralProcessingUnit,中央处理器),或通过ASIC(ApplicationSpecificIntegratedCircuit,专用集成电路)来实现。
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (11)

1.一种多区域测距方法,其特征在于,包括:
通过至少一个光源发射覆盖至少两个目标区域的高频光脉冲信号,并记录每一个目标区域对应的高频光脉冲信号的发射时间;
通过至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,并记录每一个目标区域对应的反射光脉冲信号的接收时间;
根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。
2.如权利要求1所述的方法,其特征在于,所述通过至少一个光源发射覆盖至少两个目标区域的高频光脉冲信号,包括:
通过一个光源发射覆盖至少两个目标区域的高频光脉冲信号。
3.如权利要求1所述的方法,其特征在于,所述通过至少一个光源发射覆盖至少两个目标区域的高频光脉冲信号,包括:
通过光源选通开关择一选通与至少两个目标区域对应数量的光源;
通过每一个所述光源分别发射覆盖不同目标区域的高频光脉冲信号。
4.如权利要求1-3任意一项所述的方法,其特征在于,所述通过至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,包括:
通过一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号。
5.如权利要求1-3任意一项所述的方法,其特征在于,所述通过至少一个光电探测器接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号,包括:
通过信号选择器择一选通与至少两个目标区域对应数量的光电探测器;
通过每一个所述光电探测器分别接收不同目标区域内的目标物体反射回的反射光脉冲信号。
6.一种多区域测距装置,其特征在于,包括:
至少一个光源,用于发射覆盖至少两个目标区域的高频光脉冲信号;
至少一个光电探测器,用于接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号;
测距处理器,用于记录每一个目标区域对应的高频光脉冲信号的发射时间和反射光脉冲信号的接收时间;并
根据所述高频光脉冲信号的发射时间和对应目标区域的反射光脉冲信号的接收时间,计算所述至少两个目标区域内的目标物体与测距装置之间的距离。
7.如权利要求6所述的装置,其特征在于,所述装置包括一个光源,所述光源与所述测距处理器电性连接,用于发射覆盖至少两个目标区域的高频光脉冲信号。
8.如权利要求6所述的装置,其特征在于,所述装置包括与至少两个目标区域对应数量的光源和光源选通开关,所述光源通过所述光源选通开关与所述测距处理器选通连接,所述光源选通开关用于择一选通每一个所述光源;每一个所述光源分别用于发射覆盖不同目标区域的高频光脉冲信号。
9.如权利要求6-8任意一项所述的装置,其特征在于,所述装置包括一个光电探测器,所述光电探测器与所述测距处理器电性连接,用于接收由所述至少两个目标区域内的目标物体反射回的反射光脉冲信号。
10.如权利要求6-8任意一项所述的装置,其特征在于,所述装置包括与至少两个目标区域对应数量的光电探测器和信号选择器,所述光电探测器通过所述信号选择器与所述测距处理器选通连接,所述信号选择器用于择一选通每一个所述光电探测器;每一个所述光电探测器分别用于接收不同目标区域内的目标物体反射回的反射光脉冲信号。
11.一种终端,其特征在于,包括至少一个摄像头及如权利要求6-10任意一项所述的多区域测距装置,所述摄像头与所述多区域测距装置电性连接,用于通过所述多区域测距装置测量至少两个目标区域内的目标物体与所述终端之间的距离,并根据所述距离调整所述至少一个摄像头的拍摄参数。
CN201610254839.7A 2016-04-21 2016-04-21 多区域测距方法、测距装置及终端 Active CN105807285B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610254839.7A CN105807285B (zh) 2016-04-21 2016-04-21 多区域测距方法、测距装置及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610254839.7A CN105807285B (zh) 2016-04-21 2016-04-21 多区域测距方法、测距装置及终端

Publications (2)

Publication Number Publication Date
CN105807285A true CN105807285A (zh) 2016-07-27
CN105807285B CN105807285B (zh) 2019-07-12

Family

ID=56458310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610254839.7A Active CN105807285B (zh) 2016-04-21 2016-04-21 多区域测距方法、测距装置及终端

Country Status (1)

Country Link
CN (1) CN105807285B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106775137A (zh) * 2016-12-06 2017-05-31 广东欧珀移动通信有限公司 接近检测方法、装置及移动终端
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN109997053A (zh) * 2016-11-14 2019-07-09 欧司朗有限责任公司 装置、用于装置的参照物和运行用于获知沿着运送段的物体的预先给定的信息的装置的方法
CN110022435A (zh) * 2017-12-29 2019-07-16 康耐视公司 具有集成反馈回路和飞行时间传感器的透镜组件
CN110456380A (zh) * 2019-07-31 2019-11-15 炬佑智能科技(苏州)有限公司 飞行时间传感相机及其深度检测方法
WO2020216039A1 (zh) * 2019-04-23 2020-10-29 深圳市大疆创新科技有限公司 控制装置、摄像系统、移动体、控制方法以及程序
US11002854B2 (en) 2013-03-13 2021-05-11 Cognex Corporation Lens assembly with integrated feedback loop and time-of-flight sensor
WO2021169531A1 (zh) * 2020-02-25 2021-09-02 奥比中光科技集团股份有限公司 一种ToF深度测量装置、控制ToF深度测量装置的方法及电子设备
US11513311B2 (en) 2013-03-13 2022-11-29 Cognex Corporation Lens assembly with integrated feedback loop for focus adjustment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534991A (en) * 1992-03-13 1996-07-09 Canon Kabushiki Kaisha Active distance measuring apparatus
GB2374743A (en) * 2001-04-04 2002-10-23 Instro Prec Ltd Surface profile measurement
CN102384736A (zh) * 2010-09-01 2012-03-21 原相科技股份有限公司 测距装置及测距方法
EP2442135A1 (en) * 2010-10-18 2012-04-18 Rockwell Automation Technologies, Inc. Time of flight (TOF) sensors as replacement for standard photoelectric sensors
CN205720669U (zh) * 2016-04-21 2016-11-23 深圳市金立通信设备有限公司 多区域测距装置及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534991A (en) * 1992-03-13 1996-07-09 Canon Kabushiki Kaisha Active distance measuring apparatus
GB2374743A (en) * 2001-04-04 2002-10-23 Instro Prec Ltd Surface profile measurement
CN102384736A (zh) * 2010-09-01 2012-03-21 原相科技股份有限公司 测距装置及测距方法
EP2442135A1 (en) * 2010-10-18 2012-04-18 Rockwell Automation Technologies, Inc. Time of flight (TOF) sensors as replacement for standard photoelectric sensors
CN205720669U (zh) * 2016-04-21 2016-11-23 深圳市金立通信设备有限公司 多区域测距装置及终端

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422257B2 (en) 2013-03-13 2022-08-23 Cognex Corporation Lens assembly with integrated feedback loop and time-of-flight sensor
US11782156B2 (en) 2013-03-13 2023-10-10 Cognex Corporation Lens assembly with integrated feedback loop and time-of-flight sensor
US11513311B2 (en) 2013-03-13 2022-11-29 Cognex Corporation Lens assembly with integrated feedback loop for focus adjustment
US11002854B2 (en) 2013-03-13 2021-05-11 Cognex Corporation Lens assembly with integrated feedback loop and time-of-flight sensor
CN109997053A (zh) * 2016-11-14 2019-07-09 欧司朗有限责任公司 装置、用于装置的参照物和运行用于获知沿着运送段的物体的预先给定的信息的装置的方法
CN106775137B (zh) * 2016-12-06 2019-10-25 Oppo广东移动通信有限公司 接近检测方法、装置及移动终端
CN106775137A (zh) * 2016-12-06 2017-05-31 广东欧珀移动通信有限公司 接近检测方法、装置及移动终端
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN107656284B (zh) * 2017-09-26 2022-11-18 艾普柯微电子(江苏)有限公司 测距装置及测距方法
CN110022435A (zh) * 2017-12-29 2019-07-16 康耐视公司 具有集成反馈回路和飞行时间传感器的透镜组件
WO2020216039A1 (zh) * 2019-04-23 2020-10-29 深圳市大疆创新科技有限公司 控制装置、摄像系统、移动体、控制方法以及程序
CN112154353A (zh) * 2019-04-23 2020-12-29 深圳市大疆创新科技有限公司 控制装置、摄像系统、移动体、控制方法以及程序
CN110456380B (zh) * 2019-07-31 2021-12-28 炬佑智能科技(苏州)有限公司 飞行时间传感相机及其深度检测方法
CN110456380A (zh) * 2019-07-31 2019-11-15 炬佑智能科技(苏州)有限公司 飞行时间传感相机及其深度检测方法
WO2021169531A1 (zh) * 2020-02-25 2021-09-02 奥比中光科技集团股份有限公司 一种ToF深度测量装置、控制ToF深度测量装置的方法及电子设备

Also Published As

Publication number Publication date
CN105807285B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN105807285A (zh) 多区域测距方法、测距装置及终端
US20170353649A1 (en) Time of flight ranging for flash control in image capture devices
US8970728B2 (en) Image pickup apparatus and image processing method
CN106405567A (zh) 一种基于tof的测距系统及其校正方法
CN103363927B (zh) 平台光电装备的任意轴距多光轴一致性检测装置及方法
CN102809434A (zh) 温度记录法测量的方法和装置
US20220086417A1 (en) Camera module, control method, and electronic device
US9848181B2 (en) Hand-held electronic apparatus, image capturing apparatus and method for obtaining depth information
CN107036534A (zh) 基于激光散斑测量振动目标位移的方法及系统
CN205720669U (zh) 多区域测距装置及终端
CN104683693A (zh) 一种自动聚焦的方法
JP3986748B2 (ja) 3次元画像検出装置
US10360423B2 (en) Image sensor with range and light-level detection
CN105445942B (zh) 测距仪及其分合光棱镜装置
CN112954153B (zh) 相机装置、电子设备、景深检测方法及装置
US4876565A (en) Apparatus and method of underwater optical recording
EP3673247B1 (en) Multi-spectral boresight alignment methods and systems
CN106597422A (zh) 小型化光电被动测距装置
CN105208261A (zh) 一种自动对焦方法及装置、摄像装置
CN110244309A (zh) 深度的检测系统和方法
CN214315372U (zh) 摄像机及其成像组件
CN107835361A (zh) 基于结构光的成像方法、装置和移动终端
CN106447700B (zh) 经纬仪中多传感器协同跟踪方法
JP2554051B2 (ja) オ−トフォ−カス装置
CN104683694A (zh) 一种终端

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210121

Address after: 518057 Desai Science and Technology Building, 9789 Shennan Avenue, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province, 17th Floor (15th Floor of Natural Floor) 1702-1703

Patentee after: Shenzhen Microphone Holdings Co.,Ltd.

Address before: 518040 21 floor, east block, Times Technology Building, 7028 Shennan Road, Futian District, Shenzhen, Guangdong.

Patentee before: DONGGUAN GOLDEX COMMUNICATION TECHNOLOGY Co.,Ltd.