CN105804796A - 一种低能耗挖槽机 - Google Patents

一种低能耗挖槽机 Download PDF

Info

Publication number
CN105804796A
CN105804796A CN201610185830.5A CN201610185830A CN105804796A CN 105804796 A CN105804796 A CN 105804796A CN 201610185830 A CN201610185830 A CN 201610185830A CN 105804796 A CN105804796 A CN 105804796A
Authority
CN
China
Prior art keywords
pressure
valve
cylinder
solenoid valve
exhaust solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610185830.5A
Other languages
English (en)
Other versions
CN105804796B (zh
Inventor
时建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Changxin Construction Group Co., Ltd.
Original Assignee
时建华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时建华 filed Critical 时建华
Priority to CN201610185830.5A priority Critical patent/CN105804796B/zh
Publication of CN105804796A publication Critical patent/CN105804796A/zh
Application granted granted Critical
Publication of CN105804796B publication Critical patent/CN105804796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/01Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with one single cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/06Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders in star or fan arrangement
    • F01B1/0641Details, component parts specially adapted for such machines
    • F01B1/0655Details, component parts specially adapted for such machines cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/06Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders in star or fan arrangement
    • F01B1/0675Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B25/00Regulating, controlling, or safety means
    • F01B25/02Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity
    • F01B25/08Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B25/00Regulating, controlling, or safety means
    • F01B25/02Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity
    • F01B25/14Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity peculiar to particular kinds of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B31/00Component parts, details, or accessories not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B31/00Component parts, details, or accessories not provided for in, or of interest apart from, other groups
    • F01B31/12Arrangements of measuring or indicating devices

Abstract

本发明公开了一种低能耗挖槽机,包括车载、机架、转盘、槽刀、气缸、调节杆和发动机系统,多个槽刀均布在转盘上,所述转盘由液压系统驱动转动,转盘通过机架与车载相连,机架与车载铰接,气缸通过调节杆与机架相连;发动机系统安装在车载上,用于驱动车载运动;挖槽机工作时,通过液压系统驱动转盘转动,同时通过气缸和调节杆来调节挖槽的深度,完成一处挖槽后通过调节杆拉起转盘,发动机系统驱动车载到下一处挖槽。该挖槽机结构简单实用,无需复杂的操作机构;同时采用气动发动机来取代传统的内燃发动机来驱动车载,有输出力矩大、可调性高、无污染等优点。

Description

一种低能耗挖槽机
技术领域
本发明涉及挖槽施工设备领域,具体涉及一种低能耗挖槽机。
背景技术
随着社会的不断进步,工业水平的不断发展,挖槽机的发展也不断向着科技创新的方向发展。现有的挖槽机大多存在结构过于复杂、能耗较高、存在一定程度的污染、连续工作稳定性较差等问题。
发明内容
针对上述问题,本发明提供一种低能耗挖槽机。
本发明的目的采用以下技术方案来实现:
一种低能耗挖槽机,其特征是,包括车载、机架、转盘、槽刀、气缸、调节杆和发动机系统,多个槽刀均布在转盘上,所述转盘由液压系统驱动转动,转盘通过机架与车载相连,机架与车载铰接,气缸通过调节杆与机架相连;发动机系统安装在车载上,用于驱动车载运动;挖槽机工作时,通过液压系统驱动转盘转动,同时通过气缸和调节杆来调节挖槽的深度,完成一处挖槽后通过调节杆拉起转盘,发动机系统驱动车载到下一处挖槽;所述发动机系统包括空气压缩泵、压缩空气罐、进气电磁阀、发动机、排气电磁阀、换热系统和控制系统,所述压缩空气罐内部分割为设置在上方的高压区和设置在下方的低压区,高压区的一端通过高压入口阀与所述空气压缩泵相连,另一端通过高压出口阀与所述进气电磁阀相连,低压区的一端通过低压入口阀与所述空气压缩泵相连,另一端依次通过单向逆止阀、低压出口阀与所述进气电磁阀相连,进气电磁阀向所述发动机提供高压或低压的压缩空气;所述进气电磁阀和排气电磁阀均为失电常闭式的先导式电磁阀;
还包括切换泄压管道,切换泄压管道的一端与所述高压出口阀与所述低压出口阀之间的管道相连,另一端与所述低压区的上部相连,切换泄压管道上设置有泄压电磁阀,当从高压往低压切换时,高压出口阀关闭以后,首先检测高压出口阀后管道上的压力值p1,并将其与低压区的压力p2比较,当p1>p2时,将泄压电磁阀打开,切换泄压阀内的压力迅速泄至低压区内,当检测到p1≤p2时,关闭泄压电磁阀,并打开进气电磁阀;所述切换泄压管道的管径为高压区出口管径的1/4;
所述发动机包括气缸、活塞、与活塞相连的曲轴,曲轴包括曲柄、连杆和飞轮,飞轮安装在曲轴的一端;所述排气电磁阀设置在发动机的排气管道上,排气电磁阀后的排气管道分为两路,一路直接排大气或者去制冷系统,另一路通过调节阀进入温度调节器,用于对温度调节器的出口热水温度;所述换热系统包括形式为管式换热器的温度调节器、布置在进气电磁阀左右两侧管道上的预热套管、布置在气缸上的加热套管,温度调节器的加热热源通过热水泵不断向预热套管和加热套管供水,加热后的热水经套管的出口流出;所述气缸的外缸壁上还设置有铝隔板,铝隔板为圆环形,安装在外缸壁与加热套管之间,铝隔板通过多个间隔布置的周向导热固定体固定在外缸壁上,在相邻两个周向导热固定体之间的外缸壁上还间隔设置有3个折向角为45°的导流体,所述导流体的高度为周向固定体高度的2/3;铝隔板上交错布置有多个圆形的均流水口,铝隔板的内表面上设置有多个间隔布置的凸块,凸块的高度为铝隔板和外缸壁之间的距离的1/5;所述活塞的上表面还设置有多个向上凸起的圆锥形的柱塞,柱塞的表面上设置有多个相邻螺旋方向相反的螺旋凸起;所述活塞整体呈圆柱形,其中部外表面上设置有一个凹陷的环形槽,环形槽上布置有多个间隔排列的固定孔槽,固定孔槽上固接有软性物,所述软性物穿过活塞与气缸之间的间隙与气缸的外壁接触,相邻两个所述固定孔槽之间的距离为h;
所述曲轴的轴端安装有增量式光电旋转编码器,用于将曲轴的转动角度转换为相应的脉冲数,以计数脉冲的形式向气动发动机的控制器提供曲轴的转角α数值;所述控制器记录通过压力传感器检测的气缸内的气体压力,以及通过温度传感器检测的气缸内的气体温度、排气电磁阀前温度、排气电磁阀后温度;启动信号来后,增量式增量式光电旋转编码器检测曲轴转角值,当其达到设定的初始进气角度α0时,打开进气电磁阀;同时不断实时检测曲轴转角α、气缸内气体的压力p、气缸内气体温度T、排气电磁阀前温度T1和排气电磁阀后温度T2,控制器根据空气的气体方程和曲轴转角关系按下式计算得到排气压力先验值p′:其中r为曲柄的长度,l为连杆的长度,n为多变系数,T‘为上一循环结束时的气缸内气体温度,T1’为上一循环结束时的排气电磁阀前温度,λ1为第一常数因子,如果当前为第一循环则自动令等温进气关闭项当排气压力先验值p'≥k1×k2×pom时关闭进气电磁阀,其中pom为排气电磁阀的额定开启压力,为每循环的阀值压力系数,pmax为每循环气缸的最高工作压力,pmin为每循环气缸的最低工作压力,k2=0.001×|T1‘-T2’|+1为排气电磁阀卡涩修正系数,T1‘、T2’分别为上一循环的排气电磁阀前温度和排气电磁阀后温度;此后继续检测曲轴转角α,当α达到设定的排气阀打开角度α1时,打开排气电磁阀;排气电磁阀打开后,继续检测曲轴转角,当达到设定的初始进气角度α0时,进气电磁阀再次打开,直至当曲轴转角α达到排气阀关闭角度时,关闭排气电磁阀,其中α2为人为设定的阈值,为等温排气关闭项,λ2为第二常数因子,当处于第一个循环时自动令A2=1,至此发动机系统完成一个工作循环;在排气电磁阀开启的时段中,排气电磁阀至温度调节器的调节阀会根据上一循环的气缸内温度均值和进气电磁阀前后温度反馈值来控制调节阀的开度,从而调节预热套管和加热套管中的热水温度;令λ1=0.0011,λ2=0.0020,h=10mm。
优选地,进气电磁阀打开的提前量为排气电磁阀打开的提前量为排气电磁阀关闭的提前量为其中ω为曲轴的角速度,U1、U2分别为先导式电磁阀通电反应时间和断电反应时间,进气电磁阀和排气电磁阀采用的反应时间相同。
本挖槽机的有益效果为:结构简单实用,无需复杂的操作机构;同时采用气动发动机来取代传统的内燃发动机来驱动车载,有输出力矩大、可调性高、无污染等优点;并且设计了一种新型的发动机系统,其可根据转速来选择不同压力的压缩空气,且为了克服从高压气源往低压气源切换的过程中容易产生“压力真空期”的缺点,巧妙地利用泄压电磁阀和控制器配合保证了发动机的平滑出力;该发动机系统的供气管路不设置减压阀,可以大大减少因为减压导致的能量损失;将气体的准等温膨胀过程和排气压力有机地结合起来,根据每个循环的温度情况和排气压力的先验值来确定进气电磁阀的关闭时间,在不增加额外投资的情况下而仅仅通过修改控制器的算法就可以达到很好的效率提高效果,同时既保证了排气压力实际排气压力大于排气电磁阀的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且采用的计算公式可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀关闭时刻的误判断;根据无减压阀的供气方案,考虑到气缸的受压增大、漏气量增大和换热的需要,重新设计了适合的气缸结构,该气缸换热效果强,且承压能力较高,漏气明显减少。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是一种低能耗挖槽机的整体结构图;
图2是发动机系统的结构示意图;
图3是气缸成套安装后的截面图;
图4是铝隔板的结构示意图;
图5是将气缸展开为平面后导流板的示意图;
图6是活塞的结构示意图。
附图标记:车载-1;转盘-2;槽刀-3;调节杆-4;气缸-5;机架-6;空气压缩泵-11;低压入口阀-12;低压出口阀-13;高压入口阀-14;高压出口阀-15;低压区-16;高压区-17;泄压电磁阀-18;预热套管-19;加热套管-20;进气电磁阀-21;排气电磁阀-22;调节阀-23;温度调节器-24;气缸-25;活塞-26;导流体-27;均流水口-28;周向导热固定体-29;凸块-30;环形槽-31;固定孔槽-32;柱塞-33;螺旋凸起-34;软性物-35;铝隔板-36。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1:
如图1所示的一种低能耗挖槽机,包括车载1、机架6、转盘2、槽刀3、气缸5、调节杆4和发动机系统,多个槽刀3均布在转盘2上,所述转盘2由液压系统驱动转动,转盘2通过机架6与车载1相连,机架6与车载1铰接,气缸5通过调节杆4与机架6相连;发动机系统安装在车载1上,用于驱动车载1运动;挖槽机工作时,通过液压系统驱动转盘2转动,同时通过气缸5和调节杆4来调节挖槽的深度,完成一处挖槽后通过调节杆4拉起转盘2,发动机系统驱动车载1到下一处挖槽。
如图2所示,所述发动机系统包括空气压缩泵2、压缩空气罐、进气电磁阀21、发动机、排气电磁阀22、换热系统和控制系统,所述压缩空气罐内部分割为设置在上方的高压区17和设置在下方的低压区16,高压区17的一端通过高压入口阀14与所述空气压缩泵11相连,另一端通过高压出口阀15与所述进气电磁阀21相连,低压区16的一端通过低压入口阀12与所述空气压缩泵11相连,另一端依次通过单向逆止阀、低压出口阀13与所述进气电磁阀21相连,进气电磁阀21向所述发动机提供高压或低压的压缩空气;所述进气电磁阀21和排气电磁阀22均为失电常闭式的先导式电磁阀。高压区17的压缩空气用于当发动机高速转动时使用,压力范围为15MPa~30MPa,低压区16的压缩空气用于当发动机低速转动时使用,压力范围为2MPa~10MPa,具体的切换条件可以按实际情况来设定。同时,发明人经研究发现,当高压力的压缩空气切换至低压力的压缩空气时,由于是在进气电磁阀21关闭的状态进行切换的,因此高压出口阀15后的管道内常常会发生憋压的现象,导致低压出口阀12打开之后无法克服管道内的压力出力,进气电磁阀21打开以后往往会有一小段时间的“压力真空期”,导致发动机的出力不平滑,因此还设置有切换泄压管道,切换泄压管道的一端与所述高压出口阀15与所述低压出口阀13之间的管道相连,另一端与所述低压区16的上部相连,切换泄压管道上设置有泄压电磁阀18,当从高压往低压切换时,高压出口阀15关闭以后,控制器首先检测高压出口阀15后管道上的压力值p1,并将其与低压区16的压力p2比较,当p1>p2时,将泄压电磁阀18打开,这时候泄压电磁阀18内的压力迅速泄至低压区16内,当检测到p1≤p2时,关闭泄压电磁阀18。综合考虑到节省成本和泄压效果,将所述切换泄压管道的管径设置为高压区17出口管径的1/4。
所述发动机包括气缸25、活塞26、与活塞26相连的曲轴,曲轴包括曲柄、连杆和飞轮,飞轮(图中未示出)安装在曲轴的一端;所述排气电磁阀22设置在发动机的排气管道上,排气电磁阀22后的排气管道分为两路,一路直接排大气或者去制冷系统,另一路通过调节阀23进入温度调节器24,用于对温度调节器24的出口热水温度进行调节,保持气体的膨胀过程尽可能接近等温膨胀过程,以提高发动机的出力。所述换热系统包括形式为管式换热器的温度调节器24、布置在进气电磁阀21左右两侧管道上的预热套管19、布置在气缸25上的加热套管20,设置预热套管20的目的是为了对进入气缸25的压缩空气进行预热,并保证进气电磁阀21前后温差均匀、减小热应力。温度调节器24的加热热源来自太阳能集热器或者其他方便连接(例如室内暖气)的热源,通过热水泵(图中未示出)不断向预热套管19和加热套管20供水,加热后的热水经套管的出口流出。
如图3-4所示,所述气缸25的外缸壁上还设置有铝隔板36,铝隔板36为圆环形,安装在外缸壁与加热套管20之间,铝隔板36通过多个间隔布置的周向导热固定体29固定在外缸壁上,导热固定体29除了固定作用外,一方面由于本方案采取的是压缩空气罐后不设置减压阀,因此进气压力很大,周向导热固定,29可以起到强化气缸25强度的作用,另一方面由于导热固定体29采用了导热材料(例如铝铜等金属),可以增强换热。
为了直观,图5给出了气缸展开为平面时的示意图,在相邻两个周向导热固定体29之间的外缸壁上还间隔设置有3个折向角为45°的导流体27,所述导流体27的高度为周向固定体高度的2/3,导流体27可以有效增长热水在气缸25外壁面的停留时间,提高换热效果。铝隔板36上交错布置有多个圆形的均流水口28,套管中的水从均流水口28进入和流出,设置铝隔板36的目的一来是利用铝金属的导热特性增强换热,二是利用铝隔板36和均流水口28来减缓水流速和均匀流量,以进一步增强换热并尽量使气缸均匀加热;铝隔板36的内表面上设置有多个间隔布置的凸块30,用于对进入的热水产生湍流作用以加强换热,同时凸块30的高度也不宜做得太高,否则容易造成流动死区,相反如果凸块30的高度过低则湍流效果不佳,经反复多次试验,将凸块30的高度设置为铝隔板36和外缸壁之间的距离的1/5。
如图6所示,所述活塞26的上表面还设置有多个向上凸起的圆锥形的柱塞33,柱塞33的表面上设置有多个相邻螺旋方向相反的螺旋凸起34,即前一个正向螺旋、后一个反向螺旋。。。,柱塞33和螺旋凸起34的目的是对进气气流进行合理组织以通过增加缸内湍流而强化气缸内壁与缸内气体间的对流换热;所述活塞26整体呈圆柱形,其中部外表面上设置有一个凹陷的环形槽31,环形槽31上布置有多个间隔排列的固定孔槽32,固定孔槽32上固接有软性物35(例如棉花、海绵等),所述软性物35穿过活塞26与气缸25之间的间隙与气缸25的外壁接触,相邻两个所述固定孔槽32之间的距离为h。发明人经研究发现,当采用无减压阀的供气系统时,由于气缸气压的增大,气缸25和活塞26之间的间隙漏气会比带减压阀的系统漏气量更大,因此必须采用特定的设计来减少间隙漏气,以提高发动机的效率。采用棉花、海绵等具有较好气密性的软性物35,以及采用较小的间隔布置,能有效较小气缸和活塞之间的漏气;同时实验表明,由于供气压力较高,软性物35与气缸25之间的摩擦力相对于活塞26的动能来说几乎可以忽略不计,而且间隔布置而非连续布置的软性物35也有效减小了摩擦,从而提高了发动机的效率。
所述曲轴的轴端安装有增量式光电旋转编码器(图中未示出),其用于将曲轴的转动角度转换为相应的脉冲数,以计数脉冲的形式向气动发动机的控制器提供曲轴的转角α数值;所述控制器记录通过压力传感器检测的气缸25内的气体压力等处的压力值,以及通过温度传感器检测的气缸25内的气体温度、排气电磁阀22前温度、排气电磁阀22后温度等处的温度值。
启动信号来后,增量式增量式光电旋转编码器检测曲轴转角值α,当其达到设定的初始进气角度α0时,打开进气电磁阀21;同时不断实时检测曲轴转角α、气缸25内气体的压力p、气缸25内气体温度T、排气电磁阀22前温度T1和排气电磁阀22后温度T2,控制器根据空气的气体方程和曲轴转角关系按下式计算得到排气压力先验值p': 其中r为曲柄的长度,l为连杆的长度,n为多变系数,T‘为上一循环结束时的气缸25内气体温度,T1’为上一循环结束时的排气电磁阀22前温度,λ1为第一常数因子,如果当前为第一循环则自动令等温进气关闭项 如果上一循环和实时测量的温差增大,说明温度减小量增大,则此时A1也增大,通过等温进气关闭项来提高计算得到的排气压力先验值,进气电磁阀21的关闭时间提前,起到防止过快膨胀、减小温差,使得整体过程更加接近等温膨胀过程进而提高发动机出力的作用。当排气压力先验值p'≥k1×k2×pom时关闭进气电磁阀21,其中pom为排气电磁阀22的额定开启压力,为每循环的阀值压力系数,pmax为每循环气缸25的最高工作压力,pmin为每循环气缸25的最低工作压力,从k1的表达式可以看出根据此方法得出的进气电磁阀21的关闭时刻既保证了实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;k2=0.001×|T1‘-T2’|+1为排气电磁阀22卡涩修正系数,T1‘、T2’分别为上一循环的排气电磁阀22前温度和排气电磁阀22后温度,由于排气电磁阀2处于膨胀过程的末端,很容易发生低温结霜导致卡涩的现象,|T1‘-T2’|越大表明上一循环中排气电磁阀22的前后温差越大,排气电磁阀22越容易发生结霜而导致卡涩,此时在这一循环中k2自动增大以提高气缸25的进气压力阀值,从而增大排气电磁阀22的入口压力以保证其顺利开启,在第一个循环时自动令k2=1。此后继续检测曲轴转角α,当α达到设定的排气阀打开角度α1时,打开排气电磁阀22;排气电磁阀22打开后,继续检测曲轴转角,当达到设定的初始进气角度α0时,进气电磁阀22再次打开,直至当曲轴转角α达到排气阀关闭角度 时,关闭排气电磁阀22,α2为人为设定的阈值,λ2为第二常数因子,通过等温排气关闭项来起到提前关闭排气电磁阀22的作用,此处假设转角α是不断增大的,每转过一圈增加360°,由A2的表达式可知其值总是小于1,当温差增大时A2减小,则排气电磁阀22的关闭条件值越低,从而使得曲轴转角α能更快到达关闭条件值,当处于第一个循环时自动令A2=1,至此发动机系统完成一个工作循环;在排气电磁阀22开启的时段中,温度调节器24的调节阀23会根据上一循环的气缸25内温度均值和进气电磁阀21前后温度反馈值来控制调节阀23的开度,从而调节预热套管19和加热套管20中的热水温度。令λ1=0.0011,λ2=0.0020,h=10mm。
优选地,因为电磁阀从通到断或从断到通需要反应时间,所以为了更准确地控制电磁阀的通断时刻,需要在理想位置的基础之上设定一定的提前量,而且这个提前量不能是定值,即其不仅应该与电磁阀的固有反应时间有关,还应该与曲轴的具体角速度ω(通过转角α得到)有关,实验证明这样的可变提前量能有效地提高电磁阀提前量的精确程度,从而进一步提高发动机系统的效率。因为所用的进排气电磁阀均为失电常闭式电磁阀,所以通电延迟后打开,断电延迟后关闭。设定:曲轴的转动角度用旋转编码器的脉冲发生数度量,0-1023脉冲数目范围与0-360°对应。进气电磁阀21打开的理想位置为0(0°),关闭的理想位置为排气压力先验值与排气电磁阀22开启压力相等的位置;排气电磁阀22打开的理想位置为512(180°),关闭的理想位置为0(0°)。则进排气电磁阀的通断电位置应该比理想动作位置有所提前,提前的量可由电磁阀的通电、断电反应时间和曲轴的转速按以下各式计算得到:进气电磁阀21打开的提前量为排气电磁阀22打开的提前量为排气电磁阀22关闭的提前量为其中ω为曲轴的角速度,U1、U2分别为先导式电磁阀通电反应时间和断电反应时间,进气电磁阀21和排气电磁阀22采用的反应时间相同,单位:ms。
在此实施例的挖槽机中,结构简单实用,无需复杂的操作机构;同时采用气动发动机来取代传统的内燃发动机来驱动车载,有输出力矩大、可调性高、无污染等优点;并且设计了一种新型的发动机系统,其可根据转速来选择不同压力的压缩空气,且为了克服从高压气源往低压气源切换的过程中容易产生“压力真空期”的缺点,巧妙地利用泄压电磁阀18和控制器配合保证了发动机的平滑出力;该发动机系统的供气管路不设置减压阀,可以大大减少因为减压导致的能量损失;将气体的准等温膨胀过程和排气压力有机地结合起来,根据每个循环的温度情况和排气压力的先验值来确定进气电磁阀21的关闭时间,在不增加额外投资的情况下而仅仅通过修改控制器的算法就可以达到很好的效率提高效果,同时既保证了排气压力实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且采用的计算公式可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;根据无减压阀的供气方案,考虑到气缸25的受压增大、漏气量增大和换热的需要,重新设计了适合的气缸结构,该气缸换热效果强,且承压能力较高,漏气明显减少,令λ1=0.0011,λ2=0.0020,h=10mm,实验表明其整体效率较未经改造前提高了5%,漏气量减少了7%,取得了意想不到的效果。
实施例2:
如图1所示的一种低能耗挖槽机,包括车载1、机架6、转盘2、槽刀3、气缸5、调节杆4和发动机系统,多个槽刀3均布在转盘2上,所述转盘2由液压系统驱动转动,转盘2通过机架6与车载1相连,机架6与车载1铰接,气缸5通过调节杆4与机架6相连;发动机系统安装在车载1上,用于驱动车载1运动;挖槽机工作时,通过液压系统驱动转盘2转动,同时通过气缸5和调节杆4来调节挖槽的深度,完成一处挖槽后通过调节杆4拉起转盘2,发动机系统驱动车载1到下一处挖槽。
如图2所示,所述发动机系统包括空气压缩泵2、压缩空气罐、进气电磁阀21、发动机、排气电磁阀22、换热系统和控制系统,所述压缩空气罐内部分割为设置在上方的高压区17和设置在下方的低压区16,高压区17的一端通过高压入口阀14与所述空气压缩泵11相连,另一端通过高压出口阀15与所述进气电磁阀21相连,低压区16的一端通过低压入口阀12与所述空气压缩泵11相连,另一端依次通过单向逆止阀、低压出口阀13与所述进气电磁阀21相连,进气电磁阀21向所述发动机提供高压或低压的压缩空气;所述进气电磁阀21和排气电磁阀22均为失电常闭式的先导式电磁阀。高压区17的压缩空气用于当发动机高速转动时使用,压力范围为15MPa~30MPa,低压区16的压缩空气用于当发动机低速转动时使用,压力范围为2MPa~10MPa,具体的切换条件可以按实际情况来设定。同时,发明人经研究发现,当高压力的压缩空气切换至低压力的压缩空气时,由于是在进气电磁阀21关闭的状态进行切换的,因此高压出口阀15后的管道内常常会发生憋压的现象,导致低压出口阀12打开之后无法克服管道内的压力出力,进气电磁阀21打开以后往往会有一小段时间的“压力真空期”,导致发动机的出力不平滑,因此还设置有切换泄压管道,切换泄压管道的一端与所述高压出口阀15与所述低压出口阀13之间的管道相连,另一端与所述低压区16的上部相连,切换泄压管道上设置有泄压电磁阀18,当从高压往低压切换时,高压出口阀15关闭以后,控制器首先检测高压出口阀15后管道上的压力值p1,并将其与低压区16的压力p2比较,当p1>p2时,将泄压电磁阀18打开,这时候泄压电磁阀18内的压力迅速泄至低压区16内,当检测到p1≤p2时,关闭泄压电磁阀18。综合考虑到节省成本和泄压效果,将所述切换泄压管道的管径设置为高压区17出口管径的1/4。
所述发动机包括气缸25、活塞26、与活塞26相连的曲轴,曲轴包括曲柄、连杆和飞轮,飞轮(图中未示出)安装在曲轴的一端;所述排气电磁阀22设置在发动机的排气管道上,排气电磁阀22后的排气管道分为两路,一路直接排大气或者去制冷系统,另一路通过调节阀23进入温度调节器24,用于对温度调节器24的出口热水温度进行调节,保持气体的膨胀过程尽可能接近等温膨胀过程,以提高发动机的出力。所述换热系统包括形式为管式换热器的温度调节器24、布置在进气电磁阀21左右两侧管道上的预热套管19、布置在气缸25上的加热套管20,设置预热套管20的目的是为了对进入气缸25的压缩空气进行预热,并保证进气电磁阀21前后温差均匀、减小热应力。温度调节器24的加热热源来自太阳能集热器或者其他方便连接(例如室内暖气)的热源,通过热水泵(图中未示出)不断向预热套管19和加热套管20供水,加热后的热水经套管的出口流出。
如图3-4所示,所述气缸25的外缸壁上还设置有铝隔板36,铝隔板36为圆环形,安装在外缸壁与加热套管20之间,铝隔板36通过多个间隔布置的周向导热固定体29固定在外缸壁上,导热固定体29除了固定作用外,一方面由于本方案采取的是压缩空气罐后不设置减压阀,因此进气压力很大,周向导热固定,29可以起到强化气缸25强度的作用,另一方面由于导热固定体29采用了导热材料(例如铝铜等金属),可以增强换热。
为了直观,图5给出了气缸展开为平面时的示意图,在相邻两个周向导热固定体29之间的外缸壁上还间隔设置有3个折向角为45°的导流体27,所述导流体27的高度为周向固定体高度的2/3,导流体27可以有效增长热水在气缸25外壁面的停留时间,提高换热效果。铝隔板36上交错布置有多个圆形的均流水口28,套管中的水从均流水口28进入和流出,设置铝隔板36的目的一来是利用铝金属的导热特性增强换热,二是利用铝隔板36和均流水口28来减缓水流速和均匀流量,以进一步增强换热并尽量使气缸均匀加热;铝隔板36的内表面上设置有多个间隔布置的凸块30,用于对进入的热水产生湍流作用以加强换热,同时凸块30的高度也不宜做得太高,否则容易造成流动死区,相反如果凸块30的高度过低则湍流效果不佳,经反复多次试验,将凸块30的高度设置为铝隔板36和外缸壁之间的距离的1/5。
如图6所示,所述活塞26的上表面还设置有多个向上凸起的圆锥形的柱塞33,柱塞33的表面上设置有多个相邻螺旋方向相反的螺旋凸起34,即前一个正向螺旋、后一个反向螺旋。。。,柱塞33和螺旋凸起34的目的是对进气气流进行合理组织以通过增加缸内湍流而强化气缸内壁与缸内气体间的对流换热;所述活塞26整体呈圆柱形,其中部外表面上设置有一个凹陷的环形槽31,环形槽31上布置有多个间隔排列的固定孔槽32,固定孔槽32上固接有软性物35(例如棉花、海绵等),所述软性物35穿过活塞26与气缸25之间的间隙与气缸25的外壁接触,相邻两个所述固定孔槽32之间的距离为h。发明人经研究发现,当采用无减压阀的供气系统时,由于气缸气压的增大,气缸25和活塞26之间的间隙漏气会比带减压阀的系统漏气量更大,因此必须采用特定的设计来减少间隙漏气,以提高发动机的效率。采用棉花、海绵等具有较好气密性的软性物35,以及采用较小的间隔布置,能有效较小气缸和活塞之间的漏气;同时实验表明,由于供气压力较高,软性物35与气缸25之间的摩擦力相对于活塞26的动能来说几乎可以忽略不计,而且间隔布置而非连续布置的软性物35也有效减小了摩擦,从而提高了发动机的效率。
所述曲轴的轴端安装有增量式光电旋转编码器(图中未示出),其用于将曲轴的转动角度转换为相应的脉冲数,以计数脉冲的形式向气动发动机的控制器提供曲轴的转角α数值;所述控制器记录通过压力传感器检测的气缸25内的气体压力等处的压力值,以及通过温度传感器检测的气缸25内的气体温度、排气电磁阀22前温度、排气电磁阀22后温度等处的温度值。
启动信号来后,增量式增量式光电旋转编码器检测曲轴转角值α,当其达到设定的初始进气角度α0时,打开进气电磁阀21;同时不断实时检测曲轴转角α、气缸25内气体的压力p、气缸25内气体温度T、排气电磁阀22前温度T1和排气电磁阀22后温度T2,控制器根据空气的气体方程和曲轴转角关系按下式计算得到排气压力先验值p′: 其中r为曲柄的长度,l为连杆的长度,n为多变系数,T‘为上一循环结束时的气缸25内气体温度,T1’为上一循环结束时的排气电磁阀22前温度,λ1为第一常数因子,如果当前为第一循环则自动令等温进气关闭项 如果上一循环和实时测量的温差增大,说明温度减小量增大,则此时A1也增大,通过等温进气关闭项来提高计算得到的排气压力先验值,进气电磁阀21的关闭时间提前,起到防止过快膨胀、减小温差,使得整体过程更加接近等温膨胀过程进而提高发动机出力的作用。当排气压力先验值p′≥k1×k2×pom时关闭进气电磁阀21,其中pom为排气电磁阀22的额定开启压力,为每循环的阀值压力系数,pmax为每循环气缸25的最高工作压力,pmin为每循环气缸25的最低工作压力,从k1的表达式可以看出根据此方法得出的进气电磁阀21的关闭时刻既保证了实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;k2=0.001×|T1‘-T2’|+1为排气电磁阀22卡涩修正系数,T1‘、T2’分别为上一循环的排气电磁阀22前温度和排气电磁阀22后温度,由于排气电磁阀2处于膨胀过程的末端,很容易发生低温结霜导致卡涩的现象,|T1‘-T2’|越大表明上一循环中排气电磁阀22的前后温差越大,排气电磁阀22越容易发生结霜而导致卡涩,此时在这一循环中k2自动增大以提高气缸25的进气压力阀值,从而增大排气电磁阀22的入口压力以保证其顺利开启,在第一个循环时自动令k2=1。此后继续检测曲轴转角α,当α达到设定的排气阀打开角度α1时,打开排气电磁阀22;排气电磁阀22打开后,继续检测曲轴转角,当达到设定的初始进气角度α0时,进气电磁阀22再次打开,直至当曲轴转角α达到排气阀关闭角度 时,关闭排气电磁阀22,α2为人为设定的阈值,λ2为第二常数因子,通过等温排气关闭项来起到提前关闭排气电磁阀22的作用,此处假设转角α是不断增大的,每转过一圈增加360°,由A2的表达式可知其值总是小于1,当温差增大时A2减小,则排气电磁阀22的关闭条件值越低,从而使得曲轴转角α能更快到达关闭条件值,当处于第一个循环时自动令A2=1,至此发动机系统完成一个工作循环;在排气电磁阀22开启的时段中,温度调节器24的调节阀23会根据上一循环的气缸25内温度均值和进气电磁阀21前后温度反馈值来控制调节阀23的开度,从而调节预热套管19和加热套管20中的热水温度。令λ1=0.0013,λ2=0.0022,h=9mm。
优选地,因为电磁阀从通到断或从断到通需要反应时间,所以为了更准确地控制电磁阀的通断时刻,需要在理想位置的基础之上设定一定的提前量,而且这个提前量不能是定值,即其不仅应该与电磁阀的固有反应时间有关,还应该与曲轴的具体角速度ω(通过转角α得到)有关,实验证明这样的可变提前量能有效地提高电磁阀提前量的精确程度,从而进一步提高发动机系统的效率。因为所用的进排气电磁阀均为失电常闭式电磁阀,所以通电延迟后打开,断电延迟后关闭。设定:曲轴的转动角度用旋转编码器的脉冲发生数度量,0-1023脉冲数目范围与0-360°对应。进气电磁阀21打开的理想位置为0(0°),关闭的理想位置为排气压力先验值与排气电磁阀22开启压力相等的位置;排气电磁阀22打开的理想位置为512(180°),关闭的理想位置为0(0°)。则进排气电磁阀的通断电位置应该比理想动作位置有所提前,提前的量可由电磁阀的通电、断电反应时间和曲轴的转速按以下各式计算得到:进气电磁阀21打开的提前量为排气电磁阀22打开的提前量为排气电磁阀22关闭的提前量为其中ω为曲轴的角速度,U1、U2分别为先导式电磁阀通电反应时间和断电反应时间,进气电磁阀21和排气电磁阀22采用的反应时间相同,单位:ms。
在此实施例的挖槽机中,结构简单实用,无需复杂的操作机构;同时采用气动发动机来取代传统的内燃发动机来驱动车载,有输出力矩大、可调性高、无污染等优点;并且设计了一种新型的发动机系统,其可根据转速来选择不同压力的压缩空气,且为了克服从高压气源往低压气源切换的过程中容易产生“压力真空期”的缺点,巧妙地利用泄压电磁阀18和控制器配合保证了发动机的平滑出力;该发动机系统的供气管路不设置减压阀,可以大大减少因为减压导致的能量损失;将气体的准等温膨胀过程和排气压力有机地结合起来,根据每个循环的温度情况和排气压力的先验值来确定进气电磁阀21的关闭时间,在不增加额外投资的情况下而仅仅通过修改控制器的算法就可以达到很好的效率提高效果,同时既保证了排气压力实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且采用的计算公式可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;根据无减压阀的供气方案,考虑到气缸25的受压增大、漏气量增大和换热的需要,重新设计了适合的气缸结构,该气缸换热效果强,且承压能力较高,漏气明显减少,令λ1=0.0013,λ2=0.0022,h=9mm,实验表明其整体效率较未经改造前提高了5.8%,漏气量减少了8.1%,取得了意想不到的效果。
实施例3:
如图1所示的一种低能耗挖槽机,包括车载1、机架6、转盘2、槽刀3、气缸5、调节杆4和发动机系统,多个槽刀3均布在转盘2上,所述转盘2由液压系统驱动转动,转盘2通过机架6与车载1相连,机架6与车载1铰接,气缸5通过调节杆4与机架6相连;发动机系统安装在车载1上,用于驱动车载1运动;挖槽机工作时,通过液压系统驱动转盘2转动,同时通过气缸5和调节杆4来调节挖槽的深度,完成一处挖槽后通过调节杆4拉起转盘2,发动机系统驱动车载1到下一处挖槽。
如图2所示,所述发动机系统包括空气压缩泵2、压缩空气罐、进气电磁阀21、发动机、排气电磁阀22、换热系统和控制系统,所述压缩空气罐内部分割为设置在上方的高压区17和设置在下方的低压区16,高压区17的一端通过高压入口阀14与所述空气压缩泵11相连,另一端通过高压出口阀15与所述进气电磁阀21相连,低压区16的一端通过低压入口阀12与所述空气压缩泵11相连,另一端依次通过单向逆止阀、低压出口阀13与所述进气电磁阀21相连,进气电磁阀21向所述发动机提供高压或低压的压缩空气;所述进气电磁阀21和排气电磁阀22均为失电常闭式的先导式电磁阀。高压区17的压缩空气用于当发动机高速转动时使用,压力范围为15MPa~30MPa,低压区16的压缩空气用于当发动机低速转动时使用,压力范围为2MPa~10MPa,具体的切换条件可以按实际情况来设定。同时,发明人经研究发现,当高压力的压缩空气切换至低压力的压缩空气时,由于是在进气电磁阀21关闭的状态进行切换的,因此高压出口阀15后的管道内常常会发生憋压的现象,导致低压出口阀12打开之后无法克服管道内的压力出力,进气电磁阀21打开以后往往会有一小段时间的“压力真空期”,导致发动机的出力不平滑,因此还设置有切换泄压管道,切换泄压管道的一端与所述高压出口阀15与所述低压出口阀13之间的管道相连,另一端与所述低压区16的上部相连,切换泄压管道上设置有泄压电磁阀18,当从高压往低压切换时,高压出口阀15关闭以后,控制器首先检测高压出口阀15后管道上的压力值p1,并将其与低压区16的压力p2比较,当p1>p2时,将泄压电磁阀18打开,这时候泄压电磁阀18内的压力迅速泄至低压区16内,当检测到p1≤p2时,关闭泄压电磁阀18。综合考虑到节省成本和泄压效果,将所述切换泄压管道的管径设置为高压区17出口管径的1/4。
所述发动机包括气缸25、活塞26、与活塞26相连的曲轴,曲轴包括曲柄、连杆和飞轮,飞轮(图中未示出)安装在曲轴的一端;所述排气电磁阀22设置在发动机的排气管道上,排气电磁阀22后的排气管道分为两路,一路直接排大气或者去制冷系统,另一路通过调节阀23进入温度调节器24,用于对温度调节器24的出口热水温度进行调节,保持气体的膨胀过程尽可能接近等温膨胀过程,以提高发动机的出力。所述换热系统包括形式为管式换热器的温度调节器24、布置在进气电磁阀21左右两侧管道上的预热套管19、布置在气缸25上的加热套管20,设置预热套管20的目的是为了对进入气缸25的压缩空气进行预热,并保证进气电磁阀21前后温差均匀、减小热应力。温度调节器24的加热热源来自太阳能集热器或者其他方便连接(例如室内暖气)的热源,通过热水泵(图中未示出)不断向预热套管19和加热套管20供水,加热后的热水经套管的出口流出。
如图3-4所示,所述气缸25的外缸壁上还设置有铝隔板36,铝隔板36为圆环形,安装在外缸壁与加热套管20之间,铝隔板36通过多个间隔布置的周向导热固定体29固定在外缸壁上,导热固定体29除了固定作用外,一方面由于本方案采取的是压缩空气罐后不设置减压阀,因此进气压力很大,周向导热固定,29可以起到强化气缸25强度的作用,另一方面由于导热固定体29采用了导热材料(例如铝铜等金属),可以增强换热。
为了直观,图5给出了气缸展开为平面时的示意图,在相邻两个周向导热固定体29之间的外缸壁上还间隔设置有3个折向角为45°的导流体27,所述导流体27的高度为周向固定体高度的2/3,导流体27可以有效增长热水在气缸25外壁面的停留时间,提高换热效果。铝隔板36上交错布置有多个圆形的均流水口28,套管中的水从均流水口28进入和流出,设置铝隔板36的目的一来是利用铝金属的导热特性增强换热,二是利用铝隔板36和均流水口28来减缓水流速和均匀流量,以进一步增强换热并尽量使气缸均匀加热;铝隔板36的内表面上设置有多个间隔布置的凸块30,用于对进入的热水产生湍流作用以加强换热,同时凸块30的高度也不宜做得太高,否则容易造成流动死区,相反如果凸块30的高度过低则湍流效果不佳,经反复多次试验,将凸块30的高度设置为铝隔板36和外缸壁之间的距离的1/5。
如图6所示,所述活塞26的上表面还设置有多个向上凸起的圆锥形的柱塞33,柱塞33的表面上设置有多个相邻螺旋方向相反的螺旋凸起34,即前一个正向螺旋、后一个反向螺旋。。。,柱塞33和螺旋凸起34的目的是对进气气流进行合理组织以通过增加缸内湍流而强化气缸内壁与缸内气体间的对流换热;所述活塞26整体呈圆柱形,其中部外表面上设置有一个凹陷的环形槽31,环形槽31上布置有多个间隔排列的固定孔槽32,固定孔槽32上固接有软性物35(例如棉花、海绵等),所述软性物35穿过活塞26与气缸25之间的间隙与气缸25的外壁接触,相邻两个所述固定孔槽32之间的距离为h。发明人经研究发现,当采用无减压阀的供气系统时,由于气缸气压的增大,气缸25和活塞26之间的间隙漏气会比带减压阀的系统漏气量更大,因此必须采用特定的设计来减少间隙漏气,以提高发动机的效率。采用棉花、海绵等具有较好气密性的软性物35,以及采用较小的间隔布置,能有效较小气缸和活塞之间的漏气;同时实验表明,由于供气压力较高,软性物35与气缸25之间的摩擦力相对于活塞26的动能来说几乎可以忽略不计,而且间隔布置而非连续布置的软性物35也有效减小了摩擦,从而提高了发动机的效率。
所述曲轴的轴端安装有增量式光电旋转编码器(图中未示出),其用于将曲轴的转动角度转换为相应的脉冲数,以计数脉冲的形式向气动发动机的控制器提供曲轴的转角α数值;所述控制器记录通过压力传感器检测的气缸25内的气体压力等处的压力值,以及通过温度传感器检测的气缸25内的气体温度、排气电磁阀22前温度、排气电磁阀22后温度等处的温度值。
启动信号来后,增量式增量式光电旋转编码器检测曲轴转角值α,当其达到设定的初始进气角度α0时,打开进气电磁阀21;同时不断实时检测曲轴转角α、气缸25内气体的压力p、气缸25内气体温度T、排气电磁阀22前温度T1和排气电磁阀22后温度T2,控制器根据空气的气体方程和曲轴转角关系按下式计算得到排气压力先验值p′: 其中r为曲柄的长度,l为连杆的长度,n为多变系数,T‘为上一循环结束时的气缸25内气体温度,T1’为上一循环结束时的排气电磁阀22前温度,λ1为第一常数因子,如果当前为第一循环则自动令等温进气关闭项 如果上一循环和实时测量的温差增大,说明温度减小量增大,则此时A1也增大,通过等温进气关闭项来提高计算得到的排气压力先验值,进气电磁阀21的关闭时间提前,起到防止过快膨胀、减小温差,使得整体过程更加接近等温膨胀过程进而提高发动机出力的作用。当排气压力先验值p′≥k1×k2×pom时关闭进气电磁阀21,其中pom为排气电磁阀22的额定开启压力,为每循环的阀值压力系数,pmax为每循环气缸25的最高工作压力,pmin为每循环气缸25的最低工作压力,从k1的表达式可以看出根据此方法得出的进气电磁阀21的关闭时刻既保证了实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;k2=0.001×|T1‘-T2’|+1为排气电磁阀22卡涩修正系数,T1‘、T2’分别为上一循环的排气电磁阀22前温度和排气电磁阀22后温度,由于排气电磁阀2处于膨胀过程的末端,很容易发生低温结霜导致卡涩的现象,|T1‘-T2’|越大表明上一循环中排气电磁阀22的前后温差越大,排气电磁阀22越容易发生结霜而导致卡涩,此时在这一循环中k2自动增大以提高气缸25的进气压力阀值,从而增大排气电磁阀22的入口压力以保证其顺利开启,在第一个循环时自动令k2=1。此后继续检测曲轴转角α,当α达到设定的排气阀打开角度α1时,打开排气电磁阀22;排气电磁阀22打开后,继续检测曲轴转角,当达到设定的初始进气角度α0时,进气电磁阀22再次打开,直至当曲轴转角α达到排气阀关闭角度 时,关闭排气电磁阀22,α2为人为设定的阈值,λ2为第二常数因子,通过等温排气关闭项来起到提前关闭排气电磁阀22的作用,此处假设转角α是不断增大的,每转过一圈增加360°,由A2的表达式可知其值总是小于1,当温差增大时A2减小,则排气电磁阀22的关闭条件值越低,从而使得曲轴转角α能更快到达关闭条件值,当处于第一个循环时自动令A2=1,至此发动机系统完成一个工作循环;在排气电磁阀22开启的时段中,温度调节器24的调节阀23会根据上一循环的气缸25内温度均值和进气电磁阀21前后温度反馈值来控制调节阀23的开度,从而调节预热套管19和加热套管20中的热水温度。令λ1=0.0015,λ2=0.0024,h=8mm。
优选地,因为电磁阀从通到断或从断到通需要反应时间,所以为了更准确地控制电磁阀的通断时刻,需要在理想位置的基础之上设定一定的提前量,而且这个提前量不能是定值,即其不仅应该与电磁阀的固有反应时间有关,还应该与曲轴的具体角速度ω(通过转角α得到)有关,实验证明这样的可变提前量能有效地提高电磁阀提前量的精确程度,从而进一步提高发动机系统的效率。因为所用的进排气电磁阀均为失电常闭式电磁阀,所以通电延迟后打开,断电延迟后关闭。设定:曲轴的转动角度用旋转编码器的脉冲发生数度量,0-1023脉冲数目范围与0-360°对应。进气电磁阀21打开的理想位置为0(0°),关闭的理想位置为排气压力先验值与排气电磁阀22开启压力相等的位置;排气电磁阀22打开的理想位置为512(180°),关闭的理想位置为0(0°)。则进排气电磁阀的通断电位置应该比理想动作位置有所提前,提前的量可由电磁阀的通电、断电反应时间和曲轴的转速按以下各式计算得到:进气电磁阀21打开的提前量为排气电磁阀22打开的提前量为排气电磁阀22关闭的提前量为其中ω为曲轴的角速度,U1、U2分别为先导式电磁阀通电反应时间和断电反应时间,进气电磁阀21和排气电磁阀22采用的反应时间相同,单位:ms。
在此实施例的挖槽机中,结构简单实用,无需复杂的操作机构;同时采用气动发动机来取代传统的内燃发动机来驱动车载,有输出力矩大、可调性高、无污染等优点;并且设计了一种新型的发动机系统,其可根据转速来选择不同压力的压缩空气,且为了克服从高压气源往低压气源切换的过程中容易产生“压力真空期”的缺点,巧妙地利用泄压电磁阀18和控制器配合保证了发动机的平滑出力;该发动机系统的供气管路不设置减压阀,可以大大减少因为减压导致的能量损失;将气体的准等温膨胀过程和排气压力有机地结合起来,根据每个循环的温度情况和排气压力的先验值来确定进气电磁阀21的关闭时间,在不增加额外投资的情况下而仅仅通过修改控制器的算法就可以达到很好的效率提高效果,同时既保证了排气压力实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且采用的计算公式可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;根据无减压阀的供气方案,考虑到气缸25的受压增大、漏气量增大和换热的需要,重新设计了适合的气缸结构,该气缸换热效果强,且承压能力较高,漏气明显减少,令λ1=0.0015,λ2=0.0024,h=8mm,实验表明其整体效率较未经改造前提高了6.0%,漏气量减少了8.8%,取得了意想不到的效果。
实施例4:
如图1所示的一种低能耗挖槽机,包括车载1、机架6、转盘2、槽刀3、气缸5、调节杆4和发动机系统,多个槽刀3均布在转盘2上,所述转盘2由液压系统驱动转动,转盘2通过机架6与车载1相连,机架6与车载1铰接,气缸5通过调节杆4与机架6相连;发动机系统安装在车载1上,用于驱动车载1运动;挖槽机工作时,通过液压系统驱动转盘2转动,同时通过气缸5和调节杆4来调节挖槽的深度,完成一处挖槽后通过调节杆4拉起转盘2,发动机系统驱动车载1到下一处挖槽。
如图2所示,所述发动机系统包括空气压缩泵2、压缩空气罐、进气电磁阀21、发动机、排气电磁阀22、换热系统和控制系统,所述压缩空气罐内部分割为设置在上方的高压区17和设置在下方的低压区16,高压区17的一端通过高压入口阀14与所述空气压缩泵11相连,另一端通过高压出口阀15与所述进气电磁阀21相连,低压区16的一端通过低压入口阀12与所述空气压缩泵11相连,另一端依次通过单向逆止阀、低压出口阀13与所述进气电磁阀21相连,进气电磁阀21向所述发动机提供高压或低压的压缩空气;所述进气电磁阀21和排气电磁阀22均为失电常闭式的先导式电磁阀。高压区17的压缩空气用于当发动机高速转动时使用,压力范围为15MPa~30MPa,低压区16的压缩空气用于当发动机低速转动时使用,压力范围为2MPa~10MPa,具体的切换条件可以按实际情况来设定。同时,发明人经研究发现,当高压力的压缩空气切换至低压力的压缩空气时,由于是在进气电磁阀21关闭的状态进行切换的,因此高压出口阀15后的管道内常常会发生憋压的现象,导致低压出口阀12打开之后无法克服管道内的压力出力,进气电磁阀21打开以后往往会有一小段时间的“压力真空期”,导致发动机的出力不平滑,因此还设置有切换泄压管道,切换泄压管道的一端与所述高压出口阀15与所述低压出口阀13之间的管道相连,另一端与所述低压区16的上部相连,切换泄压管道上设置有泄压电磁阀18,当从高压往低压切换时,高压出口阀15关闭以后,控制器首先检测高压出口阀15后管道上的压力值p1,并将其与低压区16的压力p2比较,当p1>p2时,将泄压电磁阀18打开,这时候泄压电磁阀18内的压力迅速泄至低压区16内,当检测到p1≤p2时,关闭泄压电磁阀18。综合考虑到节省成本和泄压效果,将所述切换泄压管道的管径设置为高压区17出口管径的1/4。
所述发动机包括气缸25、活塞26、与活塞26相连的曲轴,曲轴包括曲柄、连杆和飞轮,飞轮(图中未示出)安装在曲轴的一端;所述排气电磁阀22设置在发动机的排气管道上,排气电磁阀22后的排气管道分为两路,一路直接排大气或者去制冷系统,另一路通过调节阀23进入温度调节器24,用于对温度调节器24的出口热水温度进行调节,保持气体的膨胀过程尽可能接近等温膨胀过程,以提高发动机的出力。所述换热系统包括形式为管式换热器的温度调节器24、布置在进气电磁阀21左右两侧管道上的预热套管19、布置在气缸25上的加热套管20,设置预热套管20的目的是为了对进入气缸25的压缩空气进行预热,并保证进气电磁阀21前后温差均匀、减小热应力。温度调节器24的加热热源来自太阳能集热器或者其他方便连接(例如室内暖气)的热源,通过热水泵(图中未示出)不断向预热套管19和加热套管20供水,加热后的热水经套管的出口流出。
如图3-4所示,所述气缸25的外缸壁上还设置有铝隔板36,铝隔板36为圆环形,安装在外缸壁与加热套管20之间,铝隔板36通过多个间隔布置的周向导热固定体29固定在外缸壁上,导热固定体29除了固定作用外,一方面由于本方案采取的是压缩空气罐后不设置减压阀,因此进气压力很大,周向导热固定,29可以起到强化气缸25强度的作用,另一方面由于导热固定体29采用了导热材料(例如铝铜等金属),可以增强换热。
为了直观,图5给出了气缸展开为平面时的示意图,在相邻两个周向导热固定体29之间的外缸壁上还间隔设置有3个折向角为45°的导流体27,所述导流体27的高度为周向固定体高度的2/3,导流体27可以有效增长热水在气缸25外壁面的停留时间,提高换热效果。铝隔板36上交错布置有多个圆形的均流水口28,套管中的水从均流水口28进入和流出,设置铝隔板36的目的一来是利用铝金属的导热特性增强换热,二是利用铝隔板36和均流水口28来减缓水流速和均匀流量,以进一步增强换热并尽量使气缸均匀加热;铝隔板36的内表面上设置有多个间隔布置的凸块30,用于对进入的热水产生湍流作用以加强换热,同时凸块30的高度也不宜做得太高,否则容易造成流动死区,相反如果凸块30的高度过低则湍流效果不佳,经反复多次试验,将凸块30的高度设置为铝隔板36和外缸壁之间的距离的1/5。
如图6所示,所述活塞26的上表面还设置有多个向上凸起的圆锥形的柱塞33,柱塞33的表面上设置有多个相邻螺旋方向相反的螺旋凸起34,即前一个正向螺旋、后一个反向螺旋。。。,柱塞33和螺旋凸起34的目的是对进气气流进行合理组织以通过增加缸内湍流而强化气缸内壁与缸内气体间的对流换热;所述活塞26整体呈圆柱形,其中部外表面上设置有一个凹陷的环形槽31,环形槽31上布置有多个间隔排列的固定孔槽32,固定孔槽32上固接有软性物35(例如棉花、海绵等),所述软性物35穿过活塞26与气缸25之间的间隙与气缸25的外壁接触,相邻两个所述固定孔槽32之间的距离为h。发明人经研究发现,当采用无减压阀的供气系统时,由于气缸气压的增大,气缸25和活塞26之间的间隙漏气会比带减压阀的系统漏气量更大,因此必须采用特定的设计来减少间隙漏气,以提高发动机的效率。采用棉花、海绵等具有较好气密性的软性物35,以及采用较小的间隔布置,能有效较小气缸和活塞之间的漏气;同时实验表明,由于供气压力较高,软性物35与气缸25之间的摩擦力相对于活塞26的动能来说几乎可以忽略不计,而且间隔布置而非连续布置的软性物35也有效减小了摩擦,从而提高了发动机的效率。
所述曲轴的轴端安装有增量式光电旋转编码器(图中未示出),其用于将曲轴的转动角度转换为相应的脉冲数,以计数脉冲的形式向气动发动机的控制器提供曲轴的转角α数值;所述控制器记录通过压力传感器检测的气缸25内的气体压力等处的压力值,以及通过温度传感器检测的气缸25内的气体温度、排气电磁阀22前温度、排气电磁阀22后温度等处的温度值。
启动信号来后,增量式增量式光电旋转编码器检测曲轴转角值α,当其达到设定的初始进气角度α0时,打开进气电磁阀21;同时不断实时检测曲轴转角α、气缸25内气体的压力p、气缸25内气体温度T、排气电磁阀22前温度T1和排气电磁阀22后温度T2,控制器根据空气的气体方程和曲轴转角关系按下式计算得到排气压力先验值p′: 其中r为曲柄的长度,l为连杆的长度,n为多变系数,T‘为上一循环结束时的气缸25内气体温度,T1’为上一循环结束时的排气电磁阀22前温度,λ1为第一常数因子,如果当前为第一循环则自动令等温进气关闭项 如果上一循环和实时测量的温差增大,说明温度减小量增大,则此时A1也增大,通过等温进气关闭项来提高计算得到的排气压力先验值,进气电磁阀21的关闭时间提前,起到防止过快膨胀、减小温差,使得整体过程更加接近等温膨胀过程进而提高发动机出力的作用。当排气压力先验值p′≥k1×k2×pom时关闭进气电磁阀21,其中pom为排气电磁阀22的额定开启压力,为每循环的阀值压力系数,pmax为每循环气缸25的最高工作压力,pmin为每循环气缸25的最低工作压力,从k1的表达式可以看出根据此方法得出的进气电磁阀21的关闭时刻既保证了实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;k2=0.001×|T1‘-T2’|+1为排气电磁阀22卡涩修正系数,T1‘、T2’分别为上一循环的排气电磁阀22前温度和排气电磁阀22后温度,由于排气电磁阀2处于膨胀过程的末端,很容易发生低温结霜导致卡涩的现象,|T1‘-T2’|越大表明上一循环中排气电磁阀22的前后温差越大,排气电磁阀22越容易发生结霜而导致卡涩,此时在这一循环中k2自动增大以提高气缸25的进气压力阀值,从而增大排气电磁阀22的入口压力以保证其顺利开启,在第一个循环时自动令k2=1。此后继续检测曲轴转角α,当α达到设定的排气阀打开角度α1时,打开排气电磁阀22;排气电磁阀22打开后,继续检测曲轴转角,当达到设定的初始进气角度α0时,进气电磁阀22再次打开,直至当曲轴转角α达到排气阀关闭角度 时,关闭排气电磁阀22,α2为人为设定的阈值,λ2为第二常数因子,通过等温排气关闭项来起到提前关闭排气电磁阀22的作用,此处假设转角α是不断增大的,每转过一圈增加360°,由A2的表达式可知其值总是小于1,当温差增大时A2减小,则排气电磁阀22的关闭条件值越低,从而使得曲轴转角α能更快到达关闭条件值,当处于第一个循环时自动令A2=1,至此发动机系统完成一个工作循环;在排气电磁阀22开启的时段中,温度调节器24的调节阀23会根据上一循环的气缸25内温度均值和进气电磁阀21前后温度反馈值来控制调节阀23的开度,从而调节预热套管19和加热套管20中的热水温度。令λ1=0.0017,λ2=0.0026,h=7mm。
优选地,因为电磁阀从通到断或从断到通需要反应时间,所以为了更准确地控制电磁阀的通断时刻,需要在理想位置的基础之上设定一定的提前量,而且这个提前量不能是定值,即其不仅应该与电磁阀的固有反应时间有关,还应该与曲轴的具体角速度ω(通过转角α得到)有关,实验证明这样的可变提前量能有效地提高电磁阀提前量的精确程度,从而进一步提高发动机系统的效率。因为所用的进排气电磁阀均为失电常闭式电磁阀,所以通电延迟后打开,断电延迟后关闭。设定:曲轴的转动角度用旋转编码器的脉冲发生数度量,0-1023脉冲数目范围与0-360°对应。进气电磁阀21打开的理想位置为0(0°),关闭的理想位置为排气压力先验值与排气电磁阀22开启压力相等的位置;排气电磁阀22打开的理想位置为512(180°),关闭的理想位置为0(0°)。则进排气电磁阀的通断电位置应该比理想动作位置有所提前,提前的量可由电磁阀的通电、断电反应时间和曲轴的转速按以下各式计算得到:进气电磁阀21打开的提前量为排气电磁阀22打开的提前量为排气电磁阀22关闭的提前量为其中ω为曲轴的角速度,U1、U2分别为先导式电磁阀通电反应时间和断电反应时间,进气电磁阀21和排气电磁阀22采用的反应时间相同,单位:ms。
在此实施例的挖槽机中,结构简单实用,无需复杂的操作机构;同时采用气动发动机来取代传统的内燃发动机来驱动车载,有输出力矩大、可调性高、无污染等优点;并且设计了一种新型的发动机系统,其可根据转速来选择不同压力的压缩空气,且为了克服从高压气源往低压气源切换的过程中容易产生“压力真空期”的缺点,巧妙地利用泄压电磁阀18和控制器配合保证了发动机的平滑出力;该发动机系统的供气管路不设置减压阀,可以大大减少因为减压导致的能量损失;将气体的准等温膨胀过程和排气压力有机地结合起来,根据每个循环的温度情况和排气压力的先验值来确定进气电磁阀21的关闭时间,在不增加额外投资的情况下而仅仅通过修改控制器的算法就可以达到很好的效率提高效果,同时既保证了排气压力实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且采用的计算公式可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;根据无减压阀的供气方案,考虑到气缸25的受压增大、漏气量增大和换热的需要,重新设计了适合的气缸结构,该气缸换热效果强,且承压能力较高,漏气明显减少,令λ1=0.0017,λ2=0.0026,h=7mm,实验表明其整体效率较未经改造前提高了6.5%,漏气量减少了9.4%,取得了意想不到的效果。
实施例5:
如图1所示的一种低能耗挖槽机,包括车载1、机架6、转盘2、槽刀3、气缸5、调节杆4和发动机系统,多个槽刀3均布在转盘2上,所述转盘2由液压系统驱动转动,转盘2通过机架6与车载1相连,机架6与车载1铰接,气缸5通过调节杆4与机架6相连;发动机系统安装在车载1上,用于驱动车载1运动;挖槽机工作时,通过液压系统驱动转盘2转动,同时通过气缸5和调节杆4来调节挖槽的深度,完成一处挖槽后通过调节杆4拉起转盘2,发动机系统驱动车载1到下一处挖槽。
如图2所示,所述发动机系统包括空气压缩泵2、压缩空气罐、进气电磁阀21、发动机、排气电磁阀22、换热系统和控制系统,所述压缩空气罐内部分割为设置在上方的高压区17和设置在下方的低压区16,高压区17的一端通过高压入口阀14与所述空气压缩泵11相连,另一端通过高压出口阀15与所述进气电磁阀21相连,低压区16的一端通过低压入口阀12与所述空气压缩泵11相连,另一端依次通过单向逆止阀、低压出口阀13与所述进气电磁阀21相连,进气电磁阀21向所述发动机提供高压或低压的压缩空气;所述进气电磁阀21和排气电磁阀22均为失电常闭式的先导式电磁阀。高压区17的压缩空气用于当发动机高速转动时使用,压力范围为15MPa~30MPa,低压区16的压缩空气用于当发动机低速转动时使用,压力范围为2MPa~10MPa,具体的切换条件可以按实际情况来设定。同时,发明人经研究发现,当高压力的压缩空气切换至低压力的压缩空气时,由于是在进气电磁阀21关闭的状态进行切换的,因此高压出口阀15后的管道内常常会发生憋压的现象,导致低压出口阀12打开之后无法克服管道内的压力出力,进气电磁阀21打开以后往往会有一小段时间的“压力真空期”,导致发动机的出力不平滑,因此还设置有切换泄压管道,切换泄压管道的一端与所述高压出口阀15与所述低压出口阀13之间的管道相连,另一端与所述低压区16的上部相连,切换泄压管道上设置有泄压电磁阀18,当从高压往低压切换时,高压出口阀15关闭以后,控制器首先检测高压出口阀15后管道上的压力值p1,并将其与低压区16的压力p2比较,当p1>p2时,将泄压电磁阀18打开,这时候泄压电磁阀18内的压力迅速泄至低压区16内,当检测到p1≤p2时,关闭泄压电磁阀18。综合考虑到节省成本和泄压效果,将所述切换泄压管道的管径设置为高压区17出口管径的1/4。
所述发动机包括气缸25、活塞26、与活塞26相连的曲轴,曲轴包括曲柄、连杆和飞轮,飞轮(图中未示出)安装在曲轴的一端;所述排气电磁阀22设置在发动机的排气管道上,排气电磁阀22后的排气管道分为两路,一路直接排大气或者去制冷系统,另一路通过调节阀23进入温度调节器24,用于对温度调节器24的出口热水温度进行调节,保持气体的膨胀过程尽可能接近等温膨胀过程,以提高发动机的出力。所述换热系统包括形式为管式换热器的温度调节器24、布置在进气电磁阀21左右两侧管道上的预热套管19、布置在气缸25上的加热套管20,设置预热套管20的目的是为了对进入气缸25的压缩空气进行预热,并保证进气电磁阀21前后温差均匀、减小热应力。温度调节器24的加热热源来自太阳能集热器或者其他方便连接(例如室内暖气)的热源,通过热水泵(图中未示出)不断向预热套管19和加热套管20供水,加热后的热水经套管的出口流出。
如图3-4所示,所述气缸25的外缸壁上还设置有铝隔板36,铝隔板36为圆环形,安装在外缸壁与加热套管20之间,铝隔板36通过多个间隔布置的周向导热固定体29固定在外缸壁上,导热固定体29除了固定作用外,一方面由于本方案采取的是压缩空气罐后不设置减压阀,因此进气压力很大,周向导热固定,29可以起到强化气缸25强度的作用,另一方面由于导热固定体29采用了导热材料(例如铝铜等金属),可以增强换热。
为了直观,图5给出了气缸展开为平面时的示意图,在相邻两个周向导热固定体29之间的外缸壁上还间隔设置有3个折向角为45°的导流体27,所述导流体27的高度为周向固定体高度的2/3,导流体27可以有效增长热水在气缸25外壁面的停留时间,提高换热效果。铝隔板36上交错布置有多个圆形的均流水口28,套管中的水从均流水口28进入和流出,设置铝隔板36的目的一来是利用铝金属的导热特性增强换热,二是利用铝隔板36和均流水口28来减缓水流速和均匀流量,以进一步增强换热并尽量使气缸均匀加热;铝隔板36的内表面上设置有多个间隔布置的凸块30,用于对进入的热水产生湍流作用以加强换热,同时凸块30的高度也不宜做得太高,否则容易造成流动死区,相反如果凸块30的高度过低则湍流效果不佳,经反复多次试验,将凸块30的高度设置为铝隔板36和外缸壁之间的距离的1/5。
如图6所示,所述活塞26的上表面还设置有多个向上凸起的圆锥形的柱塞33,柱塞33的表面上设置有多个相邻螺旋方向相反的螺旋凸起34,即前一个正向螺旋、后一个反向螺旋。。。,柱塞33和螺旋凸起34的目的是对进气气流进行合理组织以通过增加缸内湍流而强化气缸内壁与缸内气体间的对流换热;所述活塞26整体呈圆柱形,其中部外表面上设置有一个凹陷的环形槽31,环形槽31上布置有多个间隔排列的固定孔槽32,固定孔槽32上固接有软性物35(例如棉花、海绵等),所述软性物35穿过活塞26与气缸25之间的间隙与气缸25的外壁接触,相邻两个所述固定孔槽32之间的距离为h。发明人经研究发现,当采用无减压阀的供气系统时,由于气缸气压的增大,气缸25和活塞26之间的间隙漏气会比带减压阀的系统漏气量更大,因此必须采用特定的设计来减少间隙漏气,以提高发动机的效率。采用棉花、海绵等具有较好气密性的软性物35,以及采用较小的间隔布置,能有效较小气缸和活塞之间的漏气;同时实验表明,由于供气压力较高,软性物35与气缸25之间的摩擦力相对于活塞26的动能来说几乎可以忽略不计,而且间隔布置而非连续布置的软性物35也有效减小了摩擦,从而提高了发动机的效率。
所述曲轴的轴端安装有增量式光电旋转编码器(图中未示出),其用于将曲轴的转动角度转换为相应的脉冲数,以计数脉冲的形式向气动发动机的控制器提供曲轴的转角α数值;所述控制器记录通过压力传感器检测的气缸25内的气体压力等处的压力值,以及通过温度传感器检测的气缸25内的气体温度、排气电磁阀22前温度、排气电磁阀22后温度等处的温度值。
启动信号来后,增量式增量式光电旋转编码器检测曲轴转角值α,当其达到设定的初始进气角度α0时,打开进气电磁阀21;同时不断实时检测曲轴转角α、气缸25内气体的压力p、气缸25内气体温度T、排气电磁阀22前温度T1和排气电磁阀22后温度T2,控制器根据空气的气体方程和曲轴转角关系按下式计算得到排气压力先验值p′: 其中r为曲柄的长度,l为连杆的长度,n为多变系数,T‘为上一循环结束时的气缸25内气体温度,T1’为上一循环结束时的排气电磁阀22前温度,λ1为第一常数因子,如果当前为第一循环则自动令等温进气关闭项 如果上一循环和实时测量的温差增大,说明温度减小量增大,则此时A1也增大,通过等温进气关闭项来提高计算得到的排气压力先验值,进气电磁阀21的关闭时间提前,起到防止过快膨胀、减小温差,使得整体过程更加接近等温膨胀过程进而提高发动机出力的作用。当排气压力先验值p′≥k1×k2×pom时关闭进气电磁阀21,其中pom为排气电磁阀22的额定开启压力,为每循环的阀值压力系数,pmax为每循环气缸25的最高工作压力,pmin为每循环气缸25的最低工作压力,从k1的表达式可以看出根据此方法得出的进气电磁阀21的关闭时刻既保证了实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;k2=0.001×|T1‘-T2’|+1为排气电磁阀22卡涩修正系数,T1‘、T2’分别为上一循环的排气电磁阀22前温度和排气电磁阀22后温度,由于排气电磁阀2处于膨胀过程的末端,很容易发生低温结霜导致卡涩的现象,|T1‘-T2’|越大表明上一循环中排气电磁阀22的前后温差越大,排气电磁阀22越容易发生结霜而导致卡涩,此时在这一循环中k2自动增大以提高气缸25的进气压力阀值,从而增大排气电磁阀22的入口压力以保证其顺利开启,在第一个循环时自动令k2=1。此后继续检测曲轴转角α,当α达到设定的排气阀打开角度α1时,打开排气电磁阀22;排气电磁阀22打开后,继续检测曲轴转角,当达到设定的初始进气角度α0时,进气电磁阀22再次打开,直至当曲轴转角α达到排气阀关闭角度 时,关闭排气电磁阀22,α2为人为设定的阈值,λ2为第二常数因子,通过等温排气关闭项来起到提前关闭排气电磁阀22的作用,此处假设转角α是不断增大的,每转过一圈增加360°,由A2的表达式可知其值总是小于1,当温差增大时A2减小,则排气电磁阀22的关闭条件值越低,从而使得曲轴转角α能更快到达关闭条件值,当处于第一个循环时自动令A2=1,至此发动机系统完成一个工作循环;在排气电磁阀22开启的时段中,温度调节器24的调节阀23会根据上一循环的气缸25内温度均值和进气电磁阀21前后温度反馈值来控制调节阀23的开度,从而调节预热套管19和加热套管20中的热水温度。令λ1=0.0019,λ2=0.0028,h=6mm。
优选地,因为电磁阀从通到断或从断到通需要反应时间,所以为了更准确地控制电磁阀的通断时刻,需要在理想位置的基础之上设定一定的提前量,而且这个提前量不能是定值,即其不仅应该与电磁阀的固有反应时间有关,还应该与曲轴的具体角速度ω(通过转角α得到)有关,实验证明这样的可变提前量能有效地提高电磁阀提前量的精确程度,从而进一步提高发动机系统的效率。因为所用的进排气电磁阀均为失电常闭式电磁阀,所以通电延迟后打开,断电延迟后关闭。设定:曲轴的转动角度用旋转编码器的脉冲发生数度量,0-1023脉冲数目范围与0-360°对应。进气电磁阀21打开的理想位置为0(0°),关闭的理想位置为排气压力先验值与排气电磁阀22开启压力相等的位置;排气电磁阀22打开的理想位置为512(180°),关闭的理想位置为0(0°)。则进排气电磁阀的通断电位置应该比理想动作位置有所提前,提前的量可由电磁阀的通电、断电反应时间和曲轴的转速按以下各式计算得到:进气电磁阀21打开的提前量为排气电磁阀22打开的提前量为排气电磁阀22关闭的提前量为其中ω为曲轴的角速度,U1、U2分别为先导式电磁阀通电反应时间和断电反应时间,进气电磁阀21和排气电磁阀22采用的反应时间相同,单位:ms。
在此实施例的挖槽机中,结构简单实用,无需复杂的操作机构;同时采用气动发动机来取代传统的内燃发动机来驱动车载,有输出力矩大、可调性高、无污染等优点;并且设计了一种新型的发动机系统,其可根据转速来选择不同压力的压缩空气,且为了克服从高压气源往低压气源切换的过程中容易产生“压力真空期”的缺点,巧妙地利用泄压电磁阀18和控制器配合保证了发动机的平滑出力;该发动机系统的供气管路不设置减压阀,可以大大减少因为减压导致的能量损失;将气体的准等温膨胀过程和排气压力有机地结合起来,根据每个循环的温度情况和排气压力的先验值来确定进气电磁阀21的关闭时间,在不增加额外投资的情况下而仅仅通过修改控制器的算法就可以达到很好的效率提高效果,同时既保证了排气压力实际排气压力大于排气电磁阀22的开启阀值,又保证了不会高出阀值过多造成过多的排气损失,而且采用的计算公式可以有效防止气压波动导致的阀值波动过大,进一步防止进气电磁阀21关闭时刻的误判断;根据无减压阀的供气方案,考虑到气缸25的受压增大、漏气量增大和换热的需要,重新设计了适合的气缸结构,该气缸换热效果强,且承压能力较高,漏气明显减少,令λ1=0.0019,λ2=0.0028,h=6mm,实验表明其整体效率较未经改造前提高了6.8%,漏气量减少了10.5%,取得了意想不到的效果。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (2)

1.一种低能耗挖槽机,其特征是,包括车载、机架、转盘、槽刀、气缸、调节杆和发动机系统,多个槽刀均布在转盘上,所述转盘由液压系统驱动转动,转盘通过机架与车载相连,机架与车载铰接,气缸通过调节杆与机架相连;发动机系统安装在车载上,用于驱动车载运动;挖槽机工作时,通过液压系统驱动转盘转动,同时通过气缸和调节杆来调节挖槽的深度,完成一处挖槽后通过调节杆拉起转盘,发动机系统驱动车载到下一处挖槽;所述发动机系统包括空气压缩泵、压缩空气罐、进气电磁阀、发动机、排气电磁阀、换热系统和控制系统,所述压缩空气罐内部分割为设置在上方的高压区和设置在下方的低压区,高压区的一端通过高压入口阀与所述空气压缩泵相连,另一端通过高压出口阀与所述进气电磁阀相连,低压区的一端通过低压入口阀与所述空气压缩泵相连,另一端依次通过单向逆止阀、低压出口阀与所述进气电磁阀相连,进气电磁阀向所述发动机提供高压或低压的压缩空气;所述进气电磁阀和排气电磁阀均为失电常闭式的先导式电磁阀;
还包括切换泄压管道,切换泄压管道的一端与所述高压出口阀与所述低压出口阀之间的管道相连,另一端与所述低压区的上部相连,切换泄压管道上设置有泄压电磁阀,当从高压往低压切换时,高压出口阀关闭以后,首先检测高压出口阀后管道上的压力值p1,并将其与低压区的压力p2比较,当p1>p2时,将泄压电磁阀打开,切换泄压阀内的压力迅速泄至低压区内,当检测到p1≤p2时,关闭泄压电磁阀,并打开进气电磁阀;所述切换泄压管道的管径为高压区出口管径的1/4;
所述发动机包括气缸、活塞、与活塞相连的曲轴,曲轴包括曲柄、连杆和飞轮,飞轮安装在曲轴的一端;所述排气电磁阀设置在发动机的排气管道上,排气电磁阀后的排气管道分为两路,一路直接排大气或者去制冷系统,另一路通过调节阀进入温度调节器,用于对温度调节器的出口热水温度;所述换热系统包括形式为管式换热器的温度调节器、布置在进气电磁阀左右两侧管道上的预热套管、布置在气缸上的加热套管,温度调节器的加热热源通过热水泵不断向预热套管和加热套管供水,加热后的热水经套管的出口流出;所述气缸的外缸壁上还设置有铝隔板,铝隔板为圆环形,安装在外缸壁与加热套管之间,铝隔板通过多个间隔布置的周向导热固定体固定在外缸壁上,在相邻两个周向导热固定体之间的外缸壁上还间隔设置有3个折向角为45°的导流体,所述导流体的高度为周向固定体高度的2/3;铝隔板上交错布置有多个圆形的均流水口,铝隔板的内表面上设置有多个间隔布置的凸块,凸块的高度为铝隔板和外缸壁之间的距离的1/5;所述活塞的上表面还设置有多个向上凸起的圆锥形的柱塞,柱塞的表面上设置有多个相邻螺旋方向相反的螺旋凸起;所述活塞整体呈圆柱形,其中部外表面上设置有一个凹陷的环形槽,环形槽上布置有多个间隔排列的固定孔槽,固定孔槽上固接有软性物,所述软性物穿过活塞与气缸之间的间隙与气缸的外壁接触,相邻两个所述固定孔槽之间的距离为h;
所述曲轴的轴端安装有增量式光电旋转编码器,用于将曲轴的转动角度转换为相应的脉冲数,以计数脉冲的形式向气动发动机的控制器提供曲轴的转角α数值;所述控制器记录通过压力传感器检测的气缸内的气体压力,以及通过温度传感器检测的气缸内的气体温度、排气电磁阀前温度、排气电磁阀后温度;启动信号来后,增量式增量式光电旋转编码器检测曲轴转角值,当其达到设定的初始进气角度α0时,打开进气电磁阀;同时不断实时检测曲轴转角α、气缸内气体的压力p、气缸内气体温度T、排气电磁阀前温度T1和排气电磁阀后温度T2,控制器根据空气的气体方程和曲轴转角关系按下式计算得到排气压力先验值p′:其中r为曲柄的长度,l为连杆的长度,n为多变系数,T‘为上一循环结束时的气缸内气体温度,T1’为上一循环结束时的排气电磁阀前温度,λ1为第一常数因子,如果当前为第一循环则自动令等温进气关闭项当排气压力先验值p′≥k1×k2×pom时关闭进气电磁阀,其中pom为排气电磁阀的额定开启压力,为每循环的阀值压力系数,pmax为每循环气缸的最高工作压力,pmin为每循环气缸的最低工作压力,k2=0.001×|T1‘-T2’|+1为排气电磁阀卡涩修正系数,T1‘、T2’分别为上一循环的排气电磁阀前温度和排气电磁阀后温度;此后继续检测曲轴转角α,当α达到设定的排气阀打开角度α1时,打开排气电磁阀;排气电磁阀打开后,继续检测曲轴转角,当达到设定的初始进气角度α0时,进气电磁阀再次打开,直至当曲轴转角α达到排气阀关闭角度时,关闭排气电磁阀,其中α2为人为设定的阈值,为等温排气关闭项,λ2为第二常数因子,当处于第一个循环时自动令A2=1,至此发动机系统完成一个工作循环;在排气电磁阀开启的时段中,排气电磁阀至温度调节器的调节阀会根据上一循环的气缸内温度均值和进气电磁阀前后温度反馈值来控制调节阀的开度,从而调节预热套管和加热套管中的热水温度;令λ1=0.0011,λ2=0.0020,h=10mm。
2.根据权利要求1所述的一种低能耗挖槽机,其特征是,进气电磁阀打开的提前量为排气电磁阀打开的提前量为排气电磁阀关闭的提前量为其中ω为曲轴的角速度,U1、U2分别为先导式电磁阀通电反应时间和断电反应时间,进气电磁阀和排气电磁阀采用的反应时间相同。
CN201610185830.5A 2016-03-29 2016-03-29 一种低能耗挖槽机 Active CN105804796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610185830.5A CN105804796B (zh) 2016-03-29 2016-03-29 一种低能耗挖槽机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610185830.5A CN105804796B (zh) 2016-03-29 2016-03-29 一种低能耗挖槽机

Publications (2)

Publication Number Publication Date
CN105804796A true CN105804796A (zh) 2016-07-27
CN105804796B CN105804796B (zh) 2018-03-02

Family

ID=56454950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610185830.5A Active CN105804796B (zh) 2016-03-29 2016-03-29 一种低能耗挖槽机

Country Status (1)

Country Link
CN (1) CN105804796B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505164A (en) * 1994-09-14 1996-04-09 Hollis; Thomas J. Temperature control system utilizing an electronic engine temperature control valve
CN101476490A (zh) * 2009-01-16 2009-07-08 华南理工大学 膨胀比可调的车用气动发动机及其排气压力控制方法
CN102011640A (zh) * 2010-10-19 2011-04-13 韩培洲 主汽缸四冲程中冷回热内燃机
JP2013500418A (ja) * 2009-07-24 2013-01-07 ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー 軸方向ピストンエンジン、軸方向ピストンエンジンを動作させるための方法、および軸方向ピストンエンジンの熱交換器を製造するための方法
CN103912380A (zh) * 2013-01-08 2014-07-09 曾礼 活塞式多功能气动机
CN104989458A (zh) * 2015-07-08 2015-10-21 浙江大学 一种压缩空气发动机全可变进排气机构及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505164A (en) * 1994-09-14 1996-04-09 Hollis; Thomas J. Temperature control system utilizing an electronic engine temperature control valve
CN101476490A (zh) * 2009-01-16 2009-07-08 华南理工大学 膨胀比可调的车用气动发动机及其排气压力控制方法
JP2013500418A (ja) * 2009-07-24 2013-01-07 ゲタス ゲゼルシャフト フル サーモダイナミシェ アントリーブッシステメ エムベーハー 軸方向ピストンエンジン、軸方向ピストンエンジンを動作させるための方法、および軸方向ピストンエンジンの熱交換器を製造するための方法
CN102011640A (zh) * 2010-10-19 2011-04-13 韩培洲 主汽缸四冲程中冷回热内燃机
CN103912380A (zh) * 2013-01-08 2014-07-09 曾礼 活塞式多功能气动机
CN104989458A (zh) * 2015-07-08 2015-10-21 浙江大学 一种压缩空气发动机全可变进排气机构及其方法

Also Published As

Publication number Publication date
CN105804796B (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN105833957A (zh) 一种旋转型垃圾破碎装置
CN105780702A (zh) 一种多功能路面清扫装置
CN105772233B (zh) 一种高效垃圾分离机
CN105781558A (zh) 一种无污染隧道挖掘机
CN105804796A (zh) 一种低能耗挖槽机
CN204730543U (zh) 一种热泵系统中蒸发器的除霜系统
CN207703024U (zh) 一种水电混合动力节能冷却塔控制系统
CN109579102A (zh) 一种空压机余热回收系统
CN105804797A (zh) 一种原料煤输送系统
CN105804798B (zh) 一种自动饲料供给装置
CN205937324U (zh) 液压站余热利用系统
CN105781734A (zh) 一种节能型垃圾输送系统
CN105804867A (zh) 一种造纸废渣连续进料装置
CN205980419U (zh) 一种智能调节混合复叠式热泵
CN213630942U (zh) 一种水箱容积可变的电热水器
CN105781413A (zh) 一种新型节能钻桩机
CN105804799A (zh) 一种移动式空气过滤系统
CN105781733A (zh) 一种节能型消防装置
CN101368770A (zh) 多功能热泵或单冷机组
CN101074807A (zh) 水水热泵系统
CN105781735A (zh) 一种低能耗无污染排渣装置
CN203130424U (zh) 一种用于空压机余热回收的换热系统
CN105822437B (zh) 一种小区生活污水处理系统
CN105833952B (zh) 一种节电型大功率煤粉碾磨装置
CN106194402B (zh) 一种蓄热式复合涡轮增压装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Chen Hailong

Inventor after: Yang Hewen

Inventor after: Li Xiaohe

Inventor after: Li Zemin

Inventor after: Zhang Jiachun

Inventor before: Shi Jianhua

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180130

Address after: 423000 Chenzhou City, Hunan province beihuou Wuling Avenue Merchants Building Room 538-539

Applicant after: Hunan Changxin Construction Group Co., Ltd.

Address before: Zhenhai District 315202 Zhejiang city of Ningbo Province Rong Luo Road No. 372

Applicant before: Shi Jianhua

GR01 Patent grant
GR01 Patent grant