CN105804739A - Prediction method and system for gas emission quantity - Google Patents

Prediction method and system for gas emission quantity Download PDF

Info

Publication number
CN105804739A
CN105804739A CN201610147797.7A CN201610147797A CN105804739A CN 105804739 A CN105804739 A CN 105804739A CN 201610147797 A CN201610147797 A CN 201610147797A CN 105804739 A CN105804739 A CN 105804739A
Authority
CN
China
Prior art keywords
gas
seam
adjacent
coal
computing module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610147797.7A
Other languages
Chinese (zh)
Other versions
CN105804739B (en
Inventor
陈建强
漆涛
常博
孙秉成
张国辉
黄旭超
刘程
张戈
郑三龙
刘军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenhua Group Corp Ltd
Shenhua Xinjiang Energy Co Ltd
CCTEG Chongqing Research Institute Co Ltd
Original Assignee
Shenhua Group Corp Ltd
Shenhua Xinjiang Energy Co Ltd
CCTEG Chongqing Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenhua Group Corp Ltd, Shenhua Xinjiang Energy Co Ltd, CCTEG Chongqing Research Institute Co Ltd filed Critical Shenhua Group Corp Ltd
Priority to CN201610147797.7A priority Critical patent/CN105804739B/en
Publication of CN105804739A publication Critical patent/CN105804739A/en
Application granted granted Critical
Publication of CN105804739B publication Critical patent/CN105804739B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Abstract

The invention discloses a prediction method for the gas emission quantity of an inclined coal seam horizontal layer mining working surface. The prediction method comprises the following steps that S001, the gas prediction basic data of the working surface are investigated and calculated; S002, the gas emission quantity q<1> of a mining layer is calculated; S003, the gas emission quantity q<2> of an adjacent coal seam, adjacent to a mining coal seam, of a stoping working surface is calculated; S004, the pressure relief gas emission quantity q<3> of the lower portion of the stoping working surface is calculated; and S005, the gas emission quantity q<mining> of the mining working surface is calculated, and q<mining>=q<1>+q<2>+q<3>. The invention further discloses a prediction system for the gas emission quantity of the inclined coal seam horizontal layer mining working surface. According to the provided prediction method and system for the gas emission quantity, the gas emission quantity prediction model property of the horizontal layer mining working surface of the steeply inclined and extremely thick coal seam is established through the prediction method and system, and the defects of existing techniques are compensated.

Description

The Forecasting Methodology of gas emission and prognoses system
Technical field
The present invention relates to Predicting Gas technical field in coal mining, particularly relate to Forecasting Methodology and the prognoses system of a kind of gas emission.
Background technology
Forecast of Gas Emission is to carry out the key factor of mine, exploiting field, horizontal ventilation design, gas administration and gas pumping design.Forecast of Gas Emission is as a kind of important technological means, and it predicts whether accurately and order of accuarcy all drastically influence safety in production and the economic benefit of mine, thus Forecast of Gas Emission has very important meaning for mine safety production.
Current face gas prediction of gas emission method is a lot, mainly has following three kinds according to forecast model and target prediction method: the first is the mine statistic law being primarily adapted for use in prediction geological conditions simply, based on mathematical statistics;The gas bearing capacity method that the second is is fundamental forecasting parameter with coal seam gas-bearing capacity;The third is widely used in point source predicted method of New Built Mine.
Wherein, mine statistic law needs sufficiently large sample space, i.e. the abundant actual measurement gas data of this mine or contiguous mine accumulation, and the most important thing is to produce the similarity degree of district and Target area, and its accuracy and range of application are limited.
When adopting gas bearing capacity meter algorithm predicts gas emission, it is possible to illustrate the separate sources of gas, but the distribution wanting to make coal seam gas-bearing capacity measured value, content point and density reach certain accuracy and have certain difficulty.In implementing at the scene, Application comparison difficulty, error is big, is difficult to ensure its precision of prediction of card.
Point source predicted method Emission Law according to gas sources different in Mine Production, the size of each source gas emission of gushing out and each gas source, is predicted each face gas outburst amount of mine.
For severe inclined thick coal seam horizontally grouped top-coal drawing mining method work surface, current industry still lacks the standard of the Forecast of Gas Emission method under this condition, if utilizing existing standard to be predicted there is certain defect.
Summary of the invention
It is an object of the invention to overcome defect of the prior art, it is provided that a kind of Forecasting Methodology and prognoses system carrying out Forecast of Gas Emission for inclined seam horizontally grouped top-coal drawing mining method work surface.
Technical solution of the present invention provides a kind of Forecasting Methodology carrying out Forecast of Gas Emission for inclined seam horizontally grouped top-coal drawing mining method work surface, comprises the steps:
S001: investigate evaluation work face Predicting Gas master data, including:
Country rock Gas COEFFICIENT K1, work surface lose coal Gas COEFFICIENT K2, primitive coalbed gas bearing capacity X0, remaining coal seam gas-bearing capacity Xc, working seam the thickness m of i-th adjacent coal seam adjacent with described working seam for thickness mi, described working seam working thickness m0, adjacent with described working seam i-th adjacent coal seam gas bearing capacity Xi, adjacent with described working seam i-th adjacent coal seam residual gas content Xic, adjacent with described working seam i-th adjacent coal seam is by the drawing-off gas rate ζ of mining influencei, exploitation layering height M, described working seam tilt angle alpha, exploitation layering bottom coal body mining influence degree of depth h, working seam gas bearing capacity gradient Xt, working seam drawing-off gas rate gradient λt, exploitation layering the bottom maximum drawing-off gas rate λ of coal bodymax
S002: calculate the gas emission q of described exploitation layering1
S003: calculate the gas emission q of adjacent coal seam adjacent with described working seam in stope2
S004: calculate the bottom gas pressure relief outburst amount q of described stope3
S005: calculate the gas emission q of exploitation work surfaceAdopt, wherein, qAdopt=q1+q2+q3
Further, the gas emission q of described exploitation layering1Calculated by equation below:
q 1 = K 1 &times; K 2 &times; m m 0 &times; ( X 0 - X C ) .
Further, the gas emission q of described adjacent coal seam2Calculated by equation below:
q 2 = &Sigma; i = 1 n m i m 0 &times; &zeta; i ( X i - X i c ) .
Further, bottom gas pressure relief outburst amount q3Calculated by equation below:
q 3 = 1 M cos - 1 &alpha; &lsqb; ( X 0 - X c ) &lambda; m a x h + X t &lambda; m a x + &lambda; t ( X 0 - X C ) 2 h 2 + X t &lambda; t 3 h 3 &rsqb; .
Technical solution of the present invention also provides for a kind of prognoses system carrying out Forecast of Gas Emission for inclined seam horizontally grouped top-coal drawing mining method work surface, including:
Data collection computing module, for collecting and evaluation work face Predicting Gas master data, described data include:
Country rock Gas COEFFICIENT K1, work surface lose coal Gas COEFFICIENT K2, primitive coalbed gas bearing capacity X0, remaining coal seam gas-bearing capacity Xc, working seam the thickness m of i-th adjacent coal seam adjacent with described working seam for thickness mi, described working seam working thickness m0, adjacent with described working seam i-th adjacent coal seam gas bearing capacity Xi, adjacent with described working seam i-th adjacent coal seam residual gas content Xic, adjacent with described working seam i-th adjacent coal seam is by the drawing-off gas rate ζ of mining influencei, exploitation layering height M, described working seam tilt angle alpha, exploitation layering bottom coal body mining influence degree of depth h, working seam gas bearing capacity gradient Xt, working seam drawing-off gas rate gradient λt, exploitation layering the bottom maximum drawing-off gas rate λ of coal bodymax
First computing module, for the data obtained according to described data collection computing module, calculates the gas emission q of exploitation layering1
Second computing module, for the data obtained according to described data collection computing module, calculates the gas emission q of adjacent coal seam adjacent with described working seam in stope2
3rd computing module, for the data obtained according to described data collection computing module, calculates the bottom gas pressure relief outburst amount q of described stope3
4th computing module, for the result of calculation according to described first computing module, described second computing module and described 3rd computing module, calculates the gas emission q of exploitation work surfaceAdopt, wherein, qAdopt=q1+q2+q3
Further, described first computing module adopts equation below to calculate q1:
q 1 = K 1 &times; K 2 &times; m m 0 &times; ( X 0 - X C ) .
Further, described second computing module adopts equation below to calculate q2:
q 2 = &Sigma; i = 1 n m i m 0 &times; &zeta; i ( X i - X i c ) .
Further, described 3rd computing module adopts equation below to calculate q3:
q 3 = 1 M cos - 1 &alpha; &lsqb; ( X 0 - X c ) &lambda; m a x h + X t &lambda; m a x + &lambda; t ( X 0 - X C ) 2 h 2 + X t &lambda; t 3 h 3 &rsqb; .
Adopt technique scheme, have the advantages that
The Forecasting Methodology of gas emission provided by the invention and prognoses system, it is applied in stope working surface of coal mines Forecast of Gas Emission, it is particularly applicable in severe inclined thick coal seam horizontal slice coal mining stope Forecast of Gas Emission, it establishes applicable severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission model, compensate for the deficiency that existing Emit Quantity Prediction Methods In Coal Mines is applied in severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission.
Accompanying drawing explanation
The step schematic diagram of the Forecasting Methodology of the gas emission that Fig. 1 provides for one embodiment of the invention;
The schematic diagram of the prognoses system of the gas emission that Fig. 2 provides for one embodiment of the invention.
Detailed description of the invention
The specific embodiment of the present invention is further illustrated below in conjunction with accompanying drawing.
Forecasting Methodology provided by the invention and prognoses system, carry out Predicting Gas mainly for the anxious super high seam that inclines.Suddenly incline the thickness of super high seam at more than 8m, and inclination alpha is between 45 °-90 °.
As it is shown in figure 1, a kind of Forecasting Methodology carrying out Forecast of Gas Emission for inclined seam horizontally grouped top-coal drawing mining method work surface that one embodiment of the invention provides, comprise the steps:
S001: investigate evaluation work face Predicting Gas master data, including:
Country rock Gas COEFFICIENT K1, work surface lose coal Gas COEFFICIENT K2, primitive coalbed gas bearing capacity X0, remaining coal seam gas-bearing capacity Xc, working seam the thickness m of i-th adjacent coal seam adjacent with working seam for thickness mi, working seam working thickness m0, adjacent with working seam i-th adjacent coal seam gas bearing capacity Xi, adjacent with working seam i-th adjacent coal seam residual gas content Xic, adjacent with working seam i-th adjacent coal seam is by the drawing-off gas rate ζ of mining influencei, exploitation layering height M, working seam tilt angle alpha, exploitation layering bottom coal body mining influence degree of depth h, exploitation coal body gas bearing capacity gradient Xt, exploitation coal body drawing-off gas rate gradient λt, exploitation layering the bottom maximum drawing-off gas rate λ of coal bodymax
S002: calculate the gas emission q of exploitation layering1
S003: calculate the gas emission q of adjacent coal seam adjacent with working seam in stope2
S004: calculate the bottom gas pressure relief outburst amount q of stope3
S005: calculate the gas emission q of exploitation work surfaceAdopt, wherein, qAdopt=q1+q2+q3
Wherein, country rock Gas COEFFICIENT K1Refer to, exploitation work surface roof and floor institute rich in the gas such as gas, Gas after being destroyed by seam mining, this part gush out gas with can desorbing gas proportional, this proportionality coefficient employing country rock Gas coefficient represents.
Work surface loses coal Gas COEFFICIENT K2Referring to, work surface is at recovery process, owing to can not reclaim coal body completely, loses in coal and can produce a part of Gas, this part is gushed out gas with can desorbing gas ratio as losing coal Gas coefficient, generally adopt rate of extraction inverse to represent.
Primitive coalbed gas bearing capacity X0Refer to, the gas bearing capacity that the coal seam of mining level is original.
Remaining coal seam gas-bearing capacity XcRefer to, mine and transported the gas bearing capacity of coal seam remaining after mine.
Drawing-off gas rate ζiRefer to, owing to adjacent coal seam distance working seam has different distances, therefore it is different that different adjacent coal seams pours into the gas emission of exploitation work surface, using different adjacent coal seams to the gas emission in exploitation space and adjacent layer self can coal seams gas discharging quantity ratio as the next layer gas emission index.
Exploitation layering bottom coal body mining influence degree of depth h refers to, after work surface seam mining, and the depth capacity that lower coal body stress changes relative to the stress of primary rock.
Working seam gas bearing capacity gradient XtReferring to, due to the increase of coal seam buried depth, gas bearing capacity is gradually increased, and gas bearing capacity gradient refers to the gas bearing capacity rate of change with buried depth direction, it is common that gas bearing capacity and pipe laying are carried out linear fit, and its fitting coefficient is gas bearing capacity gradient.
Working seam drawing-off gas rate gradient λtRefer to, due to severe inclined thick coal seam horizontally grouped top-coal drawing mining method, bottom to be exploited coal seam layering with exploit exploitation layering be connected, therefore the drawing-off gas rate of underlying seam layering has certain change along with the underlying seam degree of depth, and with the rate of change of distance mined bed distance, drawing-off gas rate is defined as drawing-off gas rate gradient.
The exploitation layering bottom maximum drawing-off gas rate λ of coal bodymaxRefer to, owing to exploitation layering bottom coal body is to exploiting space Gas, coal body gas remainder quantity change over time in bottom is caused to be continually changing, maximum drawing-off gas rate be bottom coal body gas emission maximum with can desorbing mash gas content ratio (have under the conservation of mass: raw coal gas bearing capacity=remnants can desorbing mash gas content+gas emission+residual gas amount, usual gas emission maximum in theory can be equal to raw coal gas bearing capacity deduct residual gas amount).
The thickness m of working seam refers to, the coal seam integral thickness exploited.
The height M of exploitation layering, the height being namely layered, it is possible to be called height of lift.Wherein, working seam carries out multiple-zone production, and every layer of exploitation or layering coal seam to be exploited are referred to as exploitation layering.
The gas emission q of exploitation layering1Refer to, the gas emission in exploitation layering coal seam, it is possible to be referred to as the gas emission in layering or segmentation coal seam.
The gas emission q of adjacent coal seam2Refer to, the gas emission of the adjacent coal seam adjoining with working seam.
Bottom gas pressure relief outburst amount q3Referring to, severe inclined thick coal seam is exploited, and work surface underlying seam is subject to mining influence, can produce release, cause that gas can pour into digging space, and to work surface this part gas amount of gushing out, work surface underlying seam is defined as bottom gas pressure relief outburst amount.
Thus, the Forecasting Methodology of gas emission provided by the invention, it is applied in stope working surface of coal mines Forecast of Gas Emission, it is particularly applicable in severe inclined thick coal seam horizontal slice coal mining stope Forecast of Gas Emission, it establishes applicable severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission model, compensate for the deficiency that existing Emit Quantity Prediction Methods In Coal Mines is applied in severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission.
It is preferred that the gas emission q of exploitation layering1Calculated by equation below:
q 1 = K 1 &times; K 2 &times; m m 0 &times; ( X 0 - X C ) .
It is preferred that the gas emission q of adjacent coal seam2Calculated by equation below:
Wherein n refers to the number of plies of adjacent coal seam, and it is the natural number be more than or equal to 1, and 1≤i≤n.
It is preferred that bottom gas pressure relief outburst amount q3Calculated by equation below:
q 3 = 1 M cos - 1 &alpha; &lsqb; ( X 0 - X c ) &lambda; m a x h + X t &lambda; m a x + &lambda; t ( X 0 - X C ) 2 h 2 + X t &lambda; t 3 h 3 &rsqb; .
As in figure 2 it is shown, a kind of prognoses system carrying out Forecast of Gas Emission for inclined seam horizontally grouped top-coal drawing mining method work surface that one embodiment of the invention provides, including:
Data collection computing module 1, for collecting and evaluation work face Predicting Gas master data, data include:
Country rock Gas COEFFICIENT K1, work surface lose coal Gas COEFFICIENT K2, primitive coalbed gas bearing capacity X0, remaining coal seam gas-bearing capacity Xc, working seam the thickness m of i-th adjacent coal seam adjacent with working seam for thickness mi, working seam working thickness m0, adjacent with working seam i-th adjacent coal seam gas bearing capacity Xi, adjacent with working seam i-th adjacent coal seam residual gas content Xic, adjacent with working seam i-th adjacent coal seam is by the drawing-off gas rate ζ of mining influencei, exploitation layering height M, working seam tilt angle alpha, exploitation layering bottom coal body mining influence degree of depth h, working seam gas bearing capacity gradient Xt, working seam drawing-off gas rate gradient λt, exploitation layering the bottom maximum drawing-off gas rate λ of coal bodymax
First computing module 2, for the data obtained according to data collection computing module 1, calculates the gas emission q of exploitation layering1
Second computing module 3, for the data obtained according to data collection computing module 1, calculates the gas emission q of adjacent coal seam adjacent with working seam in stope2
3rd computing module 4, for the data obtained according to data collection computing module 1, calculates the bottom gas pressure relief outburst amount q of stope3
4th computing module 5, for the result of calculation according to first computing module the 2, second computing module 3 and the 3rd computing module 4, calculates the gas emission q of exploitation work surfaceAdopt, wherein qAdopt=q1+q2+q3
The prognoses system of the gas emission that invention provides, it is applied in stope working surface of coal mines Forecast of Gas Emission, it is particularly applicable in severe inclined thick coal seam horizontal slice coal mining stope Forecast of Gas Emission, it establishes applicable severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission model, compensate for the deficiency that existing Emit Quantity Prediction Methods In Coal Mines is applied in severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission.
It is preferred that the first computing module 2 adopts equation below to calculate q1:
q 1 = K 1 &times; K 2 &times; m m 0 &times; ( X 0 - X C ) .
It is preferred that the second computing module 3 adopts equation below to calculate q2:
Wherein n refers to the number of plies of adjacent coal seam, 1≤i≤n.
It is preferred that the 3rd computing module 4 adopts equation below to calculate q3:
q 3 = 1 M cos - 1 &alpha; &lsqb; ( X 0 - X c ) &lambda; m a x h + X t &lambda; m a x + &lambda; t ( X 0 - X C ) 2 h 2 + X t &lambda; t 3 h 3 &rsqb; .
To sum up, the Forecasting Methodology of gas emission provided by the invention and prognoses system, it is applied in stope working surface of coal mines Forecast of Gas Emission, it is particularly applicable in severe inclined thick coal seam horizontal slice coal mining stope Forecast of Gas Emission, it establishes applicable severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission model, compensate for the deficiency that existing Emit Quantity Prediction Methods In Coal Mines is applied in severe inclined thick coal seam horizontally grouped top-coal drawing mining method face gas prediction of gas emission.
As required, it is possible to above-mentioned each technical scheme is combined, to reach best-of-breed technology effect.
Above is only principles of the invention and preferred embodiment.It should be pointed out that, for the person of ordinary skill of the art, on the basis of the principle of the invention, it is also possible to make other modification some, also should be regarded as protection scope of the present invention.

Claims (8)

1. the Forecasting Methodology carrying out Forecast of Gas Emission for inclined seam horizontally grouped top-coal drawing mining method work surface, it is characterised in that comprise the steps:
S001: investigate evaluation work face Predicting Gas master data, including:
Country rock Gas COEFFICIENT K1, work surface lose coal Gas COEFFICIENT K2, primitive coalbed gas bearing capacity X0, remaining coal seam gas-bearing capacity Xc, working seam the thickness m of i-th adjacent coal seam adjacent with described working seam for thickness mi, described working seam working thickness m0, adjacent with described working seam i-th adjacent coal seam gas bearing capacity Xi, adjacent with described working seam i-th adjacent coal seam residual gas content Xic, adjacent with described working seam i-th adjacent coal seam is by the drawing-off gas rate ζ of mining influencei, exploitation layering height M, described working seam tilt angle alpha, exploitation layering bottom coal body mining influence degree of depth h, working seam gas bearing capacity gradient Xt, working seam drawing-off gas rate gradient λt, exploitation layering the bottom maximum drawing-off gas rate λ of coal bodymax
S002: calculate the gas emission q of described exploitation layering1
S003: calculate the gas emission q of adjacent coal seam adjacent with described working seam in stope2
S004: calculate the bottom gas pressure relief outburst amount q of described stope3
S005: calculate the gas emission q of exploitation work surfaceAdopt, wherein, qAdopt=q1+q2+q3
2. Forecasting Methodology according to claim 1, it is characterised in that the gas emission q of described exploitation layering1Calculated by equation below:
q 1 = K 1 &times; K 2 &times; m m 0 &times; ( X 0 - X C ) .
3. Forecasting Methodology according to claim 1, it is characterised in that the gas emission q of described adjacent coal seam2Calculated by equation below:
q 2 = &Sigma; i = 1 n m i m 0 &times; &zeta; i ( X i - X i c ) .
4. Forecasting Methodology according to claim 1, it is characterised in that bottom gas pressure relief outburst amount q3Calculated by equation below:
q 3 = 1 M cos - 1 &alpha; &lsqb; ( X 0 - X c ) &lambda; m a x h + X t &lambda; m a x + &lambda; t ( X 0 - X C ) 2 h 2 + X t &lambda; t 3 h 3 &rsqb; .
5. the prognoses system carrying out Forecast of Gas Emission for inclined seam horizontally grouped top-coal drawing mining method work surface, it is characterised in that including:
Data collection computing module, for collecting and evaluation work face Predicting Gas master data, described data include:
Country rock Gas COEFFICIENT K1, work surface lose coal Gas COEFFICIENT K2, primitive coalbed gas bearing capacity X0, remaining coal seam gas-bearing capacity Xc, working seam the thickness m of i-th adjacent coal seam adjacent with described working seam for thickness mi, described working seam working thickness m0, adjacent with described working seam i-th adjacent coal seam gas bearing capacity Xi, adjacent with described working seam i-th adjacent coal seam residual gas content Xic, adjacent with described working seam i-th adjacent coal seam is by the drawing-off gas rate ζ of mining influencei, exploitation layering height M, described working seam tilt angle alpha, exploitation layering bottom coal body mining influence degree of depth h, exploitation coal body gas bearing capacity gradient Xt, exploitation coal body drawing-off gas rate gradient λt, exploitation layering the bottom maximum drawing-off gas rate λ of coal bodymax
First computing module, for the data obtained according to described data collection computing module, calculates the gas emission q of exploitation layering1
Second computing module, for the data obtained according to described data collection computing module, calculates the gas emission q of adjacent coal seam adjacent with described working seam in stope2
3rd computing module, for the data obtained according to described data collection computing module, calculates the bottom gas pressure relief outburst amount q of described stope3
4th computing module, for the result of calculation according to described first computing module, described second computing module and described 3rd computing module, calculates the gas emission q of exploitation work surfaceAdopt, wherein, qAdopt=q1+q2+q3
6. prognoses system according to claim 5, it is characterised in that described first computing module adopts equation below to calculate q1:
q 1 = K 1 &times; K 2 &times; m m 0 &times; ( X 0 - X C ) .
7. prognoses system according to claim 5, it is characterised in that described second computing module adopts equation below to calculate q2:
q 2 = &Sigma; i = 1 n m i m 0 &times; &zeta; i ( X i - X i c ) .
8. prognoses system according to claim 5, it is characterised in that described 3rd computing module adopts equation below to calculate q3:
q 3 = 1 M cos - 1 &alpha; &lsqb; ( X 0 - X c ) &lambda; m a x h + X t &lambda; m a x + &lambda; t ( X 0 - X C ) 2 h 2 + X t &lambda; t 3 h 3 &rsqb; .
CN201610147797.7A 2016-03-15 2016-03-15 The prediction technique and forecasting system of gas emission Active CN105804739B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610147797.7A CN105804739B (en) 2016-03-15 2016-03-15 The prediction technique and forecasting system of gas emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610147797.7A CN105804739B (en) 2016-03-15 2016-03-15 The prediction technique and forecasting system of gas emission

Publications (2)

Publication Number Publication Date
CN105804739A true CN105804739A (en) 2016-07-27
CN105804739B CN105804739B (en) 2019-04-05

Family

ID=56467495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610147797.7A Active CN105804739B (en) 2016-03-15 2016-03-15 The prediction technique and forecasting system of gas emission

Country Status (1)

Country Link
CN (1) CN105804739B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108661715A (en) * 2018-04-17 2018-10-16 天地(常州)自动化股份有限公司 The evaluation method of mine supervision system Gas early warning result
CN108960540A (en) * 2018-09-07 2018-12-07 西安科技大学 Slope thick seam Gas Emission from Comprehensive Mechanized Caving Face amount prediction technique and system
CN109667562A (en) * 2018-12-19 2019-04-23 中煤科工集团重庆研究院有限公司 It adopts kinetoplast gas well and combines universe pumping method up and down
CN111287796A (en) * 2020-02-21 2020-06-16 中煤能源研究院有限责任公司 Multi-source gas emission quantity dynamic prediction method for fully mechanized caving face
CN112282733A (en) * 2020-10-29 2021-01-29 中煤科工集团重庆研究院有限公司 Method for determining coal bed gas abnormity by gas emission quantity characteristic while drilling
CN112324487A (en) * 2020-10-20 2021-02-05 中煤科工集团重庆研究院有限公司 Double-index evaluation method for outburst prevention effect of coal roadway strip
RU2812994C1 (en) * 2023-07-07 2024-02-06 Федеральное Государственное Бюджетное Учреждение Науки Институт Проблем Комплексного Освоения Недр Им. Академика Н.В. Мельникова Российской Академии Наук (Ипкон Ран) Method for determining gas content in coal seam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243721A (en) * 2019-05-31 2019-09-17 煤科集团沈阳研究院有限公司 A kind of stope multi-source Predicting Gas method based on carbon-hydrogen isotopes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609780A (en) * 2011-01-24 2012-07-25 河南理工大学 Novel method for predicting gas emission quantity of mine
CN103323887A (en) * 2013-07-09 2013-09-25 中煤科工集团重庆研究院 Assessment method and system of coalbed methane reserve volume at coal mining stable region
US20140019047A1 (en) * 2011-03-30 2014-01-16 China University Of Mining And Technology Multi-information coupling prediction method of coal and gas outburst danger
CN104863627A (en) * 2015-03-18 2015-08-26 中煤科工集团重庆研究院有限公司 Method for predicting gas emission quantity of working face under pressure relief condition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609780A (en) * 2011-01-24 2012-07-25 河南理工大学 Novel method for predicting gas emission quantity of mine
US20140019047A1 (en) * 2011-03-30 2014-01-16 China University Of Mining And Technology Multi-information coupling prediction method of coal and gas outburst danger
CN103323887A (en) * 2013-07-09 2013-09-25 中煤科工集团重庆研究院 Assessment method and system of coalbed methane reserve volume at coal mining stable region
CN104863627A (en) * 2015-03-18 2015-08-26 中煤科工集团重庆研究院有限公司 Method for predicting gas emission quantity of working face under pressure relief condition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈建强: "开采急倾斜特厚煤层瓦斯涌出影响因素分析", 《矿业安全与环保》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108661715A (en) * 2018-04-17 2018-10-16 天地(常州)自动化股份有限公司 The evaluation method of mine supervision system Gas early warning result
CN108960540A (en) * 2018-09-07 2018-12-07 西安科技大学 Slope thick seam Gas Emission from Comprehensive Mechanized Caving Face amount prediction technique and system
CN108960540B (en) * 2018-09-07 2021-10-01 西安科技大学 Method and system for predicting gas emission quantity of fully mechanized caving face of inclined thick coal seam
CN109667562A (en) * 2018-12-19 2019-04-23 中煤科工集团重庆研究院有限公司 It adopts kinetoplast gas well and combines universe pumping method up and down
CN109667562B (en) * 2018-12-19 2021-12-07 中煤科工集团重庆研究院有限公司 Mining body gas well up-down combined universe extraction method
CN111287796A (en) * 2020-02-21 2020-06-16 中煤能源研究院有限责任公司 Multi-source gas emission quantity dynamic prediction method for fully mechanized caving face
CN111287796B (en) * 2020-02-21 2021-08-24 中煤能源研究院有限责任公司 Multi-source gas emission quantity dynamic prediction method for fully mechanized caving face
CN112324487A (en) * 2020-10-20 2021-02-05 中煤科工集团重庆研究院有限公司 Double-index evaluation method for outburst prevention effect of coal roadway strip
CN112282733A (en) * 2020-10-29 2021-01-29 中煤科工集团重庆研究院有限公司 Method for determining coal bed gas abnormity by gas emission quantity characteristic while drilling
RU2812994C1 (en) * 2023-07-07 2024-02-06 Федеральное Государственное Бюджетное Учреждение Науки Институт Проблем Комплексного Освоения Недр Им. Академика Н.В. Мельникова Российской Академии Наук (Ипкон Ран) Method for determining gas content in coal seam
RU2813417C1 (en) * 2023-07-07 2024-02-12 Федеральное государственное бюджетное учреждение науки Институт проблем комплексного освоения недр им. академика Н.В. Мельникова Российской академии наук Method for determining gas content in broken coal

Also Published As

Publication number Publication date
CN105804739B (en) 2019-04-05

Similar Documents

Publication Publication Date Title
CN105804739A (en) Prediction method and system for gas emission quantity
WO2020119177A1 (en) Wall continuous mining and continuous filling water-preserved coal mining method, and water resource migration monitoring and water disaster early warning method
CN103902780B (en) Solid filling coal mining earth&#39;s surface Deformation prediction method
CN103323887B (en) The appraisal procedure of a kind of Coal Exploitation Dynamic stability district coal-seam gas reserves and system
Zhang et al. Tightness analysis of underground natural gas and oil storage caverns with limit pillar widths in bedded rock salt
Wang et al. Allowable pillar width for bedded rock salt caverns gas storage
CN106503357B (en) Method based on the effective extraction radius of layer-through drilling Gas characteristic measurement
CN103604916B (en) A kind of continuous and compact sandstone gas hides measuring method and the system of gas range
WO2016115816A1 (en) Structural discrimination indexes of ordovician limestone top filling zones and determination method
CN104612635A (en) Standard-reaching pre-judgment method for coal seam group gas combined extraction
Li et al. Risk assessment of floor water inrush using entropy weight and variation coefficient model
CN103336997B (en) Fine and close oil resource distribution Forecasting Methodology and prediction unit
CN105550773A (en) Method and device for predicting position of oil-water interface
CN111695303B (en) Method for evaluating water filling strength of sandstone aquifer of coal seam roof
CN104459800A (en) Sand body pinch-out prediction method and device
CN104153765A (en) Tracing method and tracing device for hydrocarbon charge and accumulation path
CN103161499A (en) Division method for underground coal bed outburst and dangerous zones
CN104899392A (en) GIS-based intelligent analysis method for coal mine gas emission overrun prediction
Liu et al. The Control Theory and Application for Well Pattern Optimization of Heterogeneous Sandstone Reservoirs
Lee et al. Regional CO 2 solubility trapping potential of a deep saline aquifer in Pohang basin, Korea
CN110259510A (en) Super high seam separate zone production Gas Prediction of Total method
Zhang et al. Research on key factors influencing surface subsidence of paste backfilling mining in thick coal seam of deep mine
CN113030430B (en) Method for measuring and calculating concentration of free coal bed gas in reservoir of mining stable area of coal mine
Prokop et al. Prognosis of residual coal gas capacity made by the ‘Express’ method
QiulinGuo et al. Predicting the distribution of the tight sandstone gas in the Hechuan play, Sichuan Basin, China

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant