CN105797698B - 一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及应用 - Google Patents

一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及应用 Download PDF

Info

Publication number
CN105797698B
CN105797698B CN201610225999.9A CN201610225999A CN105797698B CN 105797698 B CN105797698 B CN 105797698B CN 201610225999 A CN201610225999 A CN 201610225999A CN 105797698 B CN105797698 B CN 105797698B
Authority
CN
China
Prior art keywords
petal
mos
preparation
composite material
magnetic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610225999.9A
Other languages
English (en)
Other versions
CN105797698A (zh
Inventor
代朝猛
周雪飞
尹曾甫
张亚雷
刘丹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201610225999.9A priority Critical patent/CN105797698B/zh
Publication of CN105797698A publication Critical patent/CN105797698A/zh
Application granted granted Critical
Publication of CN105797698B publication Critical patent/CN105797698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种花瓣状MoS2‑Mn3O4纳米线磁性复合材料的制备方法和在环境中的具体应用。该方法采用两步水热法合成,在通过MoO3和KSCN合成的花瓣状MoS2片层结构上利用水热反应釜的高温高压生长出Mn3O4纳米线材料,从而构建出良好的三维立体结构材料花瓣状MoS2‑Mn3O4纳米线复合吸附光催化材料。该制备方法方便快捷,易于推广;和其他吸附剂和光催化剂相比有更好的效果,作用时间短去除效率高;稳定性好具有磁性易于回收重复利用。

Description

一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及 应用
技术领域
本发明涉及一种环境功能材料即磁性复合材料花瓣状MoS2-Mn3O4纳米线的制备方法,并将其应用于受到药物污染的水体中。
背景技术
类石墨烯的二维纳米片层状 MoS2作为过渡金属硫化物材料家族的典型代表,由于其各方面独特的性能尤其是超薄的厚度和二维结构,已成为近些年材料的研究热点。每层 MoS2 由 Mo原子夹在两层S原子间形成三明治的结构,层与层间由范德华力连接,这种结合力较弱可以被剥离成单层或几层的纳米片层结构。二维薄层结构的二硫化钼有很大的比表面积为不同的反应提供大量的活性位点,此外还可以充当载体合成各种混合物。到目前为止,二硫化钼在光催化产氢、锂离子电池、和传感器等方面有很大的研究进展和应用。但其在环境领域的研究和应用却很少。二硫化钼具有低成本,高的物理化学稳定性,大的比表面积以及窄的带宽(不像石墨烯没有直接带隙)等优势,可以做吸附剂和光催化剂,应用于有机污水治理领域有很大潜力。
氧化锰由于其分子吸附、催化、电化学和磁性特质越来越多的应用于污水处理领域。纳米线被定义为一种具有在横向上被限制在100纳米以下(纵向没有限制)的一维结构。这种纳米尺度下的材料因量子效应具有独特的光电和物理性能。在光催化中,一维纳米线,被认为是一种理想的光催化材料,具有更大的比表面积和更高的表面能;有利于光能利用和光电子的传导,防止光子的逃脱从而减少光反射的损失。
药物和个人护理品(pharmaceuticals and personal care products,PPCPs),作为一种新兴的为污染物,随着越来越多的残留药物在污水处理厂出水、地表水、地下水甚至饮用水中频繁的被检测出越来越受到人们的关注。这些药物在水中由于随着食物链生物富集作用造成极大的人体暴露可能,然而这些药物的大部分在污水处理厂不能被完全去除。双氯芬酸和卡马西平是PPCPs中典型的代表。双氯芬酸(2-(2,6-二氯苯基)氨基苯乙酸钠)属于苯乙酸类非甾体抗炎药,广泛应用于消炎止痛的一种酸性药物。目前研究显示,双氯芬酸在不同地区的水体中均有检出,而且双氯芬酸在所有测试中EC50值都低于100mg/L,因为其明显的毒性和在污水处理厂中较低的去除率,已被列入欧盟优先污染物名单(2013/393/EU)。癫痫发病率在神经性疾病中发病率仅次于脑血管疾病的第二大疾病。抗癫痫类药物的广泛使用对其环境行为的研究提出了要求。卡马西平(5H-二苯并[b,f]氮杂卓-5-甲酰胺),一种常用抗癫痫药物,其主要代谢产物为10,11-环氧化卡马西平,同样具有抗惊厥抗神经痛作用。该药疗效显著,为神经科常用药物。1996年位列抗癫痫药物销量之首。其较稳定的结构使之成为最受关注的PPCPs类污染物之一。
基于“结构支配功能的理念”,许多研究者试着去合成具有良好不同建筑结构形态的复合材料来获得新颖或强化的性能以此满足不同的应用要求。在植物学中,一个目标植物嫁接杂交在受体植物上可以显著提高其初始性能,在材料科学中一个类似的混合物改进效应同样广泛存在。在有很大比表面积的二维片层结构二硫化钼上负载一维纳米线四氧化三锰可以构造出一个结构良好的三维立体结构。纳米线的负载有利于光线的传播利用,延长光电子的寿命,这种复合材料的光催化性能会极大的提高。另外二硫化钼自身很大的比表面积和大量的活性位点使得这种复合结构拥有很多的吸附接触位点。而四氧化三锰带有磁性,这使得复合材料很容易在处理过程中得到分离。若能合成这种MoS2-Mn3O4纳米线磁性复合材料,那么其处理PPCPs类污染物的效果会非常好,具有很大的实际应用价值。
发明内容
本发明的目的是针对现有污水处理厂对含PPCPs类药物污染物的工业废水处理技术的不足,提供一种花瓣状MoS2-Mn3O4纳米线的制备方法,并将其应用于两种常见的药物中,去除降解污染物的同时材料从水体中很容易的分离重复利用。
本发明提供了一种花瓣状MoS2-Mn3O4纳米线复合材料的制备方法,采用两步水热法合成,在花瓣状MoS2片层结构上利用水热反应釜的高温高压生长出Mn3O4纳米线材料,从而构建出三维立体结构材料花瓣状MoS2-Mn3O4纳米线磁性复合材料,具体步骤如下:
(1)将MoO3和KSCN以1:3的摩尔比溶于适量的水中倒入水热反应釜内,水热反应釜用不锈钢密封,然后在150-250℃下反应15-30 h。
(2)反应结束后自然冷却至室温,用水清洗数次去除残留物,离心收集黑色粉末,所得黑色粉末在真空干燥箱内烘干,得到花瓣状的MoS2材料。
(3)将一定体积的含有醋酸锰的乙腈溶液倒入水热反应釜内,再倒入一定体积的热苯胺水溶液至水热反应釜中。取一定量步骤(2)中得到花瓣状的MoS2材料倒入水热反应釜中。密封加热8-15 h。
(4)反应结束后自然冷却至室温,倒掉上部溶液,下部沉淀物用水清洗数次后,离心,并在真空干燥箱内烘干,得到这种花瓣状MoS2-Mn3O4纳米线复合材料。
本发明中,步骤(2)得到的花瓣状MoS2材料平均粒径为0.5-5 μm,比表面积20-50m2/g,独特的纳米片层构成的花瓣状结构具有吸附和光催化双重功能。
本发明中,利用所述方法制备得到的MoS2-Mn3O4纳米线磁性复合材料的纳米线长度为0.5-5 μm。
本发明中,利用所述方法制备得到的MoS2-Mn3O4纳米线磁性复合材料中二硫化钼和四氧化三锰的质量比为1:5-5:1。
利用所述的制备方法得到的花瓣状MoS2-Mn3O4纳米线磁性复合功能材料用于去除PPCPs类代表物双氯芬酸或卡马西平。
本发明中,步骤(3)中水热反应釜中不添加MoS2材料,便得到单纯的Mn3O4纳米线。
本发明包括以下有益效果:
1、纳米花瓣状片层结构二硫化钼和一维纳米线四氧化三锰构成的三维立体结构具有很大的比表面积为与污染物作用提供了大量的位点,去除速度快,去除效果好。
2、这种由良好光催化性能的二硫化钼和四氧化三锰构成的立体结构有利于光的传播和光电子的传递,实现光生电子和空穴的分离,具有较高的催化性能。
3、合成的复合材料去除污染物后可提供磁铁轻易实现从水体中分离,有利于材料的重复利用。
4、该方法和应用拓宽了二硫化钼的应用范围为其商业化提供了可能性。
附图说明
图1:为本发明方法制备的花瓣状MoS2-Mn3O4纳米线复合材料的扫描电镜(SEM)。
图2:(a)本发明方法步骤(2)制备的花瓣状MoS2扫描电镜(SEM);(b)步骤(3)反应釜中不添加MoS2材料得到单纯的Mn3O4纳米线扫描电镜(SEM)。
图3:本方法制备的花瓣状MoS2-Mn3O4复合材料的理论模型图。
图4:本方法制备的花瓣状MoS2-Mn3O4复合材料吸附去除双氯芬酸效率-时间曲线图。
图5:本方法制备的花瓣状MoS2-Mn3O4复合材料光催化降解卡马西平效率-时间曲线图。
具体实施方式
下面结合实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1
将1 mmol MoO3和2.5 mmol KSCN溶于去离子水中倒入反应釜内再加入去离子水达到应容积的60%左右。在180℃下反应24 h左右,自然冷却后将反应后的混合液装50 mL离心管中,8000转/分钟离心10 min,结束后倒掉上部溶液再加去离子水继续离心数次后得到黑色固体,在真空干燥箱内60℃烘干10 h得到花瓣状MoS2材料。将含有0. 3 mmol醋酸锰的乙腈溶液倒入反应釜中并加入一定体积的热苯胺水溶液,再准确称量一定质量的二硫化钼倒入上述反应釜内,180℃下反应20 h。自然冷却后倒掉上部溶液用去离子水清洗数次离心烘干后得到花瓣状MoS2-Mn3O4纳米线磁性复合材料。如图1所示为这种材料的复合效果,花瓣结构为二硫化钼,线状材料是Mn3O4纳米线;图2(a)单纯的二硫化钼;(b)醋酸锰的反应釜内不添加二硫化钼得到的Mn3O4纳米线的扫描电镜图。
实施例2
将1 mmol MoO3和2.5 mmol KSCN溶于去离子水中倒入反应釜内再加入去离子水达到应容积的60%左右。在220℃下反应18 h左右,自然冷却后将反应后的混合液装50 mL离心管中,8000转/分钟离心10 min,结束后倒掉上部溶液再加去离子水继续离心数次后得到黑色固体,在真空干燥箱内60℃烘干10 h得到花瓣状MoS2材料。将含有0.2 mmol醋酸锰的乙腈溶液倒入反应釜中并加入一定体积的热苯胺水溶液,再准确称量一定质量的二硫化钼倒入上述反应釜内,170℃下反应24 h。自然冷却后倒掉上部溶液用去离子水清洗数次离心烘干后得到花瓣状MoS2-Mn3O4纳米线磁性复合材料。
实施例3 花瓣状MoS2-Mn3O4纳米线磁性复合材料吸附去除双氯芬酸
将50mg双氯芬酸溶解在250mL去离子水中得到200mg/L标准储备液。具体反应中通过稀释储备液得到,本次实验中双氯芬酸浓度为10mg/L.在50mL具塞玻璃瓶中分别加入40mL的10 mg/L双氯酚酸,分别投加0.2g/L,0.5 g/L和0.8 g/LMoS2-Mn3O4磁性复合材料。每种浓度三个平行样,还有一个空白样不投加材料。反应在摇床中进行,转速200转/分钟,反应时间2小时。定时取样,注射器下接微孔滤膜(0.22μm)滤液中双氯芬酸浓度用HPLC来测量。反应结束后通过磁铁实现固液分离,对MoS2-Mn3O4纳米复合材料进行脱附处理重复使用。实验结果表明,MoS2-Mn3O4复合材料对双氯芬酸的吸附非常快,效果明显。0.5g/L的材料投加在2分钟去除率就达到90%以上,30分钟基本完全去除。0.25g/L的投加2小时内去除率也能达到90%左右。
实施例4 花瓣状MoS2-Mn3O4纳米线磁性复合材料光催化降解卡马西平
本次实验中卡马西平浓度为5mg/L.在50mL具塞玻璃瓶中分别加入40mL的5 mg/L卡马西平,投加0.2g/L MoS2-Mn3O4磁性复合材料。取三个平行样,一个空白样不投加材料,还有一个不加光照的暗反应。反应过程中都在搅拌,先暗反应20分钟,再开500W的Xe灯,反应时间2小时。定时取样,注射器下接微孔滤膜(0.22μm)滤液中卡马西平浓度用HPLC来测量。反应结束后通过磁铁实现固液分离,对MoS2-Mn3O4纳米复合材料进行脱附处理重复使用。实验结果表明,单纯的吸附效果不佳,0.2g/L的MoS2-Mn3O4磁性复合材料吸附去除率只有60%左右;在Xe灯作用下通过吸附和光催化作用对5 mg/L卡马西平降解效率能达到90%以上。
实施例5 花瓣状MoS2-Mn3O4纳米线磁性复合材料光催化降解地表水中卡马西平
本发明的花瓣状MoS2-Mn3O4纳米线磁性复合材料在去除实际废水中的应用,通过地表水加标卡马西平光催化降解来表征:地表水水样取自黄浦江,将地表水水样用去离子水稀释得到一系列水样,所有水样中卡马西平加标一系列浓度。在50mL具塞玻璃瓶中分别加入40mL的卡马西平溶液,投加0.2g/L MoS2-Mn3O4磁性复合材料。反应过在搅拌下进行,500W的Xe灯照射反应器,反应时间2小时。定时取样,注射器下接微孔滤膜(0.22μm)滤液中卡马西平浓度用HPLC来测量。反应结束后通过磁铁实现固液分离,对MoS2-Mn3O4纳米复合材料进行脱附处理重复使用。本研究将合成的MoS2-Mn3O4磁性复合材料用于地表水中卡马西平的去除,评估了去除受污染实际水体中卡马西平的可行性。根据地表水和去离子水比例的不同,卡马西平加标的去除率达 80-90%。

Claims (5)

1.一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法,其特征在于,采用两步水热法合成,在花瓣状MoS2片层结构上利用水热反应釜的高温高压生长出Mn3O4纳米线材料,从而构建出三维立体结构材料花瓣状MoS2-Mn3O4纳米线磁性复合材料,具体步骤如下:
(1)将MoO3和KSCN以1:3的摩尔比溶于适量的水中倒入到水热反应釜内,反应釜用不锈钢密封,在150-250℃下反应15-30h;
(2)反应结束后自然冷却至室温,用水清洗数次,去除残留物,离心收集黑色粉末,所得黑色粉末在真空干燥箱内烘干后,即得到花瓣状的MoS2材料;
(3)将含有醋酸锰的乙腈溶液倒入到水热反应釜内,再倒入热苯胺水溶液;取步骤(2)得到的花瓣状的MoS2材料倒入水热反应釜中,密封加热8-15h;
(4)反应结束后自然冷却至室温,倒掉上部溶液,下部沉淀物用水清洗数次,离心,并在真空干燥箱内烘干,得到花瓣状MoS2-Mn3O4纳米线磁性复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)得到的花瓣状MoS2材料平均粒径为0.5-5 μm,比表面积20-50 m2/g,具有吸附和光催化双重功能。
3.根据权利要求1所述的制备方法,其特征在于,利用所述方法制备得到的MoS2-Mn3O4纳米线磁性复合材料的纳米线长度为0.5-5 μm。
4.根据权利要求1所述的制备方法,其特征在于,利用所述方法制备得到的MoS2-Mn3O4纳米线磁性复合材料中二硫化钼和四氧化三锰的质量比为1:5-5:1。
5.一种如权利要求1所述的制备方法得到的花瓣状MoS2-Mn3O4纳米线磁性复合功能材料用于去除PPCPs类代表物双氯芬酸或卡马西平。
CN201610225999.9A 2016-04-13 2016-04-13 一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及应用 Active CN105797698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610225999.9A CN105797698B (zh) 2016-04-13 2016-04-13 一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610225999.9A CN105797698B (zh) 2016-04-13 2016-04-13 一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN105797698A CN105797698A (zh) 2016-07-27
CN105797698B true CN105797698B (zh) 2018-06-26

Family

ID=56460019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610225999.9A Active CN105797698B (zh) 2016-04-13 2016-04-13 一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN105797698B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887347A (zh) * 2017-03-22 2017-06-23 浙江大学 石墨烯‑二硫化钼‑聚苯胺三元复合电极材料的制备方法
CN107159268B (zh) * 2017-04-25 2020-02-11 郑州大学 一种中空二硫化钼/三氧化钼花球状异质结构纳米材料、制备方法及应用
CN111886203B (zh) * 2018-03-19 2023-08-18 Dic株式会社 钼硫化物、其制造方法和产氢催化剂
CN112675805B (zh) * 2021-01-25 2022-04-19 西北师范大学 一种羟基磷灰石纳米线复合二硫化钼吸附剂的制备方法
CN116969511B (zh) * 2023-09-14 2023-12-19 北京石油化工学院 一种大尺寸MoS2纳米片及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771406B (zh) * 2014-01-22 2015-09-09 中国工程物理研究院化工材料研究所 石墨烯/四氧化三锰纳米复合材料的制备方法
CN104261478B (zh) * 2014-09-19 2016-09-14 济南大学 一种Mn3O4纳米线或纳米棒的制备方法
CN105148947A (zh) * 2015-08-27 2015-12-16 江南大学 TiO2@MoS2复合物的制备与应用

Also Published As

Publication number Publication date
CN105797698A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105797698B (zh) 一种花瓣状MoS2-Mn3O4纳米线磁性复合材料的制备方法及应用
Si et al. Difunctional carbon quantum dots/g-C3N4 with in-plane electron buffer for intense tetracycline degradation under visible light: tight adsorption and smooth electron transfer
Jiang et al. Modified 2D-2D ZnIn2S4/BiOCl van der Waals heterojunctions with CQDs: Accelerated charge transfer and enhanced photocatalytic activity under vis-and NIR-light
Li et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline
Ma et al. A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation
Li et al. Controlled growth of metal–organic framework on upconversion nanocrystals for NIR-enhanced photocatalysis
Gong et al. Enhanced photocatalytic performance of a two-dimensional BiOIO3/g-C3N4 heterostructured composite with a Z-scheme configuration
Abazari et al. Instantaneous sonophotocatalytic degradation of tetracycline over NU-1000@ ZnIn2S4 core–shell nanorods as a robust and eco-friendly catalyst
Zhang et al. In-situ constructing of one-dimensional SnIn4S8-CdS core-shell heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic oxidation and reduction capabilities
Feng et al. Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate
Wang et al. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation
Zhao et al. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation
Jing et al. Bi/BiVO4 chainlike hollow microstructures: synthesis, characterization, and application as visible-light-active photocatalysts
Wang et al. The promoted tetracycline visible-light-driven photocatalytic degradation efficiency of g-C3N4/FeWO4 Z-scheme heterojunction with peroxymonosulfate assisting and mechanism
Cheng et al. Transparent glass with the growth of pyramid-type MoS2 for highly efficient water disinfection under visible-light irradiation
Jianwei et al. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts
Guo et al. S-scheme Ti0. 7Sn0. 3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation
LaGrow et al. Synthesis of copper hydroxide branched nanocages and their transformation to copper oxide
Hak et al. Water hyacinth derived carbon quantum dots and gC 3 N 4 composites for sunlight driven photodegradation of 2, 4-dichlorophenol
Jiang et al. Facet-dependent photoactivity of Mn3O4/BiOCl for naproxen detoxication: Strengthening effect of Mn valence cycle
Wang et al. Synthesis of ultrathin porous g-C3N4 nanofilm via template-free method for photocatalytic degradation of tetracycline
Ikram et al. Experimental and computational study of Zr and CNC-doped MnO2 nanorods for photocatalytic and antibacterial activity
Tan et al. Ag3PO4/MXene-TiO2-T: As an all-solid Z-type photocatalytic system with stable and enhanced photocatalytic performance
Zhang et al. Enhanced visible-light photocatalytic H2 production of hierarchical g-C3N4 hexagon by one-step self-assembly strategy
CN106076397B (zh) 一种零价铁-碳纳米管改性沸石复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant