CN105762282A - 一种高光吸收的超薄钙钛矿光电转换膜结构 - Google Patents

一种高光吸收的超薄钙钛矿光电转换膜结构 Download PDF

Info

Publication number
CN105762282A
CN105762282A CN201610236586.0A CN201610236586A CN105762282A CN 105762282 A CN105762282 A CN 105762282A CN 201610236586 A CN201610236586 A CN 201610236586A CN 105762282 A CN105762282 A CN 105762282A
Authority
CN
China
Prior art keywords
layer
thin
oxide
ultra
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610236586.0A
Other languages
English (en)
Inventor
孙鹏
陈鑫
张天宁
魏威
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201610236586.0A priority Critical patent/CN105762282A/zh
Publication of CN105762282A publication Critical patent/CN105762282A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种高光吸收的超薄钙钛矿光电转换膜结构,首先在透明导电衬底沉积金属纳米颗粒层,再沉积一层金属纳米颗粒,然后分别沉积一层致密氧化物和一层钙钛矿层,最后沉积金属或复合电极层。本发明的优点在于薄膜厚度可控,工艺简单,用金属结构实现高光吸收、大面积的超薄钙钛矿光电转换器件,在低成本高效太阳电池领域有着广阔的应用前景。

Description

一种高光吸收的超薄钙钛矿光电转换膜结构
技术领域
本发明涉及光伏电池及结构,特别是一种高光吸收的超薄钙钛矿光电转换膜结构。
背景技术
随着材料与器件技术的迅速发展,钙钛矿型太阳电池的光电转换效率在几年内就超过了20%,发展速度前所未有。当前,研究人员仍努力在吸收层中引入掺杂材料,或优化电池结构,寻找效率的提升新途径。
近年来,利用等效介质理论的人工亚波长结构形成的超材料完美吸收体已经受到广泛关注,并在能量收集、非线性光学、传感器等领域展现了显著的作用和应用的巨大潜力。在可见到近红外波段,等离激元耦合实现超高光吸收,且激发耦合模式具有很强的局域性质,能将入射光能量局域在金属纳米颗粒与金属层之间。相对于有序超材料结构,无序结构具有更好的可塑性和更广泛的应用。通过无序结构构造的超材料吸收体可以把可见光至红外光都能够被结构体系捕获并限制,从而实现超高的光吸收。当把一层金属纳米颗粒层插入导电衬底和致密氧化物膜之间,也能通过金属纳米颗粒与电极层之间的等离基元耦合效应将可见光至红外部分光局域在氧化物薄膜中,提升光吸收效果。然而,如何把这种结构应用于钙钛矿材料结构光电转换膜结构,提升钙钛矿薄膜结构对光的吸收效果和电流密度具是当前超薄钙钛矿光电转换膜结构发展的关键技术之一。
发明内容
本发明提出一种高光吸收的超薄钙钛矿光电转换膜结构,首先是在透明的导电衬底上先沉积一层金属纳米粒子层,然后再沉积一层致密氧化物层,然后再沉积一层超薄结构的杂化钙钛矿材料,最后沉积复合电极层或金属电极层。
一种高光吸收的超薄钙钛矿光电转换膜结构,其结构为在自透明导电衬底上依次有金属纳米颗粒层、氧化物致密层、超薄钙钛矿膜层、电极层.
所述的透明导电衬底为掺氟二氧化锡、掺铟二氧化锡、掺铝氧化锌导电玻璃或导电聚酰亚胺膜;
所述的金属纳米颗粒层为粒径1-200纳米的金、银、铜或铝的纳米颗粒层;
所述的氧化物致密层为2-50纳米厚的氧化钛、氧化锌或氧化锆氧化物致密层,或者为氧化钛、氧化锌两种氧化物组成的致密层;
所述的超薄钙钛矿膜层为10-100纳米厚的超薄CH3NH3PbI3、CH3NH3PbCl3或CH3NH3SnI3薄膜层,或者为CH3NH3PbI3、CH3NH3PbCl3、CH3NH3SnI3三种材料中的任意两种组成的薄膜层;
所述的电极层为80-200纳米厚的金、银、钛、铝或碳电极层,或者为与聚噻吩或富勒烯衍生物构成80-200纳米厚的复合电极层。
本发明提出了在透明导电衬底与致密氧化物薄膜中间引入一层金属纳米颗粒层,解决超薄钙钛矿光电转换膜结构的技术难题。本发明的优点在于薄膜厚度可控,工艺简单,提升了钙钛矿薄膜结构对光的吸收效果和电流密度、大面积的超薄钙钛矿光电转换器件,在低成本高效太阳电池领域有着广阔的应用前景。
附图说明
图1结构示意图
具体实施方式
实施例1:
在掺氟二氧化锡透明导电衬底先用氩离子束溅射法制备颗粒尺寸约50纳米的金纳米颗粒层,再用气相方法在基底上生长一层50纳米的氧化钛致密层;接着用双源共蒸的气相法沉积100纳米的超薄CH3NH3PbI3组成的钙钛矿层,最后沉积膜厚为80纳米的金组成的电极层;获得的光电转换结构的开路电压为1.02V,电流密度为15.39mA/cm2
实施例2:
在掺铟二氧化锡透明导电衬底先用旋涂法制备颗粒尺寸约1纳米的银纳米颗粒层,再用气相法在基底上生长一层10纳米的氧化锌致密层;接着用双源共蒸的气相法沉积10纳米的超薄CH3NH3PbCl3组成的钙钛矿层,最后沉积膜厚为60纳米的聚噻吩与140纳米的金组成200纳米的复合电极,获得光电转换结构的开路电压为0.73V,电流密度10.15mA/cm2
实施例3:
在掺铝氧化锌透明导电衬底上先用氩离子束溅射法制备颗粒尺寸约200纳米的铝纳米颗粒层,再用旋涂法结合退火工艺在基底上沉积一层50纳米的氧化钛致密层;接着用双源共蒸的气相法沉积30纳米CH3NH3PbCl3与CH3NH3SnI3复合钙钛矿超薄层,最后沉积200纳米由钛组成的金属电极层;获得的光电转换结构的开路电压为0.92V,电流密度为8.19mA/cm2
实施例4:
在柔性聚酰亚胺导电衬底先用氩离子束溅射法制备颗粒尺寸约100纳米的铜纳米颗粒层,再用气相沉积法在基底上生长一层20纳米的氧化锆致密层;接着用双源共蒸的气相法沉积50纳米的超薄CH3NH3SnI3组成的钙钛矿层,最后沉积膜厚为30纳米的富勒烯衍生物与120纳米的铝组成的复合电极,获得光电转换结构的开路电压为0.84V,电流密度10.4mA/cm2
实施例5:
在掺氟二氧化锡透明导电衬底先用氩离子束溅射法制备颗粒尺寸约40纳米的银纳米颗粒层,再用气相沉积的方法在基底上分步生长一层10纳米的氧化钛和10纳米的氧化锌致密层;接着用双源共蒸的气相法沉积80纳米的超薄CH3NH3PbI3与CH3NH3SnI3复合钙钛矿超薄层,最后用旋涂法沉积150纳米厚的碳电极层;获得的光电转换结构的开路电压为0.95V,电流密度为8.25mA/cm2

Claims (1)

1.一种高光吸收的超薄钙钛矿光电转换膜结构,其结构为在自透明导电衬底上依次有金属纳米颗粒层、氧化物致密层、超薄钙钛矿膜层、电极层,其特征在于:
所述的透明导电衬底为掺氟二氧化锡、掺铟二氧化锡、掺铝氧化锌导电玻璃或导电聚酰亚胺膜;
所述的金属纳米颗粒层为粒径1-200纳米的金、银、铜或铝的纳米颗粒层;
所述的氧化物致密层为2-50纳米厚的氧化钛、氧化锌或氧化锆氧化物致密层,或者为氧化钛、氧化锌两种氧化物组成的致密层;
所述的超薄钙钛矿膜层为10-100纳米厚的超薄CH3NH3PbI3、CH3NH3PbCl3或CH3NH3SnI3薄膜层,或者为CH3NH3PbI3、CH3NH3PbCl3、CH3NH3SnI3三种材料中的任意两种组成的薄膜层;
所述的电极层为80-200纳米厚的金、银、钛、铝或碳电极层,或者为与聚噻吩或富勒烯衍生物构成80-200纳米厚的复合电极层。
CN201610236586.0A 2016-04-15 2016-04-15 一种高光吸收的超薄钙钛矿光电转换膜结构 Pending CN105762282A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610236586.0A CN105762282A (zh) 2016-04-15 2016-04-15 一种高光吸收的超薄钙钛矿光电转换膜结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610236586.0A CN105762282A (zh) 2016-04-15 2016-04-15 一种高光吸收的超薄钙钛矿光电转换膜结构

Publications (1)

Publication Number Publication Date
CN105762282A true CN105762282A (zh) 2016-07-13

Family

ID=56335201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610236586.0A Pending CN105762282A (zh) 2016-04-15 2016-04-15 一种高光吸收的超薄钙钛矿光电转换膜结构

Country Status (1)

Country Link
CN (1) CN105762282A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953015A (zh) * 2017-04-01 2017-07-14 武汉理工大学 一种高效率大面积钙钛矿太阳能电池的制备方法
CN110556478A (zh) * 2019-08-30 2019-12-10 桂林医学院 一种基于等离激元效应的钙钛矿弱光探测器
JP2020013982A (ja) * 2018-07-10 2020-01-23 パナソニックIpマネジメント株式会社 太陽電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045748A1 (ja) * 2012-09-19 2014-03-27 富士フイルム株式会社 有機薄膜太陽電池
CN103904218A (zh) * 2014-03-28 2014-07-02 中国科学院上海技术物理研究所 基于金属颗粒的钙钛矿薄膜太阳能电池结构
CN104241530A (zh) * 2014-09-30 2014-12-24 电子科技大学 一种基于水溶性共聚物的有机薄膜太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045748A1 (ja) * 2012-09-19 2014-03-27 富士フイルム株式会社 有機薄膜太陽電池
CN103904218A (zh) * 2014-03-28 2014-07-02 中国科学院上海技术物理研究所 基于金属颗粒的钙钛矿薄膜太阳能电池结构
CN104241530A (zh) * 2014-09-30 2014-12-24 电子科技大学 一种基于水溶性共聚物的有机薄膜太阳能电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953015A (zh) * 2017-04-01 2017-07-14 武汉理工大学 一种高效率大面积钙钛矿太阳能电池的制备方法
JP2020013982A (ja) * 2018-07-10 2020-01-23 パナソニックIpマネジメント株式会社 太陽電池
JP7304517B2 (ja) 2018-07-10 2023-07-07 パナソニックIpマネジメント株式会社 太陽電池
CN110556478A (zh) * 2019-08-30 2019-12-10 桂林医学院 一种基于等离激元效应的钙钛矿弱光探测器

Similar Documents

Publication Publication Date Title
CN103746078B (zh) 一种钙钛矿太阳能电池及其制备方法
CN102646745B (zh) 一种光伏器件及太阳能电池
Yang et al. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode
Song et al. Improved utilization of photogenerated charge using fluorine-doped TiO2 hollow spheres scattering layer in dye-sensitized solar cells
Saadi et al. Recent developments and applications of nanocomposites in solar cells: a review
Zhang et al. Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells
Makhlouf Preparation and optical characterization of β-MnO2 nano thin films for application in heterojunction photodiodes
KR101056132B1 (ko) 박막형 태양전지 및 그 제조방법
Ahmad et al. Chemical sintering of TiO2 based photoanode for efficient dye sensitized solar cells using Zn nanoparticles
Khodam et al. Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties
Ahmad et al. Improved electron transfer of TiO2 based dye sensitized solar cells using Ge as sintering aid
Yao et al. Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots
CN105762282A (zh) 一种高光吸收的超薄钙钛矿光电转换膜结构
Huerta-Flores et al. Fabrication and characterization of a nanostructured TiO2/In2S3-Sb2S3/CuSCN extremely thin absorber (eta) solar cell
Zhang et al. All-solid-state quantum-dot-sensitized solar cells with compact PbS quantum-dot thin films and TiO2 nanorod arrays
Dang et al. TiO 2/CdS nanocomposite films: fabrication, characterization, electronic and optical properties
Han et al. Room temperature deposition of crystalline nanoporous ZnO nanostructures for direct use as flexible DSSC photoanode
Pal et al. Superior performance self-powered photodetectors utilizing the piezo-phototronic effect in SnO nanosheet/ZnO nanorod hybrid heterojunctions
Hsu et al. Enhanced performance of dye-sensitized solar cells with graphene/ZnO nanoparticles bilayer structure
Shi et al. Facile synthesis of ZnO/PdSe2 core-shell heterojunction for efficient photodetector application
Zhang et al. Plasmonic nanostructures for electronic designs of photovoltaic devices: plasmonic hot-carrier photovoltaic architectures and plasmonic electrode structures
CN107808928A (zh) 一种基于石墨烯的有机无机杂化太阳能电池
Eswaramoorthy et al. Planar perovskite solar cells: Plasmonic nanoparticles‐modified ZnO as an electron transport layer for enhancing the device performance and stability at ambient conditions
Yu et al. The Cu 2 O/CuO/SnO 2 transparent pn junction film device towards photovoltaic enhancement with Cu 2+ self-oxidation transition layer
Chen et al. ZnO hemisphere pits nanowire/CdS photoelectrode for high-efficiency photoelectrochemical water splitting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160713

WD01 Invention patent application deemed withdrawn after publication