CN105759357B - 一种基于槽式波导的紧凑式模阶数转换器 - Google Patents

一种基于槽式波导的紧凑式模阶数转换器 Download PDF

Info

Publication number
CN105759357B
CN105759357B CN201610320136.XA CN201610320136A CN105759357B CN 105759357 B CN105759357 B CN 105759357B CN 201610320136 A CN201610320136 A CN 201610320136A CN 105759357 B CN105759357 B CN 105759357B
Authority
CN
China
Prior art keywords
mode
waveguide
transmission line
tapered transmission
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610320136.XA
Other languages
English (en)
Other versions
CN105759357A (zh
Inventor
肖金标
王登峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610320136.XA priority Critical patent/CN105759357B/zh
Publication of CN105759357A publication Critical patent/CN105759357A/zh
Application granted granted Critical
Publication of CN105759357B publication Critical patent/CN105759357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种基于槽式波导的紧凑式模阶数转换器,包括用于输入光信号的输入波导,两个输出波导,三个线性锥形波导,一个多模干涉耦合器;所述输入波导通过第一锥形波导与多模干涉耦合器连接,第一输出波导通过第二锥形波导与多模干涉耦合器连接,第二输出波导通过第三锥形波导与多模干涉耦合器连接;光信号从输入波导输入,通过第一锥形波导,进入多模干涉耦合器,基于多模干涉效应,光信号经过多模干涉耦合器,发生自成像效应;将多模干涉成像的光信号,分别经过第二锥形波导和第三锥形波导,从第一输出波导和第二输出波导输出,实现光信号模阶数转换的功能。本发明具有结构紧凑、损耗小、带宽高、制作容差性好,具有大的工作范围等特点。

Description

一种基于槽式波导的紧凑式模阶数转换器
技术领域
本发明涉及集成光学技术领域,具体涉及一种基于槽式波导的紧凑式模阶数转换器。
背景技术
近几年,由于高折射率材料中的非线性等因素,在低折射率材料中传输的光,在光传感、光互连、光通信方面的应用,越来越变得重要。这种槽式结构的工作原理主要依赖于高折射率差的材料之间的界面上电场的不连续性。使用这样的槽式结构,E场可以强烈限制在50~100nm高的低折射率区,其强度约是常规矩形光子晶体波导的20倍。槽式波导结构在光子集成领域有着巨大的潜力,其纳米级别的尺寸结构设计有利促进了光子集成芯片的发展。同时利用这一结构设计的硅基模阶数转换器,也将更加紧凑,转换效率得到更大的提高。
锥形波导是集成光学技术的关键部分。其利用多模干涉效应的特点,可以在集成光路的很多方面的到应用与发展。线性锥形波导通常被设计用来减少插入损耗、多模干涉、实现模式转换等。二次锥形波导其多模干涉特点被用作模阶数转换器的核心部件。锥形波导的优越特性,正使它在光波导设计中受到越来越多的关注。
模阶数转换器是全光器件一个很好的研究方向。光子集成电路的光子器件,由于它的器件密度高与低功耗的特点,已经吸引了光通信与光网络方面的各项应用。模阶数转换器可以分为有源光器件与无源光器件,无源光器件是一种结构紧凑、易集成、容差性好等优点。硅基槽式紧凑式模阶数转换器的结构提出在光子集成电路领域是创新型的研究与贡献。本发明设计的槽式波导与锥形结构结合的模阶数转换器具有尺寸小,结构致密的特点。本发明设计的基于槽式波导的模阶数转换器件具有很高的可靠性,在光子集成领域具有很大的潜在应用价值。另外,由于这种结构低损耗、高转换效率等优良特性可能会带来集成工艺的改善,大批量生产降低成本,实现商业化,在实际生活中得到广泛的应用。
发明内容
为了克服现有光学模阶数转换器存在的不足,提高光子器件集成度,本发明的目的是提供一种基于槽式波导的紧凑式模阶数转换器。
为实现上述目的,本发明采用的技术方案为:
一种基于槽式波导的紧凑式模阶数转换器,包括用于输入光信号的输入波导,两个输出波导,分别为第一输出波导和第二输出波导,三个线性锥形波导,分别为第一锥形波导、第二锥形波导和第三锥形波导,一个多模干涉耦合器;所述输入波导通过第一锥形波导与多模干涉耦合器连接,第一输出波导通过第二锥形波导与多模干涉耦合器连接,第二输出波导通过第三锥形波导与多模干涉耦合器连接;
其中,光信号从输入波导输入,通过第一锥形波导,进入多模干涉耦合器,基于多模干涉效应,光信号经过多模干涉耦合器,发生自成像效应;将多模干涉成像的光信号,分别经过第二锥形波导和第三锥形波导,从第一输出波导和第二输出波导输出,实现光信号模阶数转换的功能。
所述输入波导、第一输出波导和第二输出波导均为槽式波导结构,其宽度选自模阶数限制的波导宽度。
所述第一锥形波导、第二锥形波导和第三锥形波导均为线性锥形结构,其宽度由锥形波导两端的模式决定;所述多模干涉耦合器为二次锥形波导结构,其宽度由多模干涉自成像效应决定;并且第一锥形波导、第二锥形波导、第三锥形波导、多模干涉耦合器组成的整个波导为硅基槽式波导结构。
有益效果:本发明提供的转换器具有结构简单、转换效率高、损耗低、紧凑便于集成、成本低等优点,可实现大范围的光波导集成。具体为:
1、转换器的核心部件为槽式波导结构,具有很高的可靠性,尺寸小,光场强度高,非线性效应小,提高集成光路的稳定性。
2、输入输出连接器设计为线性锥形结构,可有效减小传统模阶数转换器中,直波导与二次锥形波导连接时,波导间插入损耗大与光模辐射严重的情况,使得制作的器件转换效率更加高。
3、输出连接器设计为线性锥形结构,与传统模阶数转换器相比,锥形波导将多模干涉器中间距大的光模,输入宽度小的输出波导,避免输出光信号更高阶模的干扰,有效提升了转换后模式的光功率,具有更高的应用效应。
4、多模干涉耦合器设计为二次锥形结构,可实现转换器整体尺寸很大程度的缩小,缩短传输光程,从而减小光模辐射,使得制作的器件更加紧凑、易于集成、转换效率高。
5、结构紧凑、制作成本低廉。本发明由于采用了高折射率差的绝缘体上硅材料,使得器件整体结构具有较高的紧凑性。
附图说明
图1是本发明第一个实例的紧凑式模阶数转换器的结构示意图。
图2是本发明第一个实例的硅基槽式波导结构的截面示意图。
图3是本发明第一个实例中输入波导的光信号的Ey模场分布图。
图4是本发明第一个实例中第一输出波导的光信号的Ey模场分布图。
图5是本发明第一个实例中第二输出波导的光信号的Ey模场分布图。
图6是本发明第一个实例中整个器件传输过程中的光信号的Ey模场分布图。
图中,1–输入波导,2–第一输出波导,3–第二弯曲波导,4–第一锥形波导,5–第二锥形波导,6–第三锥形波导,7–二次锥形波导,8–SiO2包层,9–Si上覆层,10–芯层,11–Si下覆层,12–缓冲层,13–硅衬底。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示为一种基于槽式波导的紧凑式模阶数转换器,包括用于输入光信号的输入波导1,两个输出波导,分别为第一输出波导2和第二输出波导3,三个线性锥形波导,分别为第一锥形波导4、第二锥形波导5和第三锥形波导6,一个多模干涉耦合器7;输入波导1通过第一锥形波导4与多模干涉耦合器7连接,第一输出波导2通过第二锥形波导5与多模干涉耦合器7连接,第二输出波导3通过第三锥形波导6与多模干涉耦合器7连接;
其中,光信号从输入波导1输入,通过第一锥形波导4,进入多模干涉耦合器7,基于多模干涉效应,光信号经过多模干涉耦合器7,发生自成像效应;将多模干涉成像的光信号,分别经过第二锥形波导5和第三锥形波导6,从第一输出波导2和第二输出波导3输出,实现光信号模阶数转换的功能。
输入波导1、第一输出波导2和第二输出波导3均为槽式波导结构,其宽度选自模阶数限制的波导宽度。输入波导1(宽度w1)对应于准TM01模式,第一输出波导2(宽度w2)对应于准TM02模式,第二输出波导3(宽度w3)对应于准TM03模式。
第一锥形波导4、第二锥形波导5和第三锥形波导6均为线性锥形结构;多模干涉耦合器7为二次锥形波导结构;并且第一锥形波导4、第二锥形波导5、第三锥形波导6、多模干涉耦合器7组成的整个波导为硅基槽式波导结构。
如图2,多模干涉耦合器7包括硅衬底13,硅衬底13上设置有缓冲层12,缓冲层12上依次设置有Si下覆层11、芯层10和Si上覆层9,所述下覆层11、芯层10和Si上覆层9外包裹有SiO2包层8。其中,SiO2包层8的折射率为1.46,Si上覆层9的折射率为3.48,芯层10的折射率为1.58,Si下覆层11的折射率为3.48。
器件选用槽式波导作为基本结构,光信号可以在该波导中被高效引导传输。该波导结构使我们获得很高的电场强度,其主要电场分量是Ey,即准TM模。这些被引导的模式是通过全内反射限制于波导内,因此没有约束损耗,该槽式波导结构提高了自成像效应的质量。这种特性可以使基于硅光子集成的模阶数转换器,具有高的转换效率与低的损耗;锥形结构设计,减小器件长度,紧凑性好;用于连接输入输出波导的第一锥形波导4、第二锥形波导5和第三锥形波导6,利用了干涉自成像效应,能大大缩小转换器的长度,使器件小型化,并且减小了插入损耗;用于多模干涉耦合的二次锥形波导,利用其二次曲线的结构特点,能大大减小多模干涉自成像效应的长度,从而减小转换器的尺寸,提高转换器的集成度。输入波导1与第一输出波导2、第二输出波导3的模态变化,即可反映出模式的变化情况,转换效率高。
基于槽式的紧凑式模阶数转换器,其基本结构为槽式波导,由于在垂直方向的高折射率差,导致电场强度E的显著提高:
其中,nf为上下覆层的折射率,ns为芯层的折射率,nc为包层的有效折射率。
转换器的主要转换器件由一条单模输入波导、三条线性锥形波导、一条二次锥形波导、和两条单模输出波导。其中,第一锥形波导4的形状设计为线性锥形结构,通过合理设计锥形结构的相关参数,能够大大减小输入波导中的光模进入二次锥形波导时的插入损耗,能有效减少辐射模。第二锥形波导5、第三锥形波导6的形状设计为线性锥形结构,通过合理设计锥形结构的相关参数,能够大大减小二次锥形波导中的光模进入输出波导时的插入损耗,能有效减少辐射模,同时有效减小输出波导的宽度,避免出现更高阶干扰模。
其中第一锥形波导4、第二锥形波导5、第三锥形波导6的形状设计为线性锥形结构,通过合理设计锥形结构的相关参数能够成功有效减少插入损耗。合理设计线性锥形波导,从而使得转换器更趋于小型化、易集成。设计线性锥形波导符合线性锥形结构:
其中,αi是线性锥形波导的直径,w1,w2,w3是输入输出波导的宽度,w4,w5,w6是输入输出二次锥形波导的光模的宽度,L是锥形波导的长度。z是光的传输方向。通过仿真结果证明,锥形波导的长度与直径设计足够长以保证传输效率达到90%以上。
其中,多模干涉耦合波导7的形状设计为二次锥形结构,二次锥形结构是利用二次方抛物线函数设计而成的MMI区域,其表达式为x2=w0+A×z2(-LMMI/2≤z≤LMMI/2),其中x,z,A,LMMI,w0分别为MMI区域的纵向坐标,横向坐标(传播方向),结构系数(与抛物线形状相关),长度与最窄处宽度(即z=0时MMI区域的宽度)。通过合理设计二次锥形结构的相关参数:结构系数A与最窄处宽度w0,能够成功有效减少多模干涉耦合波导的长度。合理设计二次锥形波导,从而使得转换器更趋于小型化、易集成。设计多模干涉耦合波导符合二次锥形结构:
其中,neff是有效折射率,Weq是多模干涉耦合器的有效宽度,包括多模干涉耦合器的几何宽度与模式渗入覆层,λ0是真空中的波长。对于一个直多模干涉耦合器,输入光场的单个像每隔3Lπ重复。因此,二次锥形结构,通过减小有效宽度Weq,实现减小多模干涉耦合器的长度,使得转换器的尺寸更加紧凑。通过仿真结果证明,二次锥形波导的宽度设计以保证比传统直多模干涉耦合器更短的长度。
本发明结构用线性锥形波导作为模阶数转换器的部件,组成光模输入输出连接器,则波导的器件转换效率提高,插入损耗减小且并没有表现出不良现象。
本发明结构用二次锥形波导作为模阶数转换器的核心部件,多模干涉耦合器,则波导的器件长度有效减少,传输损耗减小且并没有表现出不良现象。
单模光信号准TM01从输入波导1输入,在二次锥形波导区域发生多模干涉,沿着二次锥形波导传播,模阶数发生变化,并在通过两个线性锥形波导时,将准TM02与准TM03输出。模阶数转换的对应关系为准TM01->准TM02与准TM01->准TM03,转换后的模式受到输出波导的约束,从第一输出波导2输出单模信号准TM02,从第二输出波导3输出单模信号准TM03
图3是本发明第一个实例中输入波导1的光信号的Ey模场分布图。图4是本发明第一个实例中第一输出波导2的光信号的Ey模场分布图。图5是本发明第一个实例中第二输出波导3的光信号的Ey模场分布图。图6是本发明第一个实例中整个器件传输过程中的光信号的Ey模场分布图。以上数据表明本发明的具有优良的模阶数转换效率,以及较少的光功率损耗。
单模转换器件具有带宽高、转换效率高、尺寸紧凑等优点,但是,一般地由于低折射率差材料的低约束性及转换的长度的要求,多模干涉器件的长度值会达到毫米甚至厘米级别,对于制作紧凑型传感器非常不利。所以本发明基于设计方案的理论支持,提出了减少器件长度与减少辐射模的优化设计:使用槽式波导与锥形结构作为转换器的部件。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种基于槽式波导的紧凑式模阶数转换器,其特征在于:包括用于输入光信号的输入波导(1),两个输出波导,分别为第一输出波导(2)和第二输出波导(3),三个线性锥形波导,分别为第一锥形波导(4)、第二锥形波导(5)和第三锥形波导(6),一个多模干涉耦合器(7);所述输入波导(1)通过第一锥形波导(4)与多模干涉耦合器(7)连接,第一输出波导(2)通过第二锥形波导(5)与多模干涉耦合器(7)连接,第二输出波导(3)通过第三锥形波导(6)与多模干涉耦合器(7)连接;所述输入波导(1)、第一输出波导(2)和第二输出波导(3)均为槽式波导结构,其宽度选自模阶数限制的波导宽度,输入波导(1)的宽度w1对应于准TM01模式,第一输出波导(2)的宽度w2对应于准TM02模式,第二输出波导(3)的宽度w3对应于准TM03模式;所述第一锥形波导(4)、第二锥形波导(5)和第三锥形波导(6)均为线性锥形结构;所述多模干涉耦合器(7)为二次锥形波导结构;并且第一锥形波导(4)、第二锥形波导(5)、第三锥形波导(6)、多模干涉耦合器(7)组成的整个波导为硅基槽式波导结构;
其中,光信号从输入波导(1)输入,通过第一锥形波导(4),进入多模干涉耦合器(7),基于多模干涉效应,光信号经过多模干涉耦合器(7),发生自成像效应;将多模干涉成像的光信号,分别经过第二锥形波导(5)和第三锥形波导(6),从第一输出波导(2)和第二输出波导(3)输出,实现光信号模阶数转换的功能;
单模光信号准TM01从输入波导(1)输入,在二次锥形波导区域发生多模干涉,沿着二次锥形波导传播,模阶数发生变化,并在通过两个线性锥形波导时,将准TM02与准TM03输出;模阶数转换的对应关系为准TM01->准TM02与准TM01->准TM03,转换后的模式受到输出波导的约束,从第一输出波导(2)输出单模信号准TM02,从第二输出波导(3)输出单模信号准TM03
2.根据权利要求1所述的基于槽式波导的紧凑式模阶数转换器,其特征在于:所述多模干涉耦合器(7)包括硅衬底(13),所述硅衬底(13)上设置有缓冲层(12),缓冲层(12)上依次设置有Si下覆层(11)、芯层(10)和Si上覆层(9),所述下覆层(11)、芯层(10)和Si上覆层(9)外包裹有SiO2包层(8)。
CN201610320136.XA 2016-05-13 2016-05-13 一种基于槽式波导的紧凑式模阶数转换器 Active CN105759357B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610320136.XA CN105759357B (zh) 2016-05-13 2016-05-13 一种基于槽式波导的紧凑式模阶数转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610320136.XA CN105759357B (zh) 2016-05-13 2016-05-13 一种基于槽式波导的紧凑式模阶数转换器

Publications (2)

Publication Number Publication Date
CN105759357A CN105759357A (zh) 2016-07-13
CN105759357B true CN105759357B (zh) 2019-09-03

Family

ID=56324058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610320136.XA Active CN105759357B (zh) 2016-05-13 2016-05-13 一种基于槽式波导的紧凑式模阶数转换器

Country Status (1)

Country Link
CN (1) CN105759357B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290825B (zh) * 2017-06-15 2023-08-04 云南大学 基于双锥组合结构的模式转换器
CN108196340B (zh) * 2018-01-10 2019-11-12 南京邮电大学 一种基于多模干涉耦合的三维模式转换分束器
WO2020162451A1 (ja) * 2019-02-06 2020-08-13 古河電気工業株式会社 光機能素子およびレーザ素子
WO2020223927A1 (zh) 2019-05-08 2020-11-12 深圳市速腾聚创科技有限公司 光学相控阵及其相位误差改善方法、激光雷达、智能设备
CN111025470B (zh) * 2019-12-30 2021-06-04 浙江大学绍兴微电子研究中心 一种基于抛物线型mmi的超紧凑硅基波导交叉结构
CN111458796B (zh) * 2020-04-22 2022-08-02 中国计量大学 一种具有四槽波导的光耦合器
US11256030B1 (en) * 2020-10-05 2022-02-22 Globalfoundries U.S. Inc. Optical power splitters including a non-linear waveguide taper
US11378749B2 (en) * 2020-11-12 2022-07-05 Globalfoundries U.S. Inc. Optical power splitters with a multiple-level arrangement
CN114637072B (zh) * 2022-01-18 2023-10-13 浙江大学 一种浅刻蚀多模干涉耦合的多通道平顶型波分复用接收器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904656A (zh) * 2006-07-05 2007-01-31 东南大学 紧凑可调式多模干涉耦合器
CN101021598A (zh) * 2007-03-13 2007-08-22 浙江大学 基于光子晶体/多模干涉耦合器混合型的偏振分束器
GB2437543B (en) * 2006-04-24 2010-03-31 Yaping Zhang Multi-channelled waveguide chemical and biochemical optical sensing device
CN102565000A (zh) * 2012-01-10 2012-07-11 东南大学 一种基于硅基槽式波导的多模干涉型生物化学传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201177670Y (zh) * 2007-05-25 2009-01-07 江苏大学 激模波导结构三分支光分路器
CN105116491B (zh) * 2015-09-22 2018-04-24 东南大学 一种硅基槽波导集成型光功分器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437543B (en) * 2006-04-24 2010-03-31 Yaping Zhang Multi-channelled waveguide chemical and biochemical optical sensing device
CN1904656A (zh) * 2006-07-05 2007-01-31 东南大学 紧凑可调式多模干涉耦合器
CN101021598A (zh) * 2007-03-13 2007-08-22 浙江大学 基于光子晶体/多模干涉耦合器混合型的偏振分束器
CN102565000A (zh) * 2012-01-10 2012-07-11 东南大学 一种基于硅基槽式波导的多模干涉型生物化学传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Multimode Interference Couplers for the Conversion and Combining of Zero-a nd First-Order Modes;Juerg Leuthold 等;《JOURNAL OF LIGHTWAVE TECHNOLOGY》;19980731;第16卷(第7期);第1229页右栏第4段至1238页左栏最后一段、图2-10
基于水平多槽波导的多模干涉型偏振分束器;王嘉源 等;《全国第17次光纤通信暨第18届集成光学学术会议——无源、有源光器件和光子集成回路》;20151218;第2页第1段至最后一段、图1

Also Published As

Publication number Publication date
CN105759357A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN105759357B (zh) 一种基于槽式波导的紧凑式模阶数转换器
CN105829933B (zh) 波导偏振分离和偏振转换器
CN108885307B (zh) 用于光子芯片的具有可控模场的光学边缘耦合器
CN100406937C (zh) 波导型光分支元件
CN105209947B (zh) 光波导与单模光纤的耦合方法和耦合装置
CN103345022B (zh) 一种基于少模光纤的非对称平面光波导模式复用/解复用器
CN103513333B (zh) 一种硅基纳米线混合十字交叉器
CN105093408B (zh) 一种基于模式演变原理的硅基纳米线偏振分束器
CN112255727B (zh) 端面耦合器和半导体器件
US8078021B2 (en) Waveguide connecting structure
CN106980153B (zh) 一种基于多模干涉原理的椭圆形十字交叉波导的制作方法
CN106873077B (zh) 一种基于非对称定向耦合器的硅基te模检偏器
CN109270627A (zh) 一种基于多模亚波长光栅的偏振不敏感定向耦合器
Hameed et al. Novel design of ultra-compact triangular lattice silica photonic crystal polarization converter
CN106154412B (zh) 耦合器和应用该耦合器的光波导芯片
CN103558661A (zh) 一种基于硅基l形波导结构的集成偏振转换器
CN106959163A (zh) 一种基于对称三波导定向耦合器结构的te模检偏器
CN102436028A (zh) 平面光波导结构及其制作方法
CN111367014B (zh) 一种用于光互联的具有模斑转换功能的片上边缘耦合器
CN106537199A (zh) 交叉波导
CN106980154A (zh) 基于多模干涉原理的椭圆形十字交叉波导
CN115755275B (zh) 一种基于亚波长结构的小型化狭缝波导模式转换器件
CN115079341B (zh) 一种波导器件
CN206818909U (zh) 基于多模干涉原理的椭圆形十字交叉波导
CN208110093U (zh) 弯曲波导结构及偏振分束旋转器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant