CN105754688B - 一种节能降噪润滑油 - Google Patents

一种节能降噪润滑油 Download PDF

Info

Publication number
CN105754688B
CN105754688B CN201610141515.2A CN201610141515A CN105754688B CN 105754688 B CN105754688 B CN 105754688B CN 201610141515 A CN201610141515 A CN 201610141515A CN 105754688 B CN105754688 B CN 105754688B
Authority
CN
China
Prior art keywords
lubricating oil
metal
noise
energy
saving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610141515.2A
Other languages
English (en)
Other versions
CN105754688A (zh
Inventor
潘凡峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubricating Oil Products (shanghai) Co Ltd
Original Assignee
Lubricating Oil Products (shanghai) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubricating Oil Products (shanghai) Co Ltd filed Critical Lubricating Oil Products (shanghai) Co Ltd
Priority to CN201610141515.2A priority Critical patent/CN105754688B/zh
Publication of CN105754688A publication Critical patent/CN105754688A/zh
Application granted granted Critical
Publication of CN105754688B publication Critical patent/CN105754688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种节能降噪润滑油,包括基础油和金属纳米微球,金属纳米微球的显微结构外视为表面光滑的圆球状,其中金属纳米微球的质量百分比含量为润滑油总量的0.1‑1%,基础油中含有质量含量在50%以上的聚α烯烃合成油。本发明的节能降噪润滑油中的金属纳米微球可以长期均匀悬浮在润滑油中,并能够保证两年以上静止状态下不沉淀,且将滑动摩擦变为滚动摩擦,减小了摩擦系数,同时降低了机械摩擦产生的噪音,也提高了机械效率,达到了节能效果。

Description

一种节能降噪润滑油
技术领域
本发明涉及一种可节能降噪的润滑油,尤其涉及一种可节能降噪的纳米润滑油。
背景技术
液体润滑剂即润滑油,是目前使用领域最广、用量最大、发展最快的一种润滑剂。润滑油由基础油和添加剂组成。基础油是精炼的矿物油或合成油。而添加剂基本上是能完全分散于基础油中的有机化合物。
润滑剂的基本作用主要为控制摩擦、减少磨损、冷却作用和密封隔离,因而一般润滑剂应具有尽可能小的摩擦系数,从而减少能耗;还应具有适宜的黏度,黏度是衡量液体润滑剂最重要的性能之一,高黏度润滑油易形成油膜较厚的动压油膜,承载负荷大,能有效防止磨损,但黏度过大,即内摩擦过大,会造成摩擦热增加,温度升高,且存在低温下流动状况不佳等问题;润滑油黏度低,油膜薄,承受负荷小,易磨损,但内摩擦小,低温下流动状况优良;此外润滑油还应具有良好的极压性能、化学安定性、热稳定性和纯净度等。
一类用于润滑剂的最重要的添加剂是抗磨剂和极压添加剂,这类添加剂通常含有活性元素,如Cl、S、P等。随着人们环保意识的增强,含有S、P等元素的化合物由于易对环境造成污染,开始逐渐被限制或禁止使用。上世纪随着纳米技术的发展,特别是开发出来的纳米微粒种类的多样性和表面修饰技术发展,越来越多的无机纳米微粒经过修饰后添加进润滑油中,开始成为现实并有部分进入商业化运营。通过长链高分子量的表面改性剂如长链烷烃,有机功能分子等的修饰,纳米微粒是能够被稳定分散在有机溶剂或基础油中的,可以形成所谓的纳米润滑油。
纳米润滑油的主要功能在于自动沉积于金属表面,类似在金属细纹内部的材料自发生长起来,填平细纹和金属表面微损伤、微腐蚀,即治愈了金属表面的微损伤、微腐蚀。并在金属表面形成一层至三层的纳米级固体微球,使需要润滑的两个金属表面之间形成类似与滚珠轴承内圈和外圈之间的效果,即形成了滚动摩擦。将原先金属表面微损伤及微腐蚀修复,再加上润滑油本身的润滑效果,原先金属表面的相对滑动摩擦加上金属表面局部滚动摩擦,使润滑效果达到最佳,实验表明其机械能损失减少30%~50%。根据实验测试数据表明,这部分减少的机械能原来主要转成了振动能量形成噪音和摩擦热,增加滚动摩擦减少滑动摩擦,直接减少这两部分的机械能损失。从而使外观的润滑表象为节能降噪,即降低了发动机、电动机、汽轮机的主动机构的能量损耗,降低了原先由于金属表面微损伤和微腐蚀及仅有滑动摩擦造成的振动噪音。
但是经修饰的纳米粒子制备过程复杂,表面结构也不够光滑,从而降低了滚动摩擦的效果,也可能引入不必要的杂质。因此,本领域的技术人员致力于开发一种含圆球形纳米微粒的自愈合、可生长的节能降噪润滑油。
发明内容
为实现上述目的,本发明提供了一种节能降噪润滑油,包括基础油和金属纳米微球,金属纳米微球的显微结构外视为表面光滑的圆球状;其中金属纳米微球的质量百分比含量为润滑油总量的0.1-1%;进一步所述基础油中含有质量含量在50%以上的聚α烯烃(PAO)合成油,优选为56~97%,更优选为63~78%。
进一步,所述节能降噪润滑油还包括至少一种添加剂。
所述添加剂包括但不限于:抗泡剂、降凝剂、防锈剂、抗氧剂、金属减活剂、粘度指数改进剂、油性剂、抗磨剂、抗腐剂、清静分散剂、抗乳化剂。
优选地,所述金属纳米微球为铜纳米微球、钛纳米微球、铁纳米微球、银纳米微球、镍纳米微球、锡纳米微球中的一种或几种。
优选地,所述金属纳米微球的直径为2~300nm。
本发明还进一步提供了一种制备上述润滑油的方法,所述方法包括步骤:
1)制备表面光滑的圆球状金属纳米微球;
2)按各组分配比调配基础油;
3)将金属纳米微球(及添加剂)加入基础油中,混合均匀,使所述金属纳米微球扩散并悬浮于所述基础油中,形成成品润滑油。
优选地,步骤1)中表面光滑的圆球状金属纳米微球的制备方法为:将经过消磁和消静电处理的金属棒、金属片或金属丝在真空下高温加热至气化,然后冷却结晶成为表面光滑的圆球状的金属纳米微球。
上述方法将高温气化后的金属降温,降温的过程中先经历液化,利用液体的表面张力使其自然形成圆球状的纳米微球,然后经历固化使微球的形态固定下来,从而形成表面光滑的圆球状金属纳米微球。
当金属为铜时,加热温度优选为2570~2580℃;当金属为钛时,加热温度优选为3290~3300℃;当金属为铁时,加热温度优选为2750~2760℃;当金属为银时,加热温度优选为2210~2220℃;当金属为镍时,加热温度优选为2730~2740℃;当金属为锡时,加热温度优选为2260~2270℃。
其中,步骤2)的基础油调配中PAO合成油的质量含量在50%以上。
优选地,步骤3)中的所述混合均匀是在高温下进行混合,使所述金属纳米微球在高温下自发地扩散,其中扩散温度优选为50~80℃,更优选为60~75℃,混合时长优选为2~6小时;优选地,混合过程中还可增加搅拌。
本发明提供的节能降噪润滑油在基油调配好之后加入表面光滑的圆球状金属纳米微球,该纳米级固体金属微球是经蒸发结晶自然形成的圆球状微球,再经过高温扩散,使金属纳米微球均匀扩散在润滑油中。经消磁、消静电后的金属纳米微球及润滑油配方使金属纳米微球可以长期均匀悬浮在润滑油中,并能够保证两年以上静止状态下不沉淀。本发明将滑动摩擦改变为滚动摩擦,减小了摩擦系数,同时降低了机械摩擦产生的噪音,也提高了机械效率,达到了节能效果。
金属气化冷却后形成的纳米级微球,由于液体表面张力的收缩后形成表面光滑并圆整的微球,可以填补设备运动接触表面的微腐蚀(微损伤),同时又在接触表面之间形成一层至数层的微球,微球之间由根据不同工况而调配的润滑油,使润滑效果达到最理想状态。
本发明的节能降噪润滑油的干摩擦条件下的摩擦系数μ可达到0.0009~0.0055;使用本发明润滑油润滑后的金属表面粗糙度Ra可达到0.009μm;本发明的节能降噪润滑油的破坏温度TS为1550℃~1650℃,线膨胀系数α可达1.14×10-5m/m℃,显微硬度Hv为550~1480,磨损率降低97%,可隔绝金属表面微腐蚀条件,极大地提高金属表面的抗腐蚀性能,有效地保护金属机体。
本发明的节能降噪润滑油可作为齿轮油、压缩机油、汽油机油或柴油机油使用,其作为柴油发动机、汽车发动机润滑油的理论更换公里数为九万公里,实测公里数为6~8万公里,推荐公里数为2~6万公里;作为压缩机油、透平油、齿轮油的更换小时数均在一万小时以上。
具体实施方式
实施例1
本实施例中所述节能降噪润滑油的制备过程如下:
1)将经过消磁和消静电处理的铜棒、铜片或铜丝在真空下高温加热至2575℃,使其气化,然后冷却结晶成为表面光滑的圆球状铜纳米微球;
2)按质量百分比PAO-8:56%、250N:37%、150BS:7%的比例配制基础油;
3)将铜纳米微球按占润滑油总质量0.1%的比例加入基础油中(必要时还可加入添加剂),在60℃温度下搅拌6小时,使其混合均匀,制得成品润滑油。
将制得的成品润滑油透明清澈,静置存放两年,未出现沉淀。
实施例2
本实施例中所述节能降噪润滑油的制备过程如下:
1)将经过消磁和消静电处理的钛棒、钛片或钛丝在真空下高温加热至3295℃,使其气化,然后冷却结晶成为表面光滑的圆球状钛纳米微球;
2)按质量百分比PAO-8:78%、150N:10%、100N:12%的比例配制基础油;
3)将钛纳米微球按占润滑油总质量0.5%的比例加入基础油中(必要时还可加入添加剂),在80℃温度下搅拌2小时,使其混合均匀,制得成品润滑油。
将制得的成品润滑油透明清澈,静置存放两年,未出现沉淀。
实施例3
本实施例中所述节能降噪润滑油的制备过程如下:
1)将经过消磁和消静电处理的铁棒、铁片或铁丝在真空下高温加热至2755℃,使其气化,然后冷却结晶成为表面光滑的圆球状铁纳米微球;
2)按质量百分比PAO-8:97%、500N:3%的比例配制基础油;
3)将铁纳米微球按占润滑油总质量0.6%的比例加入基础油中(必要时还可加入添加剂),在65℃温度下搅拌5小时,使其混合均匀,制得成品润滑油。
将制得的成品润滑油透明清澈,静置存放两年,未出现沉淀。
实施例4
本实施例中所述节能降噪润滑油的制备过程如下:
1)将经过消磁和消静电处理的银棒、银片或银丝在真空下高温加热至2215℃,使其气化,然后冷却结晶成为表面光滑的圆球状银纳米微球;
2)按质量百分比PAO-6:50%、500N:25%、100N:25%的比例配制基础油;
3)将银纳米微球按占润滑油总质量0.6%的比例加入基础油中(必要时还可加入添加剂),在70℃温度下搅拌3.5小时,使其混合均匀,制得成品润滑油。
将制得的成品润滑油透明清澈,静置存放两年,未出现沉淀。
实施例5
本实施例中所述节能降噪润滑油的制备过程如下:
1)将经过消磁和消静电处理的镍棒、镍片或镍丝在真空下高温加热至2735℃,使其气化,然后冷却结晶成为表面光滑的圆球状镍纳米微球;
2)按质量百分比PAO-6:63%、150N:20%、150BS:17%的比例配制基础油;
3)将镍纳米微球按占润滑油总质量0.8%的比例加入基础油中(必要时还可加入添加剂),在75℃温度下搅拌2.5小时,使其混合均匀,制得成品润滑油。
将制得的成品润滑油透明清澈,静置存放两年,未出现沉淀。
实施例6
本实施例中所述节能降噪润滑油的制备过程如下:
1)将经过消磁和消静电处理的锡棒、锡片或锡丝在真空下高温加热至2265℃,使其气化,然后冷却结晶成为表面光滑的圆球状锡纳米微球;
2)按质量百分比PAO-6:80%、250N:10%、100N:10%的比例配制基础油;
3)将锡纳米微球按占润滑油总质量1%的比例加入基础油中(必要时还可加入添加剂),在55℃温度下搅拌5.5小时,使其混合均匀,制得成品润滑油。
将制得的成品润滑油透明清澈,静置存放两年,未出现沉淀。
实施例7
将实施例1-6的润滑油与纯的PAO-8、PAO-6、500N、250N、150N、100N、150BS润滑油用抗磨试验机测试其抗磨性能。经测定当采用PAO-8、PAO-6、500N、250N、150N、100N、150BS润滑油进行测试时,其可承受的最高砝码数均不超过3块齿轮即停止转动,且会产生较大噪音;而使用实施例1-6的润滑油进行测试时,其均可承受4块以上的砝码数量,且在承受4块砝码时,其转动依旧顺畅,基本无噪音。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (7)

1.一种节能降噪润滑油,包括基础油和金属纳米微球,其特征在于所述金属纳米微球的显微结构外视为表面光滑的圆球状,所述表面光滑的圆球状金属纳米微球的制备方法为:将经过消磁和消静电处理的金属棒、金属片或金属丝在真空下高温加热至气化,然后冷却结晶成为表面光滑的圆球状的金属纳米微球,所述金属纳米微球的质量百分比含量为润滑油总量的0.1-1%;所述金属纳米微球为铜纳米微球、钛纳米微球、铁纳米微球、银纳米微球、镍纳米微球、锡纳米微球中的一种或几种;当金属为铜时,加热温度为2570~2580℃;当金属为钛时,加热温度为3290~3300℃;当金属为铁时,加热温度为2750~2760℃;当金属为银时,加热温度为2210~2220℃;当金属为镍时,加热温度为2730~2740℃;当金属为锡时,加热温度为2260~2270℃。
2.如权利要求1所述的节能降噪润滑油,其特征在于所述基础油中含有质量含量在50%以上的聚α烯烃合成油。
3.如权利要求1所述的节能降噪润滑油,其特征在于所述节能降噪润滑油还包括至少一种添加剂。
4.如权利要求1所述的节能降噪润滑油,其特征在于所述金属纳米微球的直径为2~300nm。
5.一种如权利要求1所述的节能降噪润滑油的制备方法,其特征在于所述方法包括步骤:
1)制备表面光滑的圆球状金属纳米微球;
2)按各组分配比调配基础油;
3)将金属纳米微球加入基础油中,混合均匀,使所述金属纳米微球扩散并悬浮于所述基础油中,形成成品润滑油。
6.如权利要求5所述的制备方法,其特征在于步骤3)中的所述混合均匀是在高温下进行混合,温度为50~80℃。
7.如权利要求6所述的制备方法,其特征在于所述高温下进行混合的时长为2~6小时。
CN201610141515.2A 2016-03-11 2016-03-11 一种节能降噪润滑油 Active CN105754688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610141515.2A CN105754688B (zh) 2016-03-11 2016-03-11 一种节能降噪润滑油

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610141515.2A CN105754688B (zh) 2016-03-11 2016-03-11 一种节能降噪润滑油

Publications (2)

Publication Number Publication Date
CN105754688A CN105754688A (zh) 2016-07-13
CN105754688B true CN105754688B (zh) 2019-03-08

Family

ID=56333168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610141515.2A Active CN105754688B (zh) 2016-03-11 2016-03-11 一种节能降噪润滑油

Country Status (1)

Country Link
CN (1) CN105754688B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686768A (zh) * 2017-09-29 2018-02-13 成都新柯力化工科技有限公司 一种耐磨润滑油及其制备方法
CN110529302A (zh) * 2018-05-23 2019-12-03 烯钛(北京)环保技术有限公司 烯钛助燃减排器及烯钛助燃节能减排系统及方法
CN112608786A (zh) * 2020-12-21 2021-04-06 圣保路石油化工(天津)股份有限公司 一种长里程汽车齿轮油及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891803B (zh) * 2006-05-19 2010-05-12 赵国春 内燃机用纳米润滑油及其制造方法
CN101787323A (zh) * 2010-03-02 2010-07-28 江苏汇众石油化工有限公司 一种节能修复发动机润滑油
TR201101163A2 (tr) * 2011-02-08 2011-10-21 Bortek Bor Teknoloji̇leri̇ Ve Mekatroni̇k Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Fosfat kaplamanın özelliklerini iyileştirme yöntemi.
CN103773568A (zh) * 2012-10-22 2014-05-07 天津泽亚科技有限公司 一种可生物降解的抗磨擦润滑油

Also Published As

Publication number Publication date
CN105754688A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
Shen et al. The tribological properties of oils added with diamond nano-particles
Dai et al. Roles of nanoparticles in oil lubrication
Qiu et al. Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils
Ma et al. Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive
Kanazawa et al. Film formation and friction in grease lubricated rolling-sliding non-conformal contacts
Tasdemir et al. The effect of oil temperature and additive concentration on the wear of non-hydrogenated DLC coating
Pawlak et al. A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles—an additive in porous sliding bearings for a car clutch
Ouyang et al. 3D hierarchical porous graphene nanosheets as an efficient grease additive to reduce wear and friction under heavy-load conditions
US8703675B2 (en) Bearing grease composition
CA2837218C (en) Hybrid nanolubricant
CN105754688B (zh) 一种节能降噪润滑油
US20180291305A1 (en) Nano Suspension Lubricants
Fernandes et al. Friction torque of cylindrical roller thrust bearings lubricated with wind turbine gear oils
CN102816518A (zh) 一种碳-碳复合纳米基耐磨涂层材料
Svahn et al. Formation of low-friction particle/polymer composite tribofilms by tribopolymerization
Mohan et al. Tribological properties of automotive lubricant SAE 20W-40 containing nano-Al 2 O 3 particles
JP2013083304A (ja) 燃料噴射ポンプ用黒鉛添加軸受
Ouyang et al. Friction-reducing and anti-wear properties of 3D hierarchical porous graphene/multi-walled carbon nanotube in castor oil under severe condition: Experimental investigation and mechanism study
Dhanola et al. A critical review on liquid superlubricitive technology for attaining ultra-low friction
Trindade et al. Friction and wear performance of MoDTC‐containing and ester‐containing lubricants over steel surfaces under reciprocating conditions
Ma et al. Tribological properties of SiO 2@ Cu and SiO 2@ MoS 2 core–shell microspheres as lubricant additives
Hager Jr et al. Minimum quantity lubrication of M50/M50 and M50/Si3N4 tribological interfaces
Ren et al. Probing the synergy of blended lithium complex soap and calcium sulfonate towards good lubrication and anti-corrosion performance
Haldar et al. Enhancing the tribological properties of hydraulic oil-based nanolubricants using MWCNT-SiO2 hybrid nanoparticles
Thapliyal et al. Influence of Cu nanofluids on the rolling contact fatigue life of bearing steel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant