CN105754095A - 一种Fe3O4PPyAu磁性复合微球的制备方法及应用 - Google Patents
一种Fe3O4PPyAu磁性复合微球的制备方法及应用 Download PDFInfo
- Publication number
- CN105754095A CN105754095A CN201610155119.5A CN201610155119A CN105754095A CN 105754095 A CN105754095 A CN 105754095A CN 201610155119 A CN201610155119 A CN 201610155119A CN 105754095 A CN105754095 A CN 105754095A
- Authority
- CN
- China
- Prior art keywords
- ppyau
- composite microsphere
- magnetic composite
- magnetic
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/0605—Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
- C08G73/0611—Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0831—Gold
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
- C08K2003/2275—Ferroso-ferric oxide (Fe3O4)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Compounds Of Iron (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Cosmetics (AREA)
Abstract
本发明首先合成了Fe3O4 纳米颗粒,然后在其表面包覆一层PPy,再采用种子生长两步法控制合成,这样使得表面包覆的颗粒比较完整;使用的原料易得、工艺简单,使用了超声辅助合成,保障了复合微球的高度分散性;通过对碳酸钾,抗坏血酸的控制,使得表面金颗粒的大小得到很好的控制;制备得到Fe3O4PPyAu 磁性纳米颗粒兼具Fe3O4的磁性与纳米金颗粒的拉曼增强性能。将制备出的Fe3O4PPyAu磁性纳米颗粒作为SERS 基底分散于一定浓度的结晶紫溶液中,可以使结晶紫主动吸附富集于磁性颗粒表面,通过其SERS增强可以在很短的时间内检测到其拉曼特征峰。
Description
技术领域
本发明属于环境分析领域,具体涉及一种Fe3O4PPyAu磁性复合微球的制备方法及应用。
背景技术
近年来,农药的肆意使用对生态坏境和人体健康构成严重威胁,农药残留进入水体,可在人体富集,从而导致内分泌紊乱、生殖及免疫机能失调甚至癌症,严重威胁人类的身体健康。目前,我国对水体中的农残超标问题非常重视,然而利用传统的色/质谱等方法需要萃取、浓缩、净化等繁琐的过程,虽然实现了痕量农残检测,但却无法实现快速检测。表面拉曼增强共振光谱技术(SERS)由于具有高灵敏度和快速无损伤获取被探测物的光谱“指纹”峰的特点,已成为一种潜在的农药残留分析方法。
SERS是一种具有高表面选择性的分析技术,其增强效应主要来源于电磁增强,在一定波长和强度的入射光激发下,要获得较强的增强效应,一个重要因素是入射光的频率能和金属基底表面的等离子体产生共振,而这依赖于金属基底的种类和表面形貌。当两个金属纳米粒子足够接近,形成极小的Nano-gap结构或在其表面形成曲率半径较小的Nano-tip结构时,这些独特部位的电场极大增强,这类活性位点区域被称为“热点”。虽然一般基底中的“热点”并不多,但是提供的增强却十分显著。另一方面决定于金属的类型,币族金属金、银、铜等在可见光激发下,就具有很强的SERS效应,是最常用的基底材料。过渡金属,铂和镍及其金属氧化物也表现出一定的SERS活性,亦可用作基底材料。
近年来,科研工作者们围绕SERS基底的制备优化展开了许多研究工作,并取得了许多意义重大的成果。基于SERS基底形式,SERS基底大致分为颗粒型和薄膜型两类,而在颗粒型SERS基底中贵金属微纳米颗粒SERS基底更是研究的热点。
发明内容
为实现述目的,本发明采用的技术方案是,一种Fe3O4PPyAu磁性复合微球的制备方法,(1)将1gFe3O4磁性纳米颗粒分散在50~90ml蒸馏水中,加入聚乙烯吡咯烷酮0.429~1.428g,超声搅拌均匀,然后加入2~4ml吡咯和30~40ml无水乙醇,搅拌均匀,加入3~7ml10~12mol/L盐酸反应15~25min,磁分离后用蒸馏水洗涤,得Fe3O4PPy磁性复合微球;(2)将步骤(1)制备的Fe3O4PPy磁性复合微球加入到1400~3500ml20~30mmol/L的氯金酸溶液中,超声分散均匀,然后磁分离后用蒸馏水洗涤,55~65℃下干燥得包裹有氯金酸的Fe3O4PPy磁性复合微球;(3)将步骤(2)得到的包裹有氯金酸的Fe3O4PPy磁性复合微球分散到10L~20L蒸馏水中,加入2.5L~4.5L浓度为5~15mmol/L的NaBH4溶液,超声反应5~15min,磁分离后蒸馏水洗涤,得Fe3O4PPyAu种子;(4)将步骤(3)制备的Fe3O4PPyAu种子分散到7L~15L蒸馏水中,在25~30℃下超声搅拌,加入179~357ml20~30mmol/L的氯金酸溶液和20~35g碳酸钾,用蠕动泵滴加1.5L~3.5L浓度为4~6mmol/L的抗坏血酸溶液,反应完全后,磁分离,蒸馏水洗涤,得Fe3O4PPyAu磁性复合微球。
所述步骤(4)中蠕动泵滴加速度为5r/s。
所述步骤(1)中所用的Fe3O4磁性纳米颗粒的制备方法如下:将FeCl3.6H2O溶解在乙二醇中得到FeCl3的乙二醇溶液,将无水乙酸钠溶解在乙二醇中得到乙酸钠的乙二醇溶液,将乙酸钠的乙二醇溶液和FeCl3的乙二醇溶液混合,搅拌均匀得到混合溶液,所述混合溶液中FeCl3.6H2O和无水乙酸钠的质量比为3:2~3:8,FeCl3.6H2O和混合溶液中乙二醇的固液比1g:10ml~20ml;将混合溶液加入到反应釜中,180℃-200℃下反应8h-12h,磁分离后用蒸馏水洗涤干净即得Fe3O4磁性纳米颗粒。
所述的Fe3O4PPyAu磁性复合微球在水体中结晶紫污染检测中的应用。
本发明产生的有益效果是:本发明首先合成了Fe3O4纳米颗粒,然后在其表面包覆一层PPy,再采用种子生长两步法控制合成,这样使得表面包覆的颗粒比较完整;使用的原料易得、工艺简单,使用了超声辅助合成,保障了复合微球的高度分散性;通过对碳酸钾,抗坏血酸的控制,使得表面金颗粒的大小得到很好的控制;制备得到Fe3O4PPyAu磁性纳米颗粒兼具Fe3O4的磁性与纳米金颗粒的拉曼增强性能。将制备出的Fe3O4PPyAu磁性纳米颗粒作为SERS基底分散于一定浓度的结晶紫溶液中,可以使结晶紫主动吸附富集于磁性颗粒表面,通过其SERS增强可以在很短的时间内检测到其拉曼特征峰。
附图说明
图1为实施例1制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片;
图2为实施例1制备的Fe3O4PPyAu磁性复合微球的透射电子显微镜照片;
图3为实施例1制备的Fe3O4PPyAu磁性复合微球的EDX图;
图4为实施例2制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片;
图5为实施例2制备的Fe3O4PPyAu磁性复合微球的透射电子显微镜照片;
图6为实施例3制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片;
图7为实施例3制备的Fe3O4PPyAu磁性复合微球的透射电子显微镜照片;
图8为对比实验1制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片;
图9为应用实验Fe3O4PPyAu磁性复合微球检测结晶紫的拉曼特征峰图。
具体实施方式
实施例1
一种Fe3O4PPyAu磁性复合微球的制备方法,包括以下步骤:(1)将1gFe3O4磁性纳米颗粒分散在85ml蒸馏水中,加入聚乙烯吡咯烷酮0.7g,超声搅拌均匀,然后加入3ml吡咯和35ml无水乙醇,搅拌均匀,加入5ml盐酸(12mol/L)反应20min,磁分离后用蒸馏水洗涤,得Fe3O4PPy磁性复合微球;(2)将步骤(1)制备的Fe3O4PPy磁性复合微球加入到1450ml24mmol/L的氯金酸溶液中,超声分散均匀,然后磁分离后用蒸馏水洗涤,60℃下干燥得包裹有氯金酸的Fe3O4PPy磁性复合微球;(3)将步骤(2)得到的包裹有氯金酸的Fe3O4PPy磁性复合微球分散到15L蒸馏水中,加入3L浓度为13mmol/L的NaBH4溶液,超声反应10min,磁分离后蒸馏水洗涤,得Fe3O4PPyAu种子;(4)将步骤(3)制备的Fe3O4PPyAu种子分散到10L蒸馏水中,在30℃下超声搅拌,加入285ml24mmol/L的氯金酸溶液和24g碳酸钾,用蠕动泵滴加2.5L浓度为5mmol/L的抗坏血酸溶液,反应完全后,磁分离,蒸馏水洗涤,得Fe3O4PPyAu磁性复合微球。
所用的Fe3O4磁性纳米颗粒的制备方法如下:将5.4gFeCl3.6H2O溶解在40ml乙二醇中得到FeCl3的乙二醇溶液,将7.2g无水乙酸钠溶解在40ml乙二醇中得到乙酸钠的乙二醇溶液,将乙酸钠的乙二醇溶液和FeCl3的乙二醇溶液混合,搅拌均匀得到混合溶液,将混合溶液加入到反应釜中,200℃下反应12h,磁分离后用蒸馏水洗涤后即得Fe3O4磁性纳米颗粒。
实施例1中制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片和透射电子显微镜照片分别如图1-2所示,由图1-2可以看出,Fe3O4PPyAu具有良好的分散性,并且Fe3O4PPy表面包覆的Au颗粒也是很完整并且均匀的,说明成功制备了Fe3O4PPyAu磁性复合微球;实施例1中制备的Fe3O4PPyAu磁性复合微球的EDX图如图3所示,由图3可以看出,制备的Fe3O4PPyAu磁性复合微球只含有Fe、O和Au这三种元素,可以看出制备的Fe3O4PPyAu磁性复合微球是比较纯净的。
实施例2
一种Fe3O4PPyAu磁性复合微球的制备方法,包括以下步骤:(1)将1gFe3O4磁性纳米颗粒分散在50ml蒸馏水中,加入聚乙烯吡咯烷酮0.429g,超声搅拌均匀,然后加入2ml吡咯和30ml无水乙醇,搅拌均匀,加入7ml盐酸(10mol/L)反应15min,磁分离后用蒸馏水洗涤,得Fe3O4PPy磁性复合微球;(2)将步骤(1)制备的Fe3O4PPy磁性复合微球加入到3500ml20mmol/L的氯金酸溶液中,超声分散均匀,然后磁分离后用蒸馏水洗涤,55℃下干燥得包裹有氯金酸的Fe3O4PPy磁性复合微球;(3)将步骤(2)得到的包裹有氯金酸的Fe3O4PPy磁性复合微球分散到10L蒸馏水中,加入2.5L浓度为15mmol/L的NaBH4溶液,超声反应5min,磁分离后蒸馏水洗涤,得Fe3O4PPyAu种子;(4)将步骤(3)制备的Fe3O4PPyAu种子分散到7L蒸馏水中,在25℃下超声搅拌,加入179ml30mmol/L的氯金酸溶液和20g碳酸钾,用蠕动泵滴加1.5L浓度为6mmol/L的抗坏血酸溶液,反应完全后,磁分离,蒸馏水洗涤,得Fe3O4PPyAu磁性复合微球。
所用的Fe3O4磁性纳米颗粒的制备方法如下:将5.4gFeCl3.6H2O溶解在40ml乙二醇中得到FeCl3的乙二醇溶液,将7.2g无水乙酸钠溶解在40ml乙二醇中得到乙酸钠的乙二醇溶液,将乙酸钠的乙二醇溶液和FeCl3的乙二醇溶液混合,搅拌均匀得到混合溶液,将混合溶液加入到反应釜中,180℃下反应12h,磁分离后用蒸馏水洗涤干净即得Fe3O4磁性纳米颗粒。
实施例2中制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片和透射电子显微镜照片分别如图4-5所示,由图4-5可以看出,Fe3O4PPyAu具有良好的分散性,并且Fe3O4PPy表面包覆的Au颗粒也是很完整并且均匀的,说明成功制备了Fe3O4PPyAu磁性复合微球。
实施例3
一种Fe3O4PPyAu磁性复合微球的制备方法,包括以下步骤:(1)将1gFe3O4磁性纳米颗粒分散在90ml蒸馏水中,加入聚乙烯吡咯烷酮1.428g,超声搅拌均匀,然后加入4ml吡咯和40ml无水乙醇,搅拌均匀,加入3ml盐酸(12mol/L)反应25min,磁分离后用蒸馏水洗涤,得Fe3O4PPy磁性复合微球;(2)将步骤(1)制备的Fe3O4PPy磁性复合微球加入到2500ml30mmol/L的氯金酸溶液中,超声分散均匀,然后磁分离后用蒸馏水洗涤,65℃下干燥得包裹有氯金酸的Fe3O4PPy磁性复合微球;(3)将步骤(2)得到的包裹有氯金酸的Fe3O4PPy磁性复合微球分散到20L蒸馏水中,加入4.5L浓度为5mmol/L的NaBH4溶液,超声反应15min,磁分离后蒸馏水洗涤,得Fe3O4PPyAu种子;(4)将步骤(3)制备的Fe3O4PPyAu种子分散到15L蒸馏水中,在30℃下超声搅拌,加入357ml20mmol/L的氯金酸溶液和35g碳酸钾,用蠕动泵滴加3.5L浓度为4mmol/L的抗坏血酸溶液,反应完全后,磁分离,蒸馏水洗涤,得Fe3O4PPyAu磁性复合微球。
所用的Fe3O4磁性纳米颗粒的制备方法如下:将5.4gFeCl3.6H2O溶解在40ml乙二醇中得到FeCl3的乙二醇溶液,将7.2g无水乙酸钠溶解在40ml乙二醇中得到乙酸钠的乙二醇溶液,将乙酸钠的乙二醇溶液和FeCl3的乙二醇溶液混合,搅拌均匀得到混合溶液,将混合溶液加入到反应釜中,200℃下反应8h,磁分离后用蒸馏水洗涤干净即得Fe3O4磁性纳米颗粒。
实施例3中制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片和透射电子显微镜照片分别如图6-7所示,由图6-7可以看出,Fe3O4PPyAu具有良好的分散性,并且Fe3O4PPy表面包覆的Au颗粒也是很完整并且均匀的,说明成功制备了Fe3O4PPyAu磁性复合微球。
对比实验1
对比实验1与实施例1的区别在于:步骤(4)中不加入碳酸钾。对比实验1中制备的Fe3O4PPyAu磁性复合微球的扫描电镜照片如图8所示,由图8可以看出,反应体系中没有加入碳酸钾的时候,金颗粒的生长比较困难并且颗粒尺寸比较大。
将实施例1制备出的Fe3O4PPyAu磁性复合微球分散到60mL玻璃瓶中,加入20ml不同浓度(结晶紫的浓度10-4,10-5,10-6mol/L)的结晶紫溶液,放于振荡器上,震荡24h,用外加磁场对磁性颗粒进行收集后,取5mg浸泡过结晶紫溶液的Fe3O4PPyAu磁性复合微球于干净玻璃片上直接进行SERS测定,使用拉曼光谱仪进行信号采集,即可得到结晶紫的拉曼特征峰,所得拉曼特征峰图如图9所示,结晶紫的浓度在10-5、10-6的时候,一般的情况下是很难检测到结晶紫的存在,但是经过Fe3O4PPyAuSERS基底的增强,就很容易检测到结晶紫,如图9所示,结晶紫的拉曼峰是比较明显的。
Claims (10)
1.一种Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,包括以下步骤:(1)按固液比为1g:50ml~1g:90ml将Fe3O4磁性纳米颗粒分散在蒸馏水中,加入聚乙烯吡咯烷酮,超声搅拌均匀,然后加入吡咯和乙醇,搅拌均匀,加入10~12mol/L盐酸反应15~25min,磁分离后用蒸馏水洗涤,得Fe3O4PPy磁性复合微球;(2)将步骤(1)制备的Fe3O4PPy磁性复合微球加入到20~30mmol/L的氯金酸溶液中,超声分散均匀,然后磁分离后用蒸馏水洗涤,55~65℃下干燥得包裹有氯金酸的Fe3O4PPy磁性复合微球;(3)将步骤(2)得到的包裹有氯金酸的Fe3O4PPy磁性复合微球分散到蒸馏水中,加入5~15mmol/L的NaBH4溶液,超声反应5~15min,磁分离后蒸馏水洗涤,得Fe3O4PPyAu种子;(4)将步骤(3)制备的Fe3O4PPyAu种子分散到蒸馏水中,在25~30℃下超声搅拌,加入20~30mmol/L的氯金酸溶液和碳酸钾,用蠕动泵滴加4~6mmol/L的抗坏血酸溶液,反应完全后,磁分离,蒸馏水洗涤,得Fe3O4PPyAu磁性复合微球。
2.如权利要求1所述的Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,所述步骤(1)中Fe3O4磁性纳米颗粒和聚乙烯吡咯烷酮的质量比为1:0.429~1:1.428,Fe3O4磁性纳米颗粒和吡咯的固液比为1g:2ml~1g:4ml,Fe3O4磁性纳米颗粒和乙醇的固液比为1g:30ml~1g:40ml。
3.如权利要求1所述的Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,所述步骤(2)中所用的20~30mmol/L的氯金酸溶液与Fe3O4磁性纳米颗粒的液固比为1400ml:1g~3500ml:1g。
4.如权利要求1所述的Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,所述步骤(3)中5~15mmol/L的NaBH4溶液与Fe3O4磁性纳米颗粒的液固比为2.5L~4.5L:1g。
5.如权利要求1所述的Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,所述步骤(4)中碳酸钾的质量为Fe3O4磁性纳米颗粒的20~35倍,4~6mmol/L的抗坏血酸溶液与Fe3O4磁性纳米颗粒的液固比为1.5L~3.5L:1g。
6.如权利要求1所述的Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,所述步骤(4)中蠕动泵滴加速度为5r/s。
7.如权利要求1所述的Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,所述步骤(1)中所用的Fe3O4磁性纳米颗粒的制备方法如下:将FeCl3.6H2O溶解在乙二醇中得到FeCl3的乙二醇溶液,将无水乙酸钠溶解在乙二醇中得到乙酸钠的乙二醇溶液,将乙酸钠的乙二醇溶液和FeCl3的乙二醇溶液混合,搅拌均匀得到混合溶液,将混合溶液加入到反应釜中,180℃-200℃下反应8h-12h,磁分离后用蒸馏水洗涤干净即得Fe3O4磁性纳米颗粒。
8.如权利要求7所述的Fe3O4PPyAu磁性复合微球的制备方法,其特征在于,所述混合溶液中FeCl3.6H2O和无水乙酸钠的质量比为3:2~3:8,FeCl3.6H2O和混合溶液中乙二醇的固液比1g:10ml~20ml。
9.如权利要求1-8任一所述方法制备的Fe3O4PPyAu磁性复合微球。
10.权利要求9所述的Fe3O4PPyAu磁性复合微球在水体中结晶紫污染检测中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610155119.5A CN105754095B (zh) | 2016-03-18 | 2016-03-18 | 一种Fe3O4@PPy@Au磁性复合微球的制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610155119.5A CN105754095B (zh) | 2016-03-18 | 2016-03-18 | 一种Fe3O4@PPy@Au磁性复合微球的制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105754095A true CN105754095A (zh) | 2016-07-13 |
CN105754095B CN105754095B (zh) | 2018-10-23 |
Family
ID=56333450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610155119.5A Expired - Fee Related CN105754095B (zh) | 2016-03-18 | 2016-03-18 | 一种Fe3O4@PPy@Au磁性复合微球的制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105754095B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106623894A (zh) * | 2016-12-02 | 2017-05-10 | 中国人民解放军国防科学技术大学 | 磁性复合颗粒及其制备方法和应用 |
CN107424716A (zh) * | 2017-08-25 | 2017-12-01 | 清华大学 | 磁性液体及其制备方法 |
CN108827929A (zh) * | 2018-04-17 | 2018-11-16 | 华东理工大学 | 一种基于MOFs的SERS探针及其制备方法 |
CN109731617A (zh) * | 2018-12-13 | 2019-05-10 | 东莞理工学院 | 一种Fe3O4/聚吡咯/聚苯胺/TiO2/ZnO复合材料的制备方法 |
CN110255678A (zh) * | 2019-06-06 | 2019-09-20 | 安徽建筑大学 | 具有拉曼增强特性的磁性自絮凝材料及其制备方法和应用 |
US11628423B2 (en) | 2018-05-30 | 2023-04-18 | King Fahd University Of Petroleum And Minerals | Morphologically controlled synthesis of ferric oxide nano/micro particles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983629A (zh) * | 2014-05-13 | 2014-08-13 | 中国工程物理研究院化工材料研究所 | 一种表面增强拉曼散射探测芯片及其制备方法 |
KR101448111B1 (ko) * | 2013-09-17 | 2014-10-13 | 한국기계연구원 | 표면 증강 라만 분광용 기판 및 이의 제조방법 |
CN104815679A (zh) * | 2015-04-14 | 2015-08-05 | 河南大学 | 可见光催化剂AgBr/Ag多孔复合微球的制备方法 |
-
2016
- 2016-03-18 CN CN201610155119.5A patent/CN105754095B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448111B1 (ko) * | 2013-09-17 | 2014-10-13 | 한국기계연구원 | 표면 증강 라만 분광용 기판 및 이의 제조방법 |
CN103983629A (zh) * | 2014-05-13 | 2014-08-13 | 中国工程物理研究院化工材料研究所 | 一种表面增强拉曼散射探测芯片及其制备方法 |
CN104815679A (zh) * | 2015-04-14 | 2015-08-05 | 河南大学 | 可见光催化剂AgBr/Ag多孔复合微球的制备方法 |
Non-Patent Citations (1)
Title |
---|
邓建国等: "磁性Fe3O4-聚吡咯纳米微球的合成与表征", 《高分子学报》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106623894A (zh) * | 2016-12-02 | 2017-05-10 | 中国人民解放军国防科学技术大学 | 磁性复合颗粒及其制备方法和应用 |
CN107424716A (zh) * | 2017-08-25 | 2017-12-01 | 清华大学 | 磁性液体及其制备方法 |
CN108827929A (zh) * | 2018-04-17 | 2018-11-16 | 华东理工大学 | 一种基于MOFs的SERS探针及其制备方法 |
US11628423B2 (en) | 2018-05-30 | 2023-04-18 | King Fahd University Of Petroleum And Minerals | Morphologically controlled synthesis of ferric oxide nano/micro particles |
US12042784B1 (en) | 2018-05-30 | 2024-07-23 | King Fahd University Of Petroleum And Minerals | Catalytic reduction of a nitro compound to an amine compound |
US12076708B2 (en) | 2018-05-30 | 2024-09-03 | King Fahd University Of Petroleum And Minerals | Method for treating an ammonium salt |
US12090469B2 (en) | 2018-05-30 | 2024-09-17 | King Fahd University Of Petroleum And Minerals | Method for reducing nitrogenous phenols |
US12090470B2 (en) | 2018-05-30 | 2024-09-17 | King Fahd University Of Petroleum And Minerals | Method for reducing a nitro compound to an amine compound |
US12102988B2 (en) | 2018-05-30 | 2024-10-01 | King Fahd University Of Petroleum And Minerals | Methods for catalytically reducing a nitro compound |
CN109731617A (zh) * | 2018-12-13 | 2019-05-10 | 东莞理工学院 | 一种Fe3O4/聚吡咯/聚苯胺/TiO2/ZnO复合材料的制备方法 |
CN110255678A (zh) * | 2019-06-06 | 2019-09-20 | 安徽建筑大学 | 具有拉曼增强特性的磁性自絮凝材料及其制备方法和应用 |
CN110255678B (zh) * | 2019-06-06 | 2022-02-11 | 安徽建筑大学 | 具有拉曼增强特性的磁性自絮凝材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN105754095B (zh) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105754095A (zh) | 一种Fe3O4PPyAu磁性复合微球的制备方法及应用 | |
Chow et al. | Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles | |
Wang et al. | Organic-inorganic hybrid pillarene-based nanomaterial for label-free sensing and catalysis | |
Chen et al. | Polydopamine@ gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples | |
Gao et al. | Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge | |
Edison et al. | Catalytic degradation of organic dyes using green synthesized N-doped carbon supported silver nanoparticles | |
Li et al. | Heterodimers made of upconversion nanoparticles and metal–organic frameworks | |
CN101281133B (zh) | 具有大面积微纳树状结构阵列的表面增强拉曼活性基底的制备方法 | |
Tian et al. | SERS-based immunoassay and degradation of CA19-9 mediated by gold nanowires anchored magnetic–semiconductor nanocomposites | |
Gómez-Graña et al. | Au@ Ag nanoparticles: Halides stabilize {100} facets | |
Dong et al. | Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach | |
CN102590176B (zh) | 一种表面增强拉曼散射探针及其制备方法 | |
Liang et al. | Recent advances in plasmon-promoted organic transformations using silver-based catalysts | |
Chen et al. | Shining at the tips: Anisotropic deposition of Pt nanoparticles boosting hot carrier utilization for plasmon-driven photocatalysis | |
US8956440B2 (en) | High-yield synthesis of gold nanorods with optical absorption at wavelengths greater than 1000nm using hydroquinone | |
Rabbani et al. | Photocatalytic degradation of p-nitrophenol and methylene blue using Zn-TCPP/Ag doped mesoporous TiO2 under UV and visible light irradiation | |
CN102837005A (zh) | 一种具有表面拉曼增强活性的尺寸可控金纳米星的制备方法 | |
CN103273079A (zh) | 一种金纳米花的制备方法及其应用 | |
CN102828176A (zh) | 一种制备均匀金纳米颗粒薄膜的方法 | |
CN102749317A (zh) | 一种基于碳纳米管的表面增强拉曼散射探针及其制备方法 | |
Li et al. | Fabrication of pollutant-resistance SERS imprinted sensors based on SiO2@ TiO2@ Ag composites for selective detection of pyrethroids in water | |
Chen et al. | Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates | |
Wang et al. | ZnO nanorods decorated with Ag nanoflowers as a recyclable SERS substrate for rapid detection of pesticide residue in multiple-scenes | |
Chen et al. | A mixed valence state Mo-based metal–organic framework from photoactivation as a surface-enhanced Raman scattering substrate | |
Zhang et al. | Selective deposition of catalytic metals on plasmonic Au nanocups for room-light-active photooxidation of o-phenylenediamine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181023 Termination date: 20190318 |
|
CF01 | Termination of patent right due to non-payment of annual fee |