CN105740087A - Method for carrying out SRAM (Static Random Access Memory) type FPGA (Field Programmable Gate Array) refreshing effect verification by lookup table shift register - Google Patents
Method for carrying out SRAM (Static Random Access Memory) type FPGA (Field Programmable Gate Array) refreshing effect verification by lookup table shift register Download PDFInfo
- Publication number
- CN105740087A CN105740087A CN201610070861.6A CN201610070861A CN105740087A CN 105740087 A CN105740087 A CN 105740087A CN 201610070861 A CN201610070861 A CN 201610070861A CN 105740087 A CN105740087 A CN 105740087A
- Authority
- CN
- China
- Prior art keywords
- shift register
- register group
- refresh
- fpga
- type fpga
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000012795 verification Methods 0.000 title abstract description 23
- 230000000694 effects Effects 0.000 title abstract description 14
- 230000003068 static effect Effects 0.000 title 1
- 238000012360 testing method Methods 0.000 claims abstract description 14
- 230000002093 peripheral effect Effects 0.000 claims description 26
- 238000011010 flushing procedure Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Logic Circuits (AREA)
Abstract
本发明涉及利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法,包括步骤(1)、在FPGA中构建由查找表构成的移位寄存器组,并为移位寄存器组设置初始值;(2)、完成FPGA的上电配置,向移位寄存器组输入串行数据驱动移位寄存器组进行移位;(3)、当前移位寄存器内的保存值与移位寄存器的初始值不同时,可停止向移位寄存器组输入串行数据;(4)、刷新SRAM型FPGA,直至移位寄存器组的所有存储值均被刷新;(5)、再次向移位寄存器组输入串行数据驱动移位寄存器组进行移位,将移位寄存器组中的保存值全部移出;(6)、判断是否刷新成功,本发明方法不需要进行辐照试验,也不需要回读,具有成本低、操作简单、判断准确的特点。
The present invention relates to the method that utilizes look-up table shift register to carry out SRAM type FPGA refreshing effect verification, comprises step (1), builds the shift register group that is made of look-up table in FPGA, and sets initial value for shift register group; 2), complete the power-on configuration of the FPGA, input serial data to the shift register group to drive the shift register group to shift; (3), when the saved value in the current shift register is different from the initial value of the shift register, Can stop inputting the serial data to the shift register group; (4), refresh the SRAM type FPGA until all stored values of the shift register group are refreshed; (5), input the serial data to the shift register group again to drive the shift The bit register group is shifted, and the saved values in the shift register group are all moved out; (6), judging whether the refresh is successful, the method of the present invention does not need to carry out an irradiation test, does not need to read back, and has low cost and simple operation , The characteristics of accurate judgment.
Description
技术领域technical field
本发明涉及一种利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法,特别是利用查找表移位寄存器的特性来判断刷新是否成功,属于集成电路技术领域。The invention relates to a method for verifying the refresh effect of an SRAM FPGA by using a lookup table shift register, in particular using the characteristics of a lookup table shift register to judge whether the refresh is successful, and belongs to the technical field of integrated circuits.
背景技术Background technique
SRAM型FPGA的基本结构如图1,其中主要的功能模块包括:四周一圈的输入输出模块(IOB)、边沿两列块存储器(BlockRAM)、内部的可编程逻辑块阵列(CLB),除此以外,还有遍布整个电路连接各个模块的互联资源。上述逻辑资源和互联资源都由下层SRAM配置位控制。大量的遍布FPGA电路的SRAM配置位决定了FPGA电路的具体功能,这些配置位的码流集合即被称为码流(bitstream)。The basic structure of SRAM-type FPGA is shown in Figure 1. The main functional modules include: input and output modules (IOB) around the circle, two-column block memory (BlockRAM) on the edge, and internal programmable logic block array (CLB). In addition, there are interconnect resources that connect the various modules throughout the circuit. The above logic resources and interconnect resources are all controlled by the underlying SRAM configuration bits. A large number of SRAM configuration bits distributed throughout the FPGA circuit determine the specific functions of the FPGA circuit, and the bitstream set of these configuration bits is called a bitstream.
当SRAM型FPGA在空间环境应用时,空间高能粒子会穿透FPGA器件内部并在路径上产生电离,从而引起电路节点上瞬时电流干扰而导致电路错误。典型的6管SRAM单元由两个交叉连接的反相器以及两个用于读写控制的门控管组成,如图2所示为SRAM型FPGA的配置存储器单粒子翻转的原理。当高能粒子打在SRAM单元的灵敏区域时(以反偏n管的漏区为例),电荷在结区的收集产生了一个瞬态电流脉冲,导致该单元存储的信息由“1”变成了“0”,状态出现了翻转。这种效应就是空间单粒子翻转效应,配置位状态的翻转可能导致严重的功能故障,导致内部功能错乱、连线短路、断路等。这种配置位翻转导致的故障是永久性的故障,只能通过重新加载码流来消除。When the SRAM FPGA is applied in the space environment, space high-energy particles will penetrate the interior of the FPGA device and generate ionization on the path, which will cause instantaneous current interference on the circuit nodes and cause circuit errors. A typical 6-tube SRAM unit consists of two cross-connected inverters and two gating tubes for read and write control. Figure 2 shows the principle of single event flipping of the configuration memory of the SRAM FPGA. When high-energy particles hit the sensitive area of the SRAM unit (take the drain area of the reverse biased n-tube as an example), the collection of charges in the junction area generates a transient current pulse, causing the information stored in the unit to change from "1" to "0", the state has been reversed. This effect is the spatial single event flipping effect. The flipping of the configuration bit state may lead to serious functional failures, resulting in internal functional disorder, short circuit, open circuit, etc. Faults caused by this configuration bit flip are permanent and can only be removed by reloading the bitstream.
刷新技术利用SRAM型FPGA回读和部分重配的功能,修复发生单粒子翻转的配置SRAM单元。可以纠正配置SRAM中发生的单粒子翻转,从而彻底消除单粒子翻转积累,与全部重新加载码流相比不会中断用户逻辑,从而增加刷新率。刷新技术已在空间FPGA应用中作为配套措施广泛获得应用。刷新是否有效果是应用过程中比较关注的问题,由于刷新是对FPGA内部配置位进行读写,类似于后台操作,刷新是否成功缺乏直观的信号指示,难以判断。为了判断刷新是否成功,通常需要通过辐照试验使得SRAM位发生翻转后再进行回读,对回读后的码流与初始码流对比后才能确定是否刷新成功。由于需要辐照试验,该判别方法具有较高的门槛条件,且回读和码流分析的操作也十分复杂。Refresh technology utilizes the readback and partial reconfiguration functions of SRAM-type FPGAs to repair configuration SRAM cells where single-event flipping occurs. Single event upsets occurring in configured SRAM can be corrected, thereby completely eliminating single event upset accumulation, without interrupting user logic compared to full reloading of the bitstream, thereby increasing the refresh rate. Refresh technology has been widely used as a supporting measure in space FPGA applications. Whether the refresh is effective is a more concerned issue in the application process. Since the refresh is to read and write the internal configuration bits of the FPGA, similar to background operations, it is difficult to judge whether the refresh is successful without an intuitive signal indication. In order to judge whether the refresh is successful, it is usually necessary to flip the SRAM bit through an irradiation test and then read it back. After comparing the read-back code stream with the initial code stream, it is possible to determine whether the refresh is successful. Due to the need for irradiation tests, this discrimination method has relatively high threshold conditions, and the operations of readback and code stream analysis are also very complicated.
发明内容Contents of the invention
本发明的目的在于克服现有技术的上述缺陷,提供一种利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法,该方法利用FPGA内部查找表移位寄存器的特点,形成一种可以方便判断刷新是否成功的方法,该方法不需要进行辐照试验,也不需要回读,具有成本低、操作简单、判断准确的特点。The purpose of the present invention is to overcome the above-mentioned defect of prior art, provide a kind of method utilizing look-up table shift register to carry out SRAM type FPGA refreshing effect verification, this method utilizes the characteristic of FPGA internal look-up table shift register, forms a kind of can conveniently The method for judging whether the refreshing is successful or not does not require irradiation test or readback, and has the characteristics of low cost, simple operation and accurate judgment.
本发明的上述目的主要是通过如下技术方案予以实现的:Above-mentioned purpose of the present invention is mainly achieved through the following technical solutions:
利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法,其特征在于:Utilize the look-up table shift register to carry out the method for SRAM type FPGA refreshing effect verification, it is characterized in that:
(1)、在SRAM型FPGA中构建由查找表构成的移位寄存器组,并为移位寄存器组设置初始值;(1), construct the shift register group that is made of look-up table in SRAM type FPGA, and set initial value for shift register group;
(2)、完成SRAM型FPGA的上电配置,向移位寄存器组输入串行数据驱动移位寄存器组进行移位;(2), complete the power-on configuration of the SRAM type FPGA, and input the serial data to the shift register group to drive the shift register group to shift;
(3)、当移位寄存器组新移入值后,当前移位寄存器内的保存值与移位寄存器的初始值不同时,可停止向移位寄存器组输入串行数据;(3), when the shift register group is newly shifted into the value, when the saved value in the current shift register is different from the initial value of the shift register, the input serial data to the shift register group can be stopped;
(4)、刷新SRAM型FPGA,直至移位寄存器组的所有存储值均被刷新;(4), refresh the SRAM type FPGA, until all storage values of the shift register group are refreshed;
(5)、再次向移位寄存器组输入串行数据驱动移位寄存器组进行移位,将移位寄存器组中的保存值全部移出;(5), input serial data to the shift register group again to drive the shift register group to shift, and all the stored values in the shift register group are shifted out;
(6)、对比步骤(5)中的移出值与步骤(1)中设置的初始值是否相同,若相同则判断刷新成功,若不同则判断刷新未成功。(6), compare whether the removed value in step (5) is the same as the initial value set in step (1), if they are the same, it is judged that the refresh is successful, and if they are different, it is judged that the refresh is not successful.
利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法,通过FPGA刷新验证系统实现,所述FPGA刷新验证系统包括待刷新的SRAM型FPGA、刷新模块、PROM和外围信号模块,其中PROM用于存储SRAM型FPGA码流,具体实现方法如下:Utilize the look-up table shift register to carry out the method for SRAM type FPGA refresh effect verification, realize by FPGA refresh verification system, described FPGA refresh verification system comprises SRAM type FPGA to be refreshed, refresh module, PROM and peripheral signal module, wherein PROM is used for Store the SRAM type FPGA code stream, the specific implementation method is as follows:
(1)、在SRAM型FPGA中构建由查找表构成的移位寄存器组,并为移位寄存器组设置初始值;(1), construct the shift register group that is made of look-up table in SRAM type FPGA, and set initial value for shift register group;
(2)、完成SRAM型FPGA的上电,通过PROM为SRAM型FPGA进行码流配置,外围信号模块向移位寄存器组输入串行数据驱动移位寄存器组进行移位;(2), complete the power-on of the SRAM FPGA, configure the code stream for the SRAM FPGA through the PROM, and the peripheral signal module inputs serial data to the shift register group to drive the shift register group to shift;
(3)、当移位寄存器组新移入值后,当前移位寄存器内的保存值与移位寄存器的初始值不同时,外围信号模块可停止向移位寄存器组输入串行数据;(3), when the shift register group is newly shifted into the value, when the saved value in the current shift register is different from the initial value of the shift register, the peripheral signal module can stop inputting serial data to the shift register group;
(4)、刷新模块对SRAM型FPGA进行刷新,直至当移位寄存器组的所有存储值均被刷新;(4), the refresh module refreshes the SRAM type FPGA until all stored values of the shift register group are refreshed;
(5)、外围信号模块再次向移位寄存器组输入串行数据驱动移位寄存器组进行移位,将移位寄存器组中的保存值全部移出;(5), the peripheral signal module inputs the serial data to the shift register group again to drive the shift register group to shift, and all the stored values in the shift register group are moved out;
(6)、对比步骤(5)中的移出值与步骤(1)中设置的初始值是否相同,若相同则判断刷新成功,若不同则判断刷新未成功。(6), compare whether the removed value in step (5) is the same as the initial value set in step (1), if they are the same, it is judged that the refresh is successful, and if they are different, it is judged that the refresh is not successful.
在上述利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法中,由查找表构成的移位寄存器组包括多个移位寄存器单元,每个移位寄存器单元包括存储单元、2进1出的第一多路器和1进2出的第二多路器,两个多路器通过控制端控制选通路径,选择通过配置路径读写存储单元,或者选择通过用户路径读写存储单元。In the above-mentioned method for verifying the refresh effect of SRAM type FPGA by using a lookup table shift register, the shift register group composed of a lookup table includes a plurality of shift register units, and each shift register unit includes a storage unit, 2 into 1 out The first multiplexer and the second multiplexer with 1 input and 2 outputs, the two multiplexers control the gating path through the control terminal, choose to read and write the storage unit through the configuration path, or choose to read and write the storage unit through the user path.
在上述利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法中,步骤(4)中刷新步骤选择通过配置路径读写存储单元(202)实现;所述步骤(2)、(5)中的移位步骤选择通过用户路径读写存储单元(202)。In the above-mentioned method utilizing the look-up table shift register to carry out SRAM type FPGA refresh effect verification, the refresh step selection in the step (4) is realized by configuring the path read-write storage unit (202); in the steps (2), (5) The shift step of selects the read/write memory cell through the user path (202).
在上述利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法中,步骤(3)中,当前移位寄存器内的保存值与移位寄存器的初始值不同时,且变化值占初始保存值的50%以上时,停止向移位寄存器组输入串行数据。In the above-mentioned method for verifying the refresh effect of SRAM type FPGA by using a lookup table shift register, in step (3), when the saved value in the current shift register is different from the initial value of the shift register, and the changed value accounts for the initial saved value When more than 50% of the value, stop inputting serial data to the shift register group.
在上述利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法中,步骤(4)中通过PROM中存储的码流进行刷新。In the method for verifying the refresh effect of the SRAM FPGA by using the look-up table shift register above, in step (4), refresh is performed through the code stream stored in the PROM.
在上述利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法中,步骤(6)中通过示波器、逻辑分析仪或者数字信号采集装置对比步骤(5)中的移出值与步骤(1)中设置的初始值是否相同。In the above-mentioned method for utilizing the look-up table shift register to carry out SRAM type FPGA refresh effect verification, in step (6), by oscilloscope, logic analyzer or digital signal acquisition device comparison step (5) in the value shifted out and in step (1) Whether the initial value of the setting is the same.
本发明与现有技术相比具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)、现有技术需要通过辐照试验,若不具备辐照试验条件,则无法进行,本发明使得刷新是否成功的判断可以在正常的试验室环境下开展,仅需要一块普通的验证板,成本显著降低。(1), the prior art needs to pass the irradiation test, if it does not have the irradiation test conditions, it cannot be carried out. The present invention enables the judgment of whether the refresh is successful or not to be carried out in a normal laboratory environment, and only needs an ordinary verification board , the cost is significantly reduced.
(2)、现有技术需要通过回读,将当前码流读出并与原始码流进行对比。FPGA回读操作十分复杂,包括同步、去同步、设置帧长、设置起始地址等一系列命令字,回读码流与原始码流对比时还需要考虑无关位的干扰,现有回读对比的技术操作十分复杂;本发明只需要通过用户逻辑设计一条寄存器链路,并在操作中通过少量信号控制刷新和寄存器移位即可,操作方法相对现有技术大为简化。(2) The prior art needs to read back the current code stream and compare it with the original code stream. The FPGA readback operation is very complicated, including a series of command words such as synchronization, desynchronization, frame length setting, and starting address setting. When comparing the readback code stream with the original code stream, it is necessary to consider the interference of irrelevant bits. The existing readback comparison The technical operation is very complicated; the present invention only needs to design a register link through user logic, and control refresh and register shift through a small number of signals during operation, and the operation method is greatly simplified compared with the prior art.
(3)、本发明方法仅需在试验室环境中进行即可,不需要通过辐照试验,相比现有技术门槛低,并且本发明方法具有清晰明确的判断依据,判断方法准确。(3), the method of the present invention only needs to be carried out in a laboratory environment, and does not need to pass an irradiation test, which is lower than the threshold of the prior art, and the method of the present invention has a clear and definite judgment basis, and the judgment method is accurate.
(4)、本发明的方法适用于任何FPGA型号以及任何刷新的方法,适用范围广、通用性强,具有较强的实用性。(4), the method of the present invention is applicable to any FPGA model and any refreshing method, has wide application range, strong versatility, and has stronger practicability.
附图说明Description of drawings
图1为SRAM型FPGA的体系结构图;Fig. 1 is the architecture diagram of SRAM type FPGA;
图2为SRAM型FPGA的配置存储器单粒子翻转的原理图;Fig. 2 is the schematic diagram of single event flipping of configuration memory of SRAM type FPGA;
图3为本发明FPGA刷新验证系统结构示意图;Fig. 3 is the structural representation of FPGA refresh verification system of the present invention;
图4为本发明每个移位寄存器单元的内部结构图;Fig. 4 is the internal structural diagram of each shift register unit of the present invention;
图5为本发明刷新验证方法的流程图;Fig. 5 is a flow chart of the refresh verification method of the present invention;
图6为本发明刷新验证方法的波形示意图;FIG. 6 is a schematic diagram of waveforms of the refresh verification method of the present invention;
图7为本发明实施例中移位寄存器结构图;FIG. 7 is a structural diagram of a shift register in an embodiment of the present invention;
图8为本发明实施例中验证系统内部连接关系图。Fig. 8 is a diagram of the internal connections of the verification system in the embodiment of the present invention.
具体实施方式detailed description
下面结合附图和具体实施例对本发明作进一步详细的描述:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
如图3所示为本发明FPGA刷新验证系统结构示意图,由图可知FPGA刷新验证系统包括刷新模块101、被刷新SRAM型FPGA102、PROM104、外围信号模块103,其具体连接关系如下:刷新模块101分别连接到FPGA的配置数据端口和配置时钟端口,刷新模块101分别连接PROM104的时钟端和数据端,外围信号模块103分别连接FPGA的用户数据输入端、用户控制端和用户时钟端,此外,FPGA通过用户管脚直接输出待检验的内部信号。As shown in Figure 3, it is a schematic structural diagram of the FPGA refresh verification system of the present invention. As can be seen from the figure, the FPGA refresh verification system includes a refresh module 101, a refreshed SRAM type FPGA102, a PROM 104, and a peripheral signal module 103, and its specific connection relationship is as follows: the refresh modules 101 are respectively Connect to the configuration data port and the configuration clock port of the FPGA, the refresh module 101 is connected to the clock terminal and the data terminal of the PROM104 respectively, and the peripheral signal module 103 is respectively connected to the user data input terminal, the user control terminal and the user clock terminal of the FPGA. In addition, the FPGA passes through The user pin directly outputs the internal signal to be tested.
其中,刷新模块101从PROM104读取配置码流对SRAM型FPGA102进行刷新,外围信号模块103给SRAM型FPGA102的移位寄存器组提供时钟信号、使能信号和输入信号,其中时钟信号驱动移位寄存器组移位,输入信号每次更新移位寄存器组的第一位,使能信号控制移位寄存器的移位停止。SRAM型FPGA102可通过软件编程实现设定的逻辑功能,PROM104的功能是存储FPGA的配置码流。验证系统中的刷新模块101要具备暂停刷新的能力。验证系统中的外围信号模块103需要将输出时钟和信号连接到SRAM型FPGA102的用户IO。验证系统中的SRAM型FPGA102是被刷新器件,内部配置为查找表移位寄存器组,移位寄存器具有时钟端、数据输入端、数据输出端等,移位寄存器的初始值具有显著的特征。Among them, the refresh module 101 reads the configuration code stream from the PROM104 to refresh the SRAM FPGA102, and the peripheral signal module 103 provides clock signals, enable signals and input signals to the shift register group of the SRAM FPGA102, wherein the clock signal drives the shift register Group shifting, the input signal updates the first bit of the shift register group each time, and the enable signal controls the shifting of the shift register to stop. The SRAM type FPGA 102 can realize the set logic function through software programming, and the function of the PROM 104 is to store the configuration code stream of the FPGA. The refresh module 101 in the verification system should have the ability to suspend refresh. The peripheral signal module 103 in the verification system needs to connect the output clock and signal to the user IO of the SRAM type FPGA 102 . The SRAM-type FPGA102 in the verification system is a device to be refreshed, and its internal configuration is a look-up table shift register group. The shift register has clock terminals, data input terminals, data output terminals, etc. The initial value of the shift register has significant characteristics.
如图4所示为本发明每个移位寄存器单元的内部结构图,由查找表构成的移位寄存器组包括多个移位寄存器单元,如图4所示,每个移位寄存器单元包括存储单元202、2进1出的第一多路器201和1进2出的第二多路器203,两个多路器201、203通过控制端控制选通路径,选择通过配置路径读写存储单元202,或者选择通过用户路径读写存储单元202。通过这样的结构,查找表移位寄存器能够在配置读写和用户读写两种模式下任意切换。As shown in Figure 4, it is the internal structure diagram of each shift register unit of the present invention, the shift register group formed by the look-up table includes a plurality of shift register units, as shown in Figure 4, each shift register unit includes storage Unit 202, the first multiplexer 201 with 2 inputs and 1 output, and the second multiplexer 203 with 1 input and 2 outputs. The two multiplexers 201 and 203 control the gating path through the control terminal, and choose to read and write storage through the configuration path. unit 202, or choose to read and write storage unit 202 through the user path. Through such a structure, the look-up table shift register can be switched arbitrarily in two modes of configuration read-write and user read-write.
如图5所示为本发明刷新验证方法的流程图,本发明利用查找表移位寄存器进行SRAM型FPGA刷新效果验证的方法包括如下步骤:As shown in Figure 5, it is the flow chart of the refresh verification method of the present invention, the present invention utilizes the look-up table shift register to carry out the method for SRAM type FPGA refresh effect verification and comprises the steps:
(1)、设计FPGA逻辑,在SRAM型FPGA中构建由查找表构成的移位寄存器组,并为移位寄存器组设置初始值;(1), design FPGA logic, build the shift register group that is made of look-up table in SRAM type FPGA, and set initial value for shift register group;
(2)、完成SRAM型FPGA的上电,通过PROM为SRAM型FPGA进行码流配置,外围信号模块向移位寄存器组输入串行数据驱动移位寄存器组进行移位,输入的串行数据与步骤(1)中所述设置的初始值不同。(2) Complete the power-on of the SRAM-type FPGA, and configure the code stream for the SRAM-type FPGA through the PROM. The peripheral signal module inputs serial data to the shift register group to drive the shift register group to shift. The input serial data and The initial values of the settings described in step (1) are different.
(3)、当移位寄存器组新移入值后,当前移位寄存器内的保存值与移位寄存器的初始值不同时,最好存在显著差异,外围信号模块可以停止向移位寄存器组输入串行数据。本发明中优选当前移位寄存器内的保存值与移位寄存器的初始值不同,且变化值个数占初始保存值个数的50%以上时,停止向移位寄存器组输入串行数据。(3) When the shift register group has newly shifted in the value, when the saved value in the current shift register is different from the initial value of the shift register, preferably there is a significant difference, the peripheral signal module can stop inputting the string to the shift register group row data. In the present invention, it is preferred that when the saved value in the current shift register is different from the initial value of the shift register, and the number of changed values accounts for more than 50% of the number of initial saved values, the input of serial data to the shift register group is stopped.
(4)、刷新模块通过PROM中存储的码流对SRAM型FPGA进行刷新,当移位寄存器组的所有存储值均被刷新后,停止刷新;(4), the refresh module refreshes the SRAM type FPGA by the code stream stored in the PROM, and stops refreshing when all stored values of the shift register group are refreshed;
(5)、外围信号模块再次向移位寄存器组输入串行数据驱动移位寄存器组进行移位,将移位寄存器组中的保存值全部移出;(5), the peripheral signal module inputs the serial data to the shift register group again to drive the shift register group to shift, and all the stored values in the shift register group are moved out;
(6)、对比步骤(5)中的移出值与步骤(1)中设置的初始值是否相同,若完全相同则判断刷新成功,若不同则判断刷新未成功。本发明中通过示波器、逻辑分析仪或者其他数字信号采集装置对比步骤(5)中的移出值与步骤(1)中设置的初始值是否相同。(6), compare whether the removed value in step (5) is the same as the initial value set in step (1), if they are completely the same, it is judged that the refresh is successful, and if they are different, it is judged that the refresh is not successful. In the present invention, compare whether the shifted-out value in step (5) is the same as the initial value set in step (1) by an oscilloscope, a logic analyzer or other digital signal acquisition devices.
上述步骤(4)中刷新步骤选择通过配置路径读写存储单元202实现;步骤(2)、(5)中的移位步骤选择通过用户路径读写存储单元202。The selection of the refresh step in the above step (4) is realized by configuring the path to read and write the storage unit 202;
如图6是本发明刷新验证的波形示意图,刷新控制信号在不刷新时,若移位寄存器组的移位使能控制位有效(图中401),则移位寄存器输出端的信号是延迟一定周期后的用户输入信号(图中404),延迟周期数是移位寄存器的深度,当刷新有效、移位寄存器的移位使能控制位无效(图中402),若刷新成功,则当暂停刷新且移位使能恢复有效时(图中403),移位寄存器输出端的信号首先输出初始值(图中405),然后输出延迟一定周期后的用户输入信号(图中406),若刷新不成功,则输出信号不是初始值。刷新的使能控制与用户移位寄存器的移位使能不可同时有效,否则输出端信号为不确定状态。Figure 6 is a waveform schematic diagram of the refresh verification of the present invention. When the refresh control signal is not refreshed, if the shift enable control bit of the shift register group is valid (401 in the figure), the signal at the output end of the shift register is delayed for a certain period. After the user input signal (404 in the figure), the number of delay cycles is the depth of the shift register. When the refresh is valid, the shift enable control bit of the shift register is invalid (402 in the figure). If the refresh is successful, then when the refresh is suspended And when the shift enable is restored to be valid (403 in the figure), the signal at the output end of the shift register first outputs the initial value (405 in the figure), and then outputs the user input signal (406 in the figure) after a certain period of delay. , the output signal is not the initial value. The refresh enable control and the shift enable of the user shift register cannot be valid at the same time, otherwise the output signal is in an indeterminate state.
实施例Example
如图7通过FPGA开发软件设计一条由查找表构成的位宽为1位、数据深度为16位的移位寄存器,该移位寄存器包括1位时钟输入端clk、1位信号输入端in、1位高有效使能控制端enable、1位信号输出端out,所有输入输出均连接到FPGA的用户管脚,其中shift_out直接输出到验证板的探测孔。该16位深度的移位寄存器设置初始值为16’b1010101010011001。刷新模块与FPGA配置端口的连接如图8所述,刷新模块输出端TDI_F连接FPGA的TDI,刷新模块输出端TCK_F连接FPGA的TCK,刷新模块输出端TMS_F连接FPGA的TMS,刷新模块输入端TDO_F连接FPGA的TDO。刷新模块与PROM的连接如图8,刷新模块输入端Data_P连接PROM的Data端,刷新模块输出端Clk_P连接PROM的Clk端,刷新模块输出端CE_P连接PROM的CE端,刷新模块输出端OE_P连接PROM的OE端。刷新模块的输入端Pause可以选择上拉到高电平或者下拉到低电平。外围信号模块与FPGA的连接如图8,外围信号模块的输出端shift_clk连接到FPGA的移位寄存器的时钟输入端clk,外围信号模块的输出端shift_in连接到FPGA的移位寄存器的数据输入端in,外围信号模块的输出端shift_enable连接到FPGA的移位寄存器的高有效使能端enable。As shown in Figure 7, design a shift register consisting of a lookup table with a bit width of 1 bit and a data depth of 16 bits through the FPGA development software. The shift register includes a 1-bit clock input terminal clk, a 1-bit signal input terminal in, 1 The bit high effectively enables the control terminal enable and the 1-bit signal output terminal out. All input and output are connected to the user pins of the FPGA, and the shift_out is directly output to the detection hole of the verification board. The 16-bit deep shift register is set to an initial value of 16'b1010101010011001. The connection between the refresh module and the FPGA configuration port is as shown in Figure 8. The output terminal TDI_F of the refresh module is connected to the TDI of the FPGA, the output terminal TCK_F of the refresh module is connected to the TCK of the FPGA, the output terminal TMS_F of the refresh module is connected to the TMS of the FPGA, and the input terminal TDO_F of the refresh module is connected to TDOs of FPGAs. The connection between the refresh module and the PROM is shown in Figure 8. The refresh module input Data_P is connected to the Data port of the PROM, the refresh module output Clk_P is connected to the Clk port of the PROM, the refresh module output CE_P is connected to the PROM CE port, and the refresh module output OE_P is connected to the PROM the OE side. The Pause input terminal of the refresh module can be selected to be pulled up to high level or pulled down to low level. The connection between the peripheral signal module and the FPGA is shown in Figure 8. The output terminal shift_clk of the peripheral signal module is connected to the clock input terminal clk of the shift register of the FPGA, and the output terminal shift_in of the peripheral signal module is connected to the data input terminal in of the shift register of the FPGA. , the output terminal shift_enable of the peripheral signal module is connected to the active high enable terminal enable of the FPGA shift register.
第一步,将产生的查找表移位寄存器码流文件烧写入PROM中,重新上电,加载码流。第二步,外围信号模块输出的shift_clk(移位寄存器组的时钟信号)输出1MHz方波时钟,外围信号模块输出的shift_in(移位寄存器组的输入信号)输出高电平,外围信号模块输出的shift_enable(移位寄存器组的使能信号)输出高电平。刷新模块的Pause信号接地,停止刷新。在移位寄存器的out端检测到波形先输出16’b1010101010011001,然后输出信号全为1。第三步,外围信号模块输出的shift_enable(移位寄存器组的使能信号)输出低电平,移位寄存器组暂停移位。刷新模块的输入端Pause上拉到高电平,启动刷新。第四步,刷新模块的输入端Pause下拉到低电平,待移位寄存器的保存值均被刷新后,暂停刷新。第五步,外围信号模块输出的shift_clk(移位寄存器组的时钟信号)输出1MHz方波时钟,外围信号模块输出的shift_in(移位寄存器组的输入信号)输出高电平,外围信号模块输出的shift_enable(移位寄存器组的使能信号)输出高电平,恢复移位。第六步,检测移位寄存器的out端,若检测到波形先输出16’b1010101010011001,然后输出信号全为1,则说明刷新模块功能正确,若检测到波形始终全为1,则说明刷新模块功能不正确。The first step is to burn the generated lookup table shift register code stream file into the PROM, power on again, and load the code stream. In the second step, the shift_clk (clock signal of the shift register group) output by the peripheral signal module outputs a 1MHz square wave clock, the shift_in (input signal of the shift register group) output by the peripheral signal module outputs a high level, and the output of the peripheral signal module shift_enable (the enable signal of the shift register group) outputs a high level. The Pause signal of the refresh module is grounded to stop the refresh. The waveform detected at the out end of the shift register first outputs 16’b1010101010011001, and then the output signals are all 1. In the third step, the shift_enable (enable signal of the shift register group) output by the peripheral signal module outputs a low level, and the shift register group stops shifting. The input terminal Pause of the refresh module is pulled up to a high level to start the refresh. In the fourth step, the input terminal Pause of the refresh module is pulled down to a low level, and after all the stored values of the shift register are refreshed, the refresh is paused. Step 5, the shift_clk (clock signal of the shift register group) output by the peripheral signal module outputs a 1MHz square wave clock, the shift_in (input signal of the shift register group) output by the peripheral signal module outputs a high level, and the output of the peripheral signal module shift_enable (the enable signal of the shift register group) outputs a high level to resume shifting. The sixth step is to detect the out terminal of the shift register. If the detected waveform first outputs 16'b1010101010011001, and then the output signal is all 1, it means that the function of the refresh module is correct. If the detected waveform is always all 1, it means that the function of the refresh module Incorrect.
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above description is only the best specific implementation mode of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art can easily conceive of changes or modifications within the technical scope disclosed in the present invention. Replacement should be covered within the protection scope of the present invention.
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。The content that is not described in detail in the specification of the present invention belongs to the well-known technology of those skilled in the art.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610070861.6A CN105740087B (en) | 2016-02-02 | 2016-02-02 | Method for verifying refresh effect of SRAM FPGA by using lookup table shift register |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610070861.6A CN105740087B (en) | 2016-02-02 | 2016-02-02 | Method for verifying refresh effect of SRAM FPGA by using lookup table shift register |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105740087A true CN105740087A (en) | 2016-07-06 |
CN105740087B CN105740087B (en) | 2018-07-31 |
Family
ID=56242142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610070861.6A Active CN105740087B (en) | 2016-02-02 | 2016-02-02 | Method for verifying refresh effect of SRAM FPGA by using lookup table shift register |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105740087B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108053856A (en) * | 2017-12-29 | 2018-05-18 | 西安智多晶微电子有限公司 | Read and write the circuit of SRAM and SRAM data access method |
CN111611135A (en) * | 2020-05-25 | 2020-09-01 | 苏州浪潮智能科技有限公司 | CPLD or FPGA signal processing method, device, equipment and readable medium |
CN111949574A (en) * | 2020-06-30 | 2020-11-17 | 厦门汉印电子技术有限公司 | Bus bit number judging method, device, equipment and readable storage medium |
CN112385184A (en) * | 2018-07-11 | 2021-02-19 | 弗瑞柏私人有限公司 | Scanning device for detecting start byte in high frequency serial data stream |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103840823A (en) * | 2014-02-14 | 2014-06-04 | 北京时代民芯科技有限公司 | Astronavigation FPGA universal refresh circuit based on JTAG interface and achieving method thereof |
CN103840822A (en) * | 2014-02-14 | 2014-06-04 | 北京时代民芯科技有限公司 | Astronavigation FPGA universal refresh circuit based on SELECTMAP and achieving method thereof |
CN104484238A (en) * | 2014-12-16 | 2015-04-01 | 北京控制工程研究所 | CRC (Cyclic Redundancy Check) method for SRAM (Static Random Access Memory) type FPGA (Field Programmable Gate Array) configuration refreshment |
-
2016
- 2016-02-02 CN CN201610070861.6A patent/CN105740087B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103840823A (en) * | 2014-02-14 | 2014-06-04 | 北京时代民芯科技有限公司 | Astronavigation FPGA universal refresh circuit based on JTAG interface and achieving method thereof |
CN103840822A (en) * | 2014-02-14 | 2014-06-04 | 北京时代民芯科技有限公司 | Astronavigation FPGA universal refresh circuit based on SELECTMAP and achieving method thereof |
CN104484238A (en) * | 2014-12-16 | 2015-04-01 | 北京控制工程研究所 | CRC (Cyclic Redundancy Check) method for SRAM (Static Random Access Memory) type FPGA (Field Programmable Gate Array) configuration refreshment |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108053856A (en) * | 2017-12-29 | 2018-05-18 | 西安智多晶微电子有限公司 | Read and write the circuit of SRAM and SRAM data access method |
CN108053856B (en) * | 2017-12-29 | 2020-04-28 | 西安智多晶微电子有限公司 | Circuit for reading and writing SRAM and SRAM data access method |
CN112385184A (en) * | 2018-07-11 | 2021-02-19 | 弗瑞柏私人有限公司 | Scanning device for detecting start byte in high frequency serial data stream |
CN112385184B (en) * | 2018-07-11 | 2022-06-14 | 弗瑞柏私人有限公司 | Scanning device for detecting start byte in high frequency serial data stream |
CN111611135A (en) * | 2020-05-25 | 2020-09-01 | 苏州浪潮智能科技有限公司 | CPLD or FPGA signal processing method, device, equipment and readable medium |
CN111611135B (en) * | 2020-05-25 | 2023-01-06 | 苏州浪潮智能科技有限公司 | CPLD or FPGA signal processing method, device, equipment and readable medium |
CN111949574A (en) * | 2020-06-30 | 2020-11-17 | 厦门汉印电子技术有限公司 | Bus bit number judging method, device, equipment and readable storage medium |
CN111949574B (en) * | 2020-06-30 | 2023-10-20 | 厦门汉印电子技术有限公司 | Bus bit number judging method, device, equipment and readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN105740087B (en) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6861867B2 (en) | Method and apparatus for built-in self-test of logic circuits with multiple clock domains | |
US9897653B2 (en) | Scan chain circuit supporting logic self test pattern injection during run time | |
US9222979B2 (en) | On-chip controller and a system-on-chip | |
US11156661B2 (en) | Reversible multi-bit scan cell-based scan chains for improving chain diagnostic resolution | |
CN103021469A (en) | Universal single event effect detecting method of memory circuit | |
CN105740087B (en) | Method for verifying refresh effect of SRAM FPGA by using lookup table shift register | |
US5946245A (en) | Memory array test circuit and method | |
US7355902B2 (en) | Methods and apparatus for inline characterization of high speed operating margins of a storage element | |
CN107144783A (en) | Support unit and the SRAM type FPGA appraisal procedures of multidigit direct fault location | |
US20190033366A1 (en) | Design-For-Test for Asynchronous Circuit Elements | |
US9324453B2 (en) | Memory unit and method of testing the same | |
CN106291313B (en) | Method and apparatus for testing integrated circuits | |
TWI650566B (en) | Integrated circuit test device | |
US20130311843A1 (en) | Scan controller configured to control signal values applied to signal lines of circuit core input interface | |
US20230008982A1 (en) | Single-Event Transient (SET) Pulse Measuring Circuit Capable of Eliminating Impact Thereof, and Integrated Circuit Chip | |
US8154275B2 (en) | Apparatus and method for testing sense amplifier thresholds on an integrated circuit | |
TWI631571B (en) | Negative bias thermal instability stress testing for static random access memory (sram) | |
CN103840822B (en) | The implementation method of aerospace FPGA based on SELECTMAP general refreshing circuit | |
Kogan et al. | Advanced uniformed test approach for automotive SoCs | |
US20070016833A1 (en) | Method For Performing Built-In And At-Speed Test In System-On-Chip | |
JP2000090693A (en) | Memory test device | |
US8793545B2 (en) | Apparatus and method for clock glitch detection during at-speed testing | |
US20140281764A1 (en) | Data path memory test | |
Nunes et al. | Evaluating xilinx SEU controller macro for fault injection | |
US20050024074A1 (en) | Method and apparatus for characterizing an electronic circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |