CN105734654A - Anode preparation method - Google Patents

Anode preparation method Download PDF

Info

Publication number
CN105734654A
CN105734654A CN201410754769.2A CN201410754769A CN105734654A CN 105734654 A CN105734654 A CN 105734654A CN 201410754769 A CN201410754769 A CN 201410754769A CN 105734654 A CN105734654 A CN 105734654A
Authority
CN
China
Prior art keywords
anode
valve
cracks
full
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410754769.2A
Other languages
Chinese (zh)
Inventor
曾宪兰
陈庚
黄金
谢信韦
张起飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU JIDAO ELECTRODE TECHNOLOGY Co Ltd
Original Assignee
SUZHOU JIDAO ELECTRODE TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU JIDAO ELECTRODE TECHNOLOGY Co Ltd filed Critical SUZHOU JIDAO ELECTRODE TECHNOLOGY Co Ltd
Priority to CN201410754769.2A priority Critical patent/CN105734654A/en
Publication of CN105734654A publication Critical patent/CN105734654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The invention discloses an anode preparation method. The anode preparation method comprises the following steps that valve-shaped metal is used as a substrate, a crack-free valve-shaped metal bottom layer and a crack-free composite precious metal surface layer are sequentially formed on the substrate after acid etching, and a crack-free anode is prepared. The invention further discloses application of the anode prepared through the anode preparation method in electroplating, wet metallurgy and tinsel preparation. The crack-free valve-shaped metal bottom layer and the crack-free composite precious metal surface layer with specific organic solvent are adopted by the anode provided by the invention, the service life of the anode is effectively prolonged, and the anode has the following advantages that the bath voltage of the anode is decreased by 0.05 V to 0.3 V compared with existing titanium-based metallic oxide anodes and the service life is more than two times longer than that of the existing titanium-based metallic oxide anodes when the anode is applied to electroplating, wet metallurgy and tinsel preparation.

Description

A kind of anode preparation method
Technical field
The invention belongs to anode preparation method field, particularly relate to a kind of preparation method without be full of cracks structure dimensional stable anode.
Background technology
Plating, hydrometallurgy or metal forming are prepared etc. in electrolysis and are required that anode material has higher corrosion resistance and service life.In plating, hydrometallurgy or metal forming preparation, a large amount of insoluble anodes adopted are graphite, pb-ag alloy or titanium matrix metal oxide anode at present.Graphite mechanical strength is low, corrosion resistance is poor, and easily causes carbon content rising in cathodic deposition metallic product;Although pb-ag alloy has higher electric conductivity, low fusing point, good processing characteristics and mechanical strength, but slight dissolving still occurs in electrolytic process;Ti-support metal oxide anode is serious owing to chapping in thermal decomposition process, understands fast-falling and cause anodic passivity in use procedure.
Summary of the invention
For the deficiencies in the prior art, it is an object of the invention to provide without be full of cracks, performance remarkable, long service life, it is adaptable to plating, hydrometallurgy or metal forming such as prepare at the anode preparation method without be full of cracks in field.
For achieving the above object, present invention employs following technical scheme:
A kind of anode preparation method, comprises the steps: with valve metal for matrix, after acid etching, forms the valve-type metal back layer without be full of cracks and the composite noble metal surface layer without be full of cracks successively, can be prepared by without be full of cracks anode on matrix.
As the further optimization of such scheme, described matrix is netted or tabular.
Further, described acid etching comprises the steps: to be placed on matrix in one or more mixed liquors by a certain percentage of hydrochloric acid, sulphuric acid or oxalic acid, then adding thermal etching a period of time, further, described matrix etches 1~30 hour under 60~120 degree.
Further, the described forming process without be full of cracks valve-type metal back layer includes: by matrix after acid etching, valve-type metal salt solution is coated in the surface of described matrix, then heat drying, reheat and decompose, naturally cool to room temperature, according to above step repetitive coatings, dry and decompose for several times, preparing the valve-type metal back layer without be full of cracks;Further, after matrix acid etching, valve-type metal salt solution is coated in the surface of described matrix, dry 10~30 minutes at 100 DEG C~150 DEG C, decompose 30 to 120 minutes at 450 DEG C~550 DEG C, naturally cool to room temperature, according to above step, repetitive coatings, dry and decompose 1~10 time, prepare the valve-type metal back layer without be full of cracks, wherein said valve-type metal salt solution composed as follows: ethanol tantalum 0.1%~2.0%(w/v), butter of tin 0%~20%(w/v), butyl titanate 0%~5.0%(w/v), organic solvent 80~90% (v/v), hydrochloric acid 0%~10%(w/v), organic solution is with methanol, ethanol, one or more of propanol or n-butyl alcohol mix by a certain percentage;Preferably, organic solution includes: methanol 0~10% (v/v), ethanol 10~50% (v/v), isopropanol 10~60% (v/v), n-butyl alcohol 20~80% (v/v);Further, described organic solution includes: methanol 0~5% (v/v), ethanol 20~30% (v/v), isopropanol 20~40% (v/v), n-butyl alcohol 60~70% (v/v).
Further, described valve metal includes titanium, zirconium or tantalum, it is more preferred to, described valve metal is titanium.
Further, the described forming process without be full of cracks composite noble metal surface layer includes: composite noble metal saline solution is coated in the surface of the anode substrate of the netted or tabular without be full of cracks valve-type metal back layer being initially formed, then heat drying, reheat and decompose, naturally cool to room temperature, according to above step repetitive coatings, dry and decompose for several times, preparing the noble metal top layer without be full of cracks;nullFurther,Composite noble metal saline solution is coated in the surface of the anode substrate of the netted or tabular without be full of cracks valve-type metal back layer being initially formed,Dry 10~30 minutes at 100 DEG C~150 DEG C,Decompose 30 to 120 minutes at 450 DEG C~550 DEG C,Naturally cool to room temperature,According to above step,Repetitive coatings、Dry and decompose 30~60 times,Prepare the noble metal top layer without be full of cracks,Wherein said composite noble metal saline solution composed as follows: chloro-iridic acid 0.2~5.0% (v/v),Ethanol tantalum 0%~2.0%(w/v)、Organic solvent 80%~95% (v/v)、Stabilizer 0%~20%(w/v),Described organic solvent is that organic solution is with methanol、Ethanol、One or more of propanol or n-butyl alcohol mix by a certain percentage,Described stabilizer is hydrochloric acid、One or more of nitric acid or hydrogen peroxide mix by a certain percentage;It is highly preferred that described organic solution includes: methanol 0~10% (v/v), ethanol 10~50% (v/v), isopropanol 10~60% (v/v), n-butyl alcohol 20~80% (v/v);Further, described organic solution includes: methanol 0~5% (v/v), ethanol 20~30% (v/v), isopropanol 20~40% (v/v), n-butyl alcohol 60~70% (v/v);Further, described stabilizer includes: hydrochloric acid 1~30% (v/v), nitric acid 0~10% (v/v), hydrogen peroxide 60~90% (v/v);Most preferably, described organic solution includes: hydrochloric acid 5~15% (v/v), nitric acid 0~3% (v/v), hydrogen peroxide 85~90% (v/v).
Further, described valve-type metal back layer thickness is 0.2~2.0 micron.
Further, the thickness on described metal composite oxide top layer is 5~8mm.
The invention still further relates to above-mentioned anode preparation method prepared anode purposes in plating, hydrometallurgy and metal forming preparation.
Beneficial effects of the present invention main manifestations is: anode prepared by the present invention adopts the valve-type metal back layer without be full of cracks prepared of specific organic solvent and without the composite noble metal top layer chapped, effectively extend electrode life, use it in plating, hydrometallurgy and metal forming preparation and have the advantage that tank voltage is than existing Ti-support metal oxide anode decline 0.05V~0.3V;Exceed existing Ti-support metal oxide anode length more than 2 times service life.
Detailed description of the invention
Below in conjunction with specific embodiment, technical scheme is further described, but the present invention should not be limited only to these embodiments.
Embodiment 1
A kind of preparation method without be full of cracks structure dimensional stable anode, it comprises the steps:
1. pretreatment: put into by the titanium net of 15cm2 in the aqueous sulfuric acid of 20wt%, takes out after etching 2h, clean surface with deionized water in micro-situation of boiling;
2. formed without be full of cracks valve-type metal back layer: valve-type metallic solution is coated on titanium surface, dry 15 minutes at 120 DEG C, decompose 2 hours at 480 DEG C, naturally cool to room temperature, according to above step, repetitive coatings, dry and decompose 6 times, surface must be arrived and be formed with the titanium net of the valve-type metal back layer without be full of cracks, wherein the component of precious metal solution includes as follows: ethanol tantalum 1.5%(w/v), butter of tin 10%(w/v), butyl titanate 0.1%(w/v), ethanol 15% (v/v), isopropanol 15% (v/v), n-butyl alcohol 60% (v/v), hydrochloric acid 3%(w/v);
3. formed without be full of cracks composite noble metal top layer: surface step 2. obtained is formed without after be full of cracks valve-type metal back layer titanium net cooling, composite noble metal saline solution is coated in the surface of described matrix, dry 30 minutes at 150 DEG C, decompose 2 hours at 550 DEG C, naturally cool to room temperature, according to above step, repetitive coatings, dry and decompose 40 times, prepare the noble metal top layer without be full of cracks, the composition of wherein said composite noble metal saline solution includes as follows: chloro-iridic acid 1.0% (v/v), ethanol tantalum 0.45%(w/v), ethanol 15% (v/v), isopropanol 15% (v/v), n-butyl alcohol 60% (v/v), hydrogen peroxide 8%(w/v).
Embodiment 2
A kind of preparation method without be full of cracks structure dimensional stable anode, it comprises the steps:
1. pretreatment: put into by the titanium net of 15cm2 in the oxalic acid aqueous solution of 10wt%, takes out after etching 8 (h), clean surface with deionized water in micro-situation of boiling;
2. formed without be full of cracks valve-type metal back layer: valve-type metallic solution is coated on titanium surface, dry 15 minutes at 120 DEG C, decompose 2 hours at 480 DEG C, naturally cool to room temperature, according to above step, repetitive coatings, dry and decompose 6 times, surface must be arrived and be formed with the titanium net of the valve-type metal back layer without be full of cracks, wherein the composition of precious metal solution includes as follows: ethanol tantalum 1.5%(w/v), butter of tin 10%(w/v), butyl titanate 0.1%(w/v), ethanol 20%, isopropanol 15% (v/v), n-butyl alcohol 55% (v/v), hydrochloric acid 3%(w/v);
3. formed without be full of cracks composite noble metal top layer: surface step 2. obtained is formed without after be full of cracks valve-type metal back layer titanium net cooling, composite noble metal saline solution is coated in the surface of described matrix, dry 30 minutes at 150 DEG C, decompose 2 hours at 550 DEG C, naturally cool to room temperature, according to above step, repetitive coatings, dry and decompose 40 times, prepare the noble metal top layer without be full of cracks, the composition of wherein said composite noble metal saline solution includes as follows: chloro-iridic acid 1.0% (v/v), ethanol tantalum 0.45%(w/v), ethanol 20% (v/v), isopropanol 15% (v/v), n-butyl alcohol 60% (v/v), hydrogen peroxide 3%(w/v).
Comparative example 1
The preparation method of a kind of Ti-support metal oxide anode, it comprises the steps:
1. pretreatment: put into by the titanium net of 15cm2 in the aqueous sulfuric acid of 20wt%, takes out after etching 2h, clean surface with deionized water in micro-situation of boiling;
2. valve-type metal back layer is formed: valve-type metallic solution is coated on titanium surface, dry 15 minutes at 120 DEG C, decompose 2 hours at 480 DEG C, naturally cool to room temperature, according to above step, repetitive coatings, dry and decompose 6 times, must arrive surface and be formed with the titanium net without the valve-type metal back layer chapped, wherein the composition of precious metal solution includes as follows: ethanol tantalum 1.5%(w/v), isopropanol 45% (v/v), n-butyl alcohol 50% (v/v), hydrochloric acid 3.5%(w/v);
3. composite noble metal top layer is formed: after surface step 2. obtained is formed with the cooling of valve-type metal back layer titanium net, composite noble metal saline solution is coated in the surface of described matrix, dry 30 minutes at 150 DEG C, decompose 2 hours at 550 DEG C, naturally cool to room temperature, according to above step, repetitive coatings, dry and decompose 20 times, prepare noble metal top layer, the composition of wherein said composite noble metal saline solution includes as follows: chloro-iridic acid 2.0% (v/v), ethanol tantalum 0.9%(w/v), isopropanol 38% (v/v), n-butyl alcohol 60% (v/v).
Anode above-described embodiment 1,2 and comparative example 1 prepared is at 15% sulphuric acid, temperature 50 degree, electric current density 60000A/M2Environment under carry out reinforcing life test, as shown in table 1, there it can be seen that embodiment 1 and 2 without be full of cracks structure dimensional stable anode corrosion rate be substantially reduced relative to comparative example, reinforcing life significantly improves.
Table 1 reinforcing life contrasts
Tank voltage (V) Reinforcing life (H)
Embodiment 1 5.20 2506
Embodiment 2 5.25 2550
Comparative example 1 5.50 1201
Above-described embodiment is only for illustrating technology design and the feature of the present invention; its object is to allow person skilled in the art will appreciate that present disclosure and to implement according to this; can not limit the scope of the invention with this; all equivalences made according to spirit of the invention change or modify, and all should be encompassed within protection scope of the present invention.

Claims (9)

1. an anode preparation method, it is characterised in that comprise the steps: with valve metal for matrix, after acid etching, forms the valve-type metal back layer without be full of cracks and the composite noble metal surface layer without be full of cracks successively on matrix, can be prepared by without be full of cracks anode.
2. anode preparation method according to claim 1, it is characterised in that described matrix is netted or tabular.
3. anode preparation method according to claim 1, it is characterised in that described acid etching comprises the steps: to be placed on by matrix in one or more mixed liquors by a certain percentage of hydrochloric acid, sulphuric acid or oxalic acid, then adds thermal etching a period of time.
4. anode preparation method according to claim 1, it is characterized in that, the described forming process without be full of cracks valve-type metal back layer includes: by matrix after acid etching, valve-type metal salt solution is coated in the surface of described matrix, then heat drying, reheats and decomposes, naturally cool to room temperature, according to above step repetitive coatings, dry and decompose for several times, preparing the valve-type metal back layer without be full of cracks.
5. anode preparation method according to claim 1, it is characterised in that described valve metal includes titanium, zirconium or tantalum.
6. anode preparation method according to claim 2, it is characterized in that, the described forming process without be full of cracks composite noble metal surface layer includes: composite noble metal saline solution is coated in the surface of the anode substrate of the netted or tabular without be full of cracks valve-type metal back layer being initially formed, then heat drying, reheat and decompose, naturally cool to room temperature, according to above step repetitive coatings, dry and decompose for several times, preparing the noble metal top layer without be full of cracks.
7. anode preparation method according to claim 1, it is characterised in that described valve-type metal back layer thickness is 0.2~2.0 micron.
8. the anode preparation method according to claim 1 or 7, it is characterised in that the thickness on described metal composite oxide top layer is 5~8mm.
9. the anode that the arbitrary described anode preparation method of claim 1~7 prepares purposes in plating, hydrometallurgy and metal forming preparation.
CN201410754769.2A 2014-12-11 2014-12-11 Anode preparation method Pending CN105734654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410754769.2A CN105734654A (en) 2014-12-11 2014-12-11 Anode preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410754769.2A CN105734654A (en) 2014-12-11 2014-12-11 Anode preparation method

Publications (1)

Publication Number Publication Date
CN105734654A true CN105734654A (en) 2016-07-06

Family

ID=56240053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410754769.2A Pending CN105734654A (en) 2014-12-11 2014-12-11 Anode preparation method

Country Status (1)

Country Link
CN (1) CN105734654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119899A (en) * 2016-06-28 2016-11-16 苏州吉岛电极科技有限公司 Waste water recycling insoluble anode plate preparation method
CN106676618A (en) * 2017-03-22 2017-05-17 苏州市汉宜化学有限公司 Improved gun-color electroplating meshed anode
CN107413762A (en) * 2017-09-06 2017-12-01 沈阳中科腐蚀控制工程技术有限公司 A kind of nuclear facilities ultrasonic electrochemical radioactive pollution decontamination plant and method
CN109868464A (en) * 2019-03-11 2019-06-11 江阴安诺电极有限公司 Anode plate with noble coatings

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914782A (en) * 2010-07-27 2010-12-15 武汉大学 Metallic oxide anode suitable for Fenton system and preparation method thereof
CN102174704A (en) * 2011-02-20 2011-09-07 中国船舶重工集团公司第七二五研究所 Preparation method for tantalum-contained interlayer metallic oxide electrode
CN102286756A (en) * 2010-06-21 2011-12-21 拜尔材料科学股份公司 Electrode for electrolytic production of chlorine
CN102471904A (en) * 2009-07-28 2012-05-23 德诺拉工业有限公司 Electrode for electrolytic applications
CN102918184A (en) * 2010-06-17 2013-02-06 德诺拉工业有限公司 Electrode for electrochlorination
CN103215614A (en) * 2013-04-27 2013-07-24 中国船舶重工集团公司第七二五研究所 Preparation method of metallic oxide anode containing cold spraying tantalum intermediate layer
CN103981541A (en) * 2014-06-04 2014-08-13 苏州市枫港钛材设备制造有限公司 Preparation method of non-noble metallic oxide coated electrode
CN103981536A (en) * 2013-02-08 2014-08-13 拜耳材料科技股份有限公司 Catalyst coating and process for production thereof
CN104562078A (en) * 2014-12-24 2015-04-29 蓝星(北京)化工机械有限公司 Electrode for electrolysis, preparation method of electrode and electrolytic bath

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471904A (en) * 2009-07-28 2012-05-23 德诺拉工业有限公司 Electrode for electrolytic applications
CN102918184A (en) * 2010-06-17 2013-02-06 德诺拉工业有限公司 Electrode for electrochlorination
CN102286756A (en) * 2010-06-21 2011-12-21 拜尔材料科学股份公司 Electrode for electrolytic production of chlorine
CN101914782A (en) * 2010-07-27 2010-12-15 武汉大学 Metallic oxide anode suitable for Fenton system and preparation method thereof
CN102174704A (en) * 2011-02-20 2011-09-07 中国船舶重工集团公司第七二五研究所 Preparation method for tantalum-contained interlayer metallic oxide electrode
CN103981536A (en) * 2013-02-08 2014-08-13 拜耳材料科技股份有限公司 Catalyst coating and process for production thereof
CN103215614A (en) * 2013-04-27 2013-07-24 中国船舶重工集团公司第七二五研究所 Preparation method of metallic oxide anode containing cold spraying tantalum intermediate layer
CN103981541A (en) * 2014-06-04 2014-08-13 苏州市枫港钛材设备制造有限公司 Preparation method of non-noble metallic oxide coated electrode
CN104562078A (en) * 2014-12-24 2015-04-29 蓝星(北京)化工机械有限公司 Electrode for electrolysis, preparation method of electrode and electrolytic bath

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119899A (en) * 2016-06-28 2016-11-16 苏州吉岛电极科技有限公司 Waste water recycling insoluble anode plate preparation method
CN106676618A (en) * 2017-03-22 2017-05-17 苏州市汉宜化学有限公司 Improved gun-color electroplating meshed anode
CN107413762A (en) * 2017-09-06 2017-12-01 沈阳中科腐蚀控制工程技术有限公司 A kind of nuclear facilities ultrasonic electrochemical radioactive pollution decontamination plant and method
CN109868464A (en) * 2019-03-11 2019-06-11 江阴安诺电极有限公司 Anode plate with noble coatings

Similar Documents

Publication Publication Date Title
CN102677092B (en) Preparation method of titanium anode
CN101967663B (en) Method for preparing super-hydrophobic alloy film on surface of metal matrix
CN101736390B (en) Lead dioxide electrode plate and preparation method thereof
CN105734654A (en) Anode preparation method
CN101429672A (en) Surface treating method for sea water corrosion-resistant metal aluminum or aluminum alloy
CN106283125A (en) Metal electro-deposition coated titanium electrode and preparation method thereof
CN105200509B (en) A kind of cleaning method of electron stored energy material
CN103361692B (en) The method of mesohigh electric aluminum foil galvanic deposit disperse tin nucleus
CN101660188B (en) Method for embedding nano metal at inside and surface of anodic oxide film hole of aluminum and alloy of aluminum
CN102888641A (en) Aluminium alloy hard anodizing electrolyte and method
CN106086989B (en) A kind of titania modified by Argentine nanotube composite anode and preparation method thereof
CN104313652B (en) Preparation method of aluminum-based multiphase inert composite anode material
CN103147093A (en) Preparation method of long-life DSA (Dimension Stable Anode) electrode
CN112442720A (en) Strong corrosion-proof aluminum alloy section bar anodic oxidation surface treatment process
CN106119899A (en) Waste water recycling insoluble anode plate preparation method
CN110714219A (en) Method for electroplating nickel on magnesium alloy micro-arc oxidation surface
CN109534460B (en) Titanium electrode and preparation method and application thereof
CN104451819A (en) Method for constructing superhydrophobic aluminum surface with high stability
CN108193252B (en) Novel method for anodizing beryllium-aluminum alloy
JP6404226B2 (en) Electrode for oxygen generation in industrial electrochemical processes, method for producing the electrode, and method for cathodic electrodeposition of metal from aqueous solution using the electrode
CN105887133B (en) A kind of electrolytic manganese dioxide produces the preparation method of high resistance of deformation Ni―Ti anode
CN112007837A (en) Insoluble anode active coating for electroplating cobalt, nickel and rhenium and preparation method thereof
CN103981541A (en) Preparation method of non-noble metallic oxide coated electrode
CN104103428A (en) Manufacturing method for high-voltage high-dielectric formed foil for aluminium electrolytic capacitor
CN103526239A (en) Copper plating solution and hardware copper plating method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160706

RJ01 Rejection of invention patent application after publication