CN105734540A - 一种高光泽度超疏水铜涂层及其制备方法 - Google Patents

一种高光泽度超疏水铜涂层及其制备方法 Download PDF

Info

Publication number
CN105734540A
CN105734540A CN201610136467.8A CN201610136467A CN105734540A CN 105734540 A CN105734540 A CN 105734540A CN 201610136467 A CN201610136467 A CN 201610136467A CN 105734540 A CN105734540 A CN 105734540A
Authority
CN
China
Prior art keywords
copper
preparation
copper coating
super
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610136467.8A
Other languages
English (en)
Other versions
CN105734540B (zh
Inventor
杨浩
吴忠强
宋爽
陈嵘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201610136467.8A priority Critical patent/CN105734540B/zh
Publication of CN105734540A publication Critical patent/CN105734540A/zh
Application granted granted Critical
Publication of CN105734540B publication Critical patent/CN105734540B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种高光泽度超疏水铜涂层,它为微?纳米双微观结构,其60°光泽度为55?105GU,水的静态接触角为160?170°;其制备方法主要包括铝片的预处理、化学镀铜和表面改性等步骤。本发明方法制备得到的铜涂层表面形貌为类似荷叶表面的微?纳米双微观结构,并且表面粗糙度在32?85nm,可实现高光泽度和超疏水性的统一,解决目前超疏水铜涂层无光泽或呈黑色的问题,扩大了超疏水铜涂层的应用范围。

Description

一种高光泽度超疏水铜涂层及其制备方法
技术领域
本发明属于功能材料和金属表面改性技术领域,具体涉及一种高光泽度超疏水铜涂层及其制备方法。
背景技术
近年来,超疏水材料因其减阻、防腐、抗生物膜、自清洁等方面的优异性能而引起了科研工作者们广泛的关注。通常超疏水表面是指水的静态接触角大于150°,滚动角小于10°的表面。而超疏水表面需要满足两个条件:一是具有较低的表面自由能,另一个是具有较大的表面粗糙度,特别是表面具有微纳米多级结构。然而较大的粗糙度往往会增加涂层对光的散射,减少涂层对光的反射,使涂层在可见光下失去光泽或呈黑色。这就限制了本身具有良好光泽度的金属涂层在超疏水自清洁中的应用。
光泽度是涂层表面的一种光学特征,以其反射光的能力来表示。通常高光泽度涂层的制备是通过简单的物理化学方法改变涂层的表面状态,降低表面粗糙度来实现的。高光泽度铜涂层耐蚀性能好,抗磁性好,美观,并具有一定的杀菌性能,在船舶的防腐、家电面板、表面装饰、管道运输等行业有着广泛的应用。
目前已有一些超疏水铜涂层的报道,如ZL200610010554.5介绍了一种在金属铜表面构筑超疏水结构的方法,用十二烷基硫酸钠调控铜表面微/纳米结构,然后将构筑了微/纳米结构的铜片放入月桂酸的乙醇溶液进行疏水化处理,从而达到超疏水的效果;CN201410662363.1介绍了一种超疏水铜箔的制备方法,用去离子水清洗铜箔,将铜箔依次在乙醇和丙酮中浸泡取出烘干,再将处理后的铜箔依次在冰醋酸、双氧水、高锰酸钾溶液中浸泡,然后将浸泡完后的铜箔放入硬脂酸溶液中进行疏水话处理,从而达到超疏水的效果。这些方法都是通过构建微纳米结构从而提高涂层的表面粗糙度而实现超疏水性,然而经疏水改性后涂层外观会变暗,失去原有的光泽。目前还未见到在单质铜涂层上同时实现高光泽度和超疏水性的报道。因为涂层表面的光泽度和疏水性都与涂层的表面状态有关,光泽度随表面粗糙度的增大而减小,而疏水性随表面粗糙度的增大而增大。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种具有高光泽度的超疏水铜涂层,该涂层表面形貌为微-纳米双微观结构,表面粗糙度为32-85nm;60°光泽度为55-105GU,水的静态接触角为160-170°可同时实现高疏水性和高光泽度,在流体减阻、汽车烤漆、家电面板的自清洁、表面装饰等方面有着巨大的应用前景。
本发明的另一个目的是提供该涂层的制备方法,用化学镀的方法在铝基底上镀一层单质铜,通过控制化学镀铜液中铜离子、甲醛和乙二胺四乙酸二钠的浓度,以及溶液的pH值等因素来调控涂层表面的形貌和粗糙度,再经改性剂疏水化处理,从而达到高光泽度超疏水的效果。
为实现上述目的,本发明采用的技术方案为:
一种高光泽度超疏水铜涂层,其表面形貌为微-纳米双微观结构,表面粗糙度为32-85nm;60°光泽度为55-105GU,水的静态接触角为160-170°。
上述一种高光泽度超疏水铜涂层的制备方法,包括如下步骤:
(1)将铝片浸入有机溶剂中,超声清洗去油污后,用水冲洗干净,烘干备用;
(2)分别配制硫酸铜水溶液和乙二胺四乙酸二钠水溶液,将二者混合均匀,加入甲醛,调节所得溶液体系的pH值至11.5-12.5,得到镀铜液,控制镀铜液中硫酸铜的浓度为0.03-0.04mol/L;然后将清洁好的铝片浸入到配制好的镀铜液中,放置在室温下反应30-60min后,取出镀件,用水冲洗、烘干后得到镀铜的铝片;
(3)将(2)中所得镀铜的铝片浸入改性剂的乙醇溶液中浸泡,浸泡完后取出,并用无水乙醇冲洗,吹干后即可在铝片表面得到高光泽度的超疏水铜涂层。
上述方案中,所述乙二胺四乙酸二钠与硫酸铜的优选摩尔比为0.8-1.5:1;甲醛与硫酸铜的优选摩尔比为1-4.5:1。
上述方案中,所述有机溶剂可选用无水甲醇、无水乙醇、异丙醇、丙酮、乙酸丁酯、二甲苯、三氯甲烷或三氯乙烷等。
上述方案中,所述改性剂可选用十六硫醇、十八硫醇、软脂酸、硬脂酸、全氟硫醇或全氟烷基硅氧烷等。
上述方案中,所述改性剂的乙醇溶液中改性剂的浓度为5-20mmol/L。
上述方案中,步骤(2)中采用氢氧化钠溶液、氢氧化钾溶液或氨水调节所得溶液体系的pH值。
上述方案中,步骤(3)所述浸泡温度为室温条件,浸泡时间为15-120min。
本发明的原理为:本发明通过在涂层表面构筑微-纳米双微观结构并调控表面粗糙度的大小得到合适的类似荷叶表面的形貌;并通过在涂层表面修饰低表面能物质降低固体表面能;反应初始阶段,铜离子在具有还原性的铝基底上成核并生长,得到较大的微米结构,然后在还原剂甲醛和络合剂乙二胺四乙酸二钠的作用下,溶液中的铜离子进一步在微米结构上析出并还原得到尺寸较小的纳米结构,最终形成了微-纳米双微观结构;这种类似荷叶表面的结构有助于在固-液界面中形成空气垫,使涂层的疏水性增强,而不需要构造较大的表面粗糙度;本发明通过控制涂层表面粗糙度在32-85nm的条件下可得到超疏水的表面;而涂层的形貌和表面粗糙度的大小主要是通过反应过程中铜离子、甲醛和乙二胺四乙酸二钠的浓度以及溶液的pH值等参数的调控来实现的;在较小的表面粗糙度和均一的形貌下,铜涂层同时也表现了较高的光泽度,最终实现了高光泽度和超疏水性的统一。
与现有的技术相比,本发明的有益结果为:
1.本发明制备的高光泽度超疏水铜涂层,既保持了铜涂层本身良好的金属光泽,同时也赋予了涂层优异的疏水性和自清洁性能;
2.本发明涉及的制备方法无需特殊设备,工艺简单,成本低廉,反应条件温和,有利于工业大规模生产。
附图说明
图1为本发明实施例1所得高光泽度超疏水铜涂层的扫描电子显微镜(SEM)图。
图2为本发明实施例1所得高光泽度超疏水铜涂层的原子力显微镜(AFM)图。
图3为本发明实施例1所得高光泽度超疏水铜涂层的接触角(CA)图。
图4为水滴在本发明实施例1所得高光泽度超疏水铜涂层上的状态示意图。
具体实施方式
下面结合实施例及附图对本发明做进一步描述,本发明要求保护的范围并不局限于实施例表述的范围。
实施例1
一种高光泽度超疏水铜涂层,其制备方法包括如下步骤:
将2.5cm×2.5cm铝片浸入无水乙醇中,超声清洗去油污后,用去离子水冲洗干净,烘干;配制0.06mol/L五水硫酸铜和0.06mol/L乙二胺四乙酸二钠的水溶液各25mL,将上述溶液混合均匀,加0.279mL甲醛(37%,w/w)作还原剂,用氢氧化钠溶液调节溶液pH值至12,得到镀铜液;将清洁好的铝片浸入到配制好的镀铜液中,放置在室温下反应30min后,取出镀件,用去离子水冲洗、烘干后得到镀铜的铝片;将所得到的镀铜的铝片浸入5mmol/L正十八硫醇的乙醇溶液中浸泡30min,浸泡完后取出,并用无水乙醇冲洗3-5次,吹干后即可在铝片表面得高光泽度超疏水铜涂层。
图1是采用扫描电子显微镜(SEM)所观察到的本实施例所得铜涂层(高光泽度超疏水铜涂层)的表面形貌图。从图中可以看出,铜涂层表面均匀分布着许多类似乳突状的微米结构,乳突上又有许多小乳突,且这些小乳突是由许多纳米颗粒所组成,从而在表面上构造出了微-纳米的双微观结构。
图2是采用美国VeecoMultimode型原子力显微镜所测量的铜涂层的AFM图。从图中可以看出,铜涂层上的微-纳米结构分布均匀,通过原子力显微镜计算得到该涂层的表面粗糙度均方根(RMS)为34.917nm,合适的粗糙度为超疏水和高光泽度的同时实现提供了可能。
图3是采用德国DataphysicsOCA20型接触角测量仪拍摄的3μL水滴在本实施例所得铜涂层表面的图片,从图中可以看出,水滴在涂层表面几乎成球形,水接触角为161.6°,说明该涂层达到了超疏水性质。
图4是水滴静置在本实施例所得铜涂层表面的状态示意图,从图中可以看出,该涂层在超疏水表面上拥有很高的光泽度。
实施例2
一种高光泽度超疏水铜涂层,其制备方法包括如下步骤:
将2.5cm×2.5cm铝片浸入丙酮中,超声清洗去油污后,用去离子水冲洗干净,烘干;配制0.08mol/L五水硫酸铜和0.12mol/L乙二胺四乙酸二钠的水溶液各25mL,将上述溶液混合均匀,加0.223mL甲醛(37%,w/w)作还原剂,用氢氧化钠溶液调节溶液pH值至11.5,得到镀铜液;将清洁好的铝片浸入到配置好的镀铜液中,放置在室温下反应60min后,取出镀件,用去离子水冲洗、烘干后得到镀铜的铝片;将所得到的镀铜的铝片浸入20mmol/L全氟硫醇的乙醇溶液中浸泡15min,浸泡完后取出,并用无水乙醇冲洗3-5次,吹干后即可在铝片表面得到高光泽度超疏水铜涂层。
实施例3
一种高光泽度超疏水铜涂层,起制备方法包括如下步骤:
将2.5cm×2.5cm铝片浸入乙酸丁酯中,超声清洗去油污后,用去离子水冲洗干净,烘干;配制0.08mol/L五水硫酸铜和0.064mol/L乙二胺四乙酸二钠的水溶液各25mL,将上述溶液混合均匀,加0.669mL甲醛(37%,w/w)作还原剂,用氢氧化钠溶液调节溶液pH值至12.5,得到镀铜液;将清洁好的铝片浸入到配置好的镀铜液中,放置在室温下反应45min后,取出镀件,用去离子水冲洗、烘干后得到镀铜的铝片;将所得到的镀铜的铝片浸入10mmol/L硬脂酸的乙醇溶液中浸泡120min,浸泡完后取出,并用无水乙醇冲洗3-5次,吹干后即可在铝片表面得到高光泽度超疏水铜涂层。
将实施例1-3所得铜涂层(高光泽度超疏水铜涂层)的表面粗糙度、水接触角和光泽度的测试结果列于表1。其中表面粗糙度采用美国VeecoMultimode型原子力显微镜(AFM)进行分析,AFM采用轻敲模式,扫描范围为5μm×5μm,扫描频率为0.5Hz,分辨率为256×256;水接触角采用德国DataphysicsOCA20进行测量,选用3μL的去离子水,分别在铜涂层的五个不同地点进行测量,取其平均值为水滴在表面的静态接触角;光泽度采用日本KonicaMinoltaMG-268PLUS光泽度测量仪进行测定,其入射角度为60°,光泽度值为六次测量结果的平均值。
表1实施例1-3所得高光泽度超疏水铜涂层的表面粗糙度、水接触角和光泽度
从表1数据分析可知,本发明所制备的铜涂层的粗糙度在32-85nm,水接触角在160°-170°,60°下测得的光泽度在55-105GU,达到了高光泽度和超疏水的性质。
以上内容是结合具体实施例对本发明所作的进一步说明,不能认定本发明的范围只局限于这些说明。在不脱离本发明构思的前提下,所做出若干推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种高光泽度超疏水铜涂层,其特征在于,所述铜涂层表面形貌为微-纳米双微观结构,粗糙度为32-85nm;60°光泽度为55-105GU,水的静态接触角为160-170°。
2.根据权利要求1所述的高光泽度超疏水铜涂层的制备方法,其特征在于,包括以下步骤:
(1)将铝片浸入有机溶剂中,超声清洗去油污后,用水冲洗干净,烘干备用;
(2)分别配制硫酸铜水溶液和乙二胺四乙酸二钠水溶液,将二者混合均匀,加入甲醛,调节所得溶液体系的pH值至11.5-12.5,得到镀铜液,控制镀铜液中硫酸铜的浓度为0.03-0.04mol/L;然后将清洁好的铝片浸入配制好的镀铜液中,室温下反应30-60min后,取出镀件,用水冲洗、烘干后得到镀铜的铝片;
(3)将步骤(2)所得镀铜的铝片浸入改性剂的乙醇溶液中浸泡,浸泡完后取出,并用无水乙醇冲洗,吹干后即可在铝片表面得到高光泽度的超疏水铜涂层。
3.根据权利要求2所述的制备方法,其特征在于,所述乙二胺四乙酸二钠与硫酸铜的摩尔比为0.8-1.5:1;甲醛与硫酸铜的摩尔比为1-4.5:1。
4.根据权利要求2所述的制备方法,其特征在于,所述有机溶剂为无水甲醇、无水乙醇、异丙醇、丙酮、乙酸丁酯、二甲苯、三氯甲烷、三氯乙烷中的一种。
5.根据权利要求2所述的制备方法,其特征在于,所述改性剂为十六硫醇、十八硫醇、软脂酸、硬脂酸、全氟硫醇、全氟烷基硅氧烷中的一种。
6.根据权利要求2所述的制备方法,其特征在于,所述改性剂的乙醇溶液中改性剂的浓度为5-20mmol/L。
7.根据权利要求2所述的制备方法,其特征在于,步骤(2)中采用氢氧化钠溶液、氢氧化钾溶液或氨水调节所得溶液体系的pH值。
8.根据权利要求2所述的制备方法,其特征在于,步骤(3)所述浸泡温度为室温条件,浸泡时间为15-120min。
CN201610136467.8A 2016-03-10 2016-03-10 一种高光泽度超疏水铜涂层及其制备方法 Expired - Fee Related CN105734540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610136467.8A CN105734540B (zh) 2016-03-10 2016-03-10 一种高光泽度超疏水铜涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610136467.8A CN105734540B (zh) 2016-03-10 2016-03-10 一种高光泽度超疏水铜涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN105734540A true CN105734540A (zh) 2016-07-06
CN105734540B CN105734540B (zh) 2018-05-01

Family

ID=56251593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610136467.8A Expired - Fee Related CN105734540B (zh) 2016-03-10 2016-03-10 一种高光泽度超疏水铜涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN105734540B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757224A (zh) * 2016-12-01 2017-05-31 吉林大学 一种具有润湿各向异性的纯铜超疏水表面的制备方法
CN107502885A (zh) * 2017-07-24 2017-12-22 湖北大学 一种可自清洁、抗腐蚀的超双疏铜片的制备方法
CN110699631A (zh) * 2019-10-09 2020-01-17 上海交通大学 一种表面热氧化调控粗糙铜表面润湿性能的方法
CN111676460A (zh) * 2020-06-23 2020-09-18 连云港市艾伦钢铁有限公司 汽车轮胎钢圈的防污表面处理工艺
CN112144273A (zh) * 2020-09-30 2020-12-29 福州大学 一种具有超疏水导电的多功能织物表面的制备方法
US20220117458A1 (en) * 2020-10-16 2022-04-21 The Procter & Gamble Company Cleaning article with preferential coating
CN114686946A (zh) * 2022-03-24 2022-07-01 华南理工大学 一种铜-纳米铜修饰碳纳米管复合镀层及其制备方法
US11628413B2 (en) 2019-04-17 2023-04-18 The Procter & Gamble Company Methods of making capsules
US11904287B2 (en) 2019-04-17 2024-02-20 The Procter & Gamble Company Capsules
US11912961B2 (en) 2020-10-16 2024-02-27 The Procter & Gamble Company Liquid fabric care compositions comprising capsules
US11938349B2 (en) 2020-10-16 2024-03-26 The Procter & Gamble Company Antiperspirant and deodorant compositions comprising capsules
US12077728B2 (en) 2020-10-16 2024-09-03 The Procter & Gamble Company Laundry care additive particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102228884A (zh) * 2011-06-20 2011-11-02 哈尔滨工业大学 一种超疏水/超亲油材料的制备方法及在油水分离领域的应用
CN103085380A (zh) * 2013-01-29 2013-05-08 上海交通大学 一种具有耐腐蚀性能的铜超疏水表面及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102228884A (zh) * 2011-06-20 2011-11-02 哈尔滨工业大学 一种超疏水/超亲油材料的制备方法及在油水分离领域的应用
CN103085380A (zh) * 2013-01-29 2013-05-08 上海交通大学 一种具有耐腐蚀性能的铜超疏水表面及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王景刚 等: "铜表面复合超疏水薄膜的制备及表征", 《精细化工》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757224A (zh) * 2016-12-01 2017-05-31 吉林大学 一种具有润湿各向异性的纯铜超疏水表面的制备方法
CN107502885A (zh) * 2017-07-24 2017-12-22 湖北大学 一种可自清洁、抗腐蚀的超双疏铜片的制备方法
US11628413B2 (en) 2019-04-17 2023-04-18 The Procter & Gamble Company Methods of making capsules
US11904287B2 (en) 2019-04-17 2024-02-20 The Procter & Gamble Company Capsules
CN110699631A (zh) * 2019-10-09 2020-01-17 上海交通大学 一种表面热氧化调控粗糙铜表面润湿性能的方法
CN111676460A (zh) * 2020-06-23 2020-09-18 连云港市艾伦钢铁有限公司 汽车轮胎钢圈的防污表面处理工艺
CN112144273A (zh) * 2020-09-30 2020-12-29 福州大学 一种具有超疏水导电的多功能织物表面的制备方法
US20220117458A1 (en) * 2020-10-16 2022-04-21 The Procter & Gamble Company Cleaning article with preferential coating
US11912961B2 (en) 2020-10-16 2024-02-27 The Procter & Gamble Company Liquid fabric care compositions comprising capsules
US11938349B2 (en) 2020-10-16 2024-03-26 The Procter & Gamble Company Antiperspirant and deodorant compositions comprising capsules
US12077728B2 (en) 2020-10-16 2024-09-03 The Procter & Gamble Company Laundry care additive particles
CN114686946A (zh) * 2022-03-24 2022-07-01 华南理工大学 一种铜-纳米铜修饰碳纳米管复合镀层及其制备方法
CN114686946B (zh) * 2022-03-24 2023-10-27 华南理工大学 一种铜-纳米铜修饰碳纳米管复合镀层及其制备方法

Also Published As

Publication number Publication date
CN105734540B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
CN105734540A (zh) 一种高光泽度超疏水铜涂层及其制备方法
Feng et al. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method
Wang et al. Fabrication of superhydrophobic spherical-like α-FeOOH films on the wood surface by a hydrothermal method
Duan et al. Superhydrophobic and antibacterial wood enabled by polydopamine-assisted decoration of copper nanoparticles
AU2014273702B2 (en) Aluminium-zinc hot-plated steel plate having excellent weather resistance, corrosion resistance and alkali resistance, and manufacturing method and surface treating agent therefor
CN104005026B (zh) 一种在镁合金表面制备耐腐蚀超疏水膜层的方法
CN101307210B (zh) 含纳米粒子的超疏水水性氟硅丙涂料
Wang et al. A robust transparent and anti-fingerprint superhydrophobic film
Zhang et al. Corrosion resistance of a superhydrophobic dodecyltrimethoxysilane coating on magnesium hydroxide-pretreated magnesium alloy AZ31 by electrodeposition
Xi et al. A facile strategy to form three-dimensional network structure for mechanically robust superhydrophobic nanocoatings with enhanced transmittance
CN106987872B (zh) 一种金属材料表面超疏水膜的制备方法
CN107267967B (zh) 一种在铝合金表面制备超疏水铜涂层的方法
Feng et al. Fabrication of superhydrophobic copper surface with excellent corrosion resistance
CN110029349A (zh) 一种超疏水/超亲水可逆调节金属表面的制备和调控方法
Movahedi et al. Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: Additive effect optimization via designed experiments
Tan et al. Bulk superhydrophobility of wood via in-situ deposition of ZnO rods in wood structure
CN104250813A (zh) 一种镁合金超疏水自清洁耐腐蚀表面的制备方法
CN106947963A (zh) 一种在超低碳钢表面制备超疏水膜的方法
CN101934268B (zh) 一种镁合金表面超疏水耐腐蚀功能膜的制备方法
Hua et al. Microstructure, synergistic mechanism and corrosion behavior of tin oxide conversion film modified by chitosan on aluminum alloy surface
CN109097761A (zh) 环保型纳米皮膜剂及其制备方法
CN109385630A (zh) 一种锌基镀层超疏水功能表面一步法制备工艺
Jiang et al. Superhydrophobic copper coating with ultrahigh corrosion resistance by electrodeposition process in a deep eutectic solvent
CN106835093B (zh) 一种q型poss改性的金属表面前处理剂及其制备方法、应用
CN111172522A (zh) 一种在无纺棉纤维织物表面制备柔性导电超疏水复合材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180501

Termination date: 20210310

CF01 Termination of patent right due to non-payment of annual fee