CN105734148B - 一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方法和应用 - Google Patents

一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方法和应用 Download PDF

Info

Publication number
CN105734148B
CN105734148B CN201610203614.9A CN201610203614A CN105734148B CN 105734148 B CN105734148 B CN 105734148B CN 201610203614 A CN201610203614 A CN 201610203614A CN 105734148 B CN105734148 B CN 105734148B
Authority
CN
China
Prior art keywords
glu
seq
wheat
primer
gene locus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610203614.9A
Other languages
English (en)
Other versions
CN105734148A (zh
Inventor
董振营
杨玉双
王召军
张坤普
李义文
刘昕
秦焕菊
王道文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN201610203614.9A priority Critical patent/CN105734148B/zh
Publication of CN105734148A publication Critical patent/CN105734148A/zh
Application granted granted Critical
Publication of CN105734148B publication Critical patent/CN105734148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种鉴别普通小麦Glu‑Al基因座位不同等位变异的方法和应用,本发明基于小麦Glu‑Al基因座位序列特征开发出2个序列标签位点(sequence‑tagged site,STS)标记Xid3和Xid4及相应的引物对(SEQ ID No.1和SEQ ID No.2;与SEQ ID No.3和SEQ ID No.4),根据标记Xid3与Xid4的扩增多态性所形成的单元型(haplotype)差异可以有效区分普通小麦Glu‑Al基因座位Glu‑Ala,Glu‑Alb和Glu‑Alc三种等位形式。本发明简单、稳定、易行,是目前已知唯一可以同时对普通小麦Glu‑Al基因座位三种等位形式进行基因分型的分子标记。

Description

一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方 法和应用
技术领域
本发明属于分子生物技术领域,涉及小麦品质性状分子标记的实用检测方法,特别涉及采用PCR技术通过检测Glu-A1基因座位单元型进行小麦高分子量麦谷蛋白亚基(HMW-GS)的快速鉴定。具体而言,本发明提供一种用于鉴别普通小麦Glu-A1基因座位不同等位变异的分子标记及其引物对,以及利用该分子标记及其引物对对普通小麦Glu-A1基因座位不同等位变异进行分型的方法。
背景技术
普通小麦(Triticum aestivum,2n=42,AABBDD)是世界上第三大粮食作物,是全世界约20%人口的主食(Shiferaw et al.2013)。普通小麦大约在一万年前由四倍体小麦(T.turgidum,2n=28,AABB)和D基因组供体粗山羊草(Aegilops tauschii,2n=14,DD)杂交和加倍形成(Feldman et al.995;Feldman 2001),而四倍体小麦大约在50万年前由乌拉尔图小麦(T.urartu,2n=14,AA)和属于拟斯卑尔脱山羊草属的一种未知植物杂交加倍形成(Huang et al.2002)。因此,乌拉尔图小麦、四倍体小麦和普通小麦均携带有A基因组。
相对于其它作物(如玉米和水稻),小麦面粉可以制作成面包、馒头、面条、饼干和糕点等多种食品,这主要是因为小麦面粉含有其它作物所没有的面筋成分,让小麦面团具有粘弹性和延展性。小麦面筋主要由醇溶蛋白(gliadins)和谷蛋白(glutenins)两种组分组成,其中谷蛋白又可以分为高分子量麦谷蛋白(high-molecular-weight gluteninsubunits,HMW-GSs)和低分子量麦谷蛋白两大类(low-molecular-weight gluteninsubunits,LMW-GSs)(Shewry 2009;Wrigley et al.2009)。醇溶蛋白对形成面团的延伸性起主要作用,而麦谷蛋白是影响面团弹性的重要因素,决定面包烘烤品质,其中HMW-GS与小麦面包烘烤品质的关系更为密切(Shewry and Halford 2002;Wrigley et al.2009)。HMW-GS的编码基因位于普通小麦第一部分同源群1A、1B、1D长臂的Glu-1位点,分别称为Glu-A1、Glu-B1和Glu-D1(Shewry and Halford 2002)。每个Glu-1基因座位编码两个在遗传上紧密连锁的HMW-GS亚基,一个为分子量较大的x-型亚基,一个为分子量较小的y-型亚基。x-型和y-型亚基蛋白序列均由信号肽、N-端结构域、中间重复区和C-端结构域组成(Shewry andHalford 2002;Shewry et al.2003)。在普通小麦中,Glu-A1位点编码的y-型亚基总是呈现沉默,x-型亚基在部分材料间出现沉默,Glu-B1位点编码的y-型亚基在部分材料间也有时出现沉默,因此,普通小麦一般表达3-5个亚基。
在Glu-1基因座位,两个HMW-GS亚基编码基因间存在54-190kb序列间隔,x-型和y-型亚基编码基因之间及上下游序列主要由一些转座元件组成,通过比较Glu-1基因座位序列,发现不但HMW-GS亚基编码基因间存在多态性,这些转座元件的组成也存在广泛的多态性(Gu et al.2004,2006;Dong et al.2012)。目前Glu-B1基因座位的转座元件已用来开发多态性分子标记特异检测7OE亚基的存在(Ragupathy et al.2008),在Glu-D1基因座位也有利用转座元件开发分子标记特异检测Glu-D1d的报道(Dong et al.2013),但是在Glu-A1基因座位还无相关报道。
目前用来鉴定小麦HMW-GS亚基组成的常规方法是种子贮藏蛋白的十二烷基磺酸钠-变性聚丙烯胺凝胶电泳法(SDS-PAGE)。通过该方法发现Glu-A1,Glu-B1和Glu-D1均存在多种等位形式,并且HMW-GS不同等位亚基对小麦加工品质影响差异显著(Payne andLawrence 1983)。比如在Glu-D1位点,Glu-D1d(编码Dx5+Dy10亚基)优于Glu-D1a(编码Dx2+Dy12亚基)(Payne 1987;Lafiandra et al.1993;Zhang et al.2009)。目前在普通小麦Glu-A1位点共发现三种等位形式,Glu-A1a(编码Ax1亚基)和Glu-A1b(编码Ax2*亚基)对小麦加工品质具有正向作用,而Glu-A1c(不编码任何HMW-GS)的品质评分较低(Payne 1987;Branlard et al.2001)。但是SDS-PAGE方法也存在一些缺点,其一是不够精确,不能有效鉴别分子量大小和迁移率十分接近的亚基;二是实验步骤繁琐,不利于规模鉴定;三是该方法只能检测种子,须等到下一代种子收获以后才能进行检测和筛选工作,大大影响了育种的速率。随着分子生物学技术的发展,许多HMW-GS编码基因被克隆和相关序列被公布出来,研究者开发出了一系列基于基因序列多态性的功能标记。这些标记可以直接检测不同小麦品种HMW-GS组成,但是由于来自Glu-1位点之间的HMW-GS编码基因序列间存在较高相似度,及同一Glu-1位点不同等位亚基编码基因可用于开发标记的多态性区域并不适合设计引物等因素,至今只有部分特定亚基编码基因被开发出了分子标记。同时该方法只能检测已报道的表达基因的多态性。而在普通小麦Glu-A1所有等位位点,1Ay亚基均不表达,Glu-A1c位点的1Ax亚基(即1Ax null)不表达,因此在Glu-A1位点至今只有1Ax2*(Glu-A1b位点编码)的特异标记,而1Ax1(Glu-A1a位点编码)和1Ax null却不能被有效区分开来(Ma et al.2003;Liu et al.2008),这给分子标记辅助育种工作带来了诸多不便。
近来,我们通过分析Glu-D1基因座位1Dx亚基编码基因和Dy亚基编码基因中间及上下游序列,发现Glu-D1基因座位的转座元件不但在不同倍性材料间存在已报道的多态性(Gu et al.2004,2006;Dong et al.2012),同时相同倍性材料间也存在广泛多态性(Donget al.2013)。发现这些与Glu-D1基因座位1Dx亚基编码基因和1Dy亚基编码基因紧密连锁的序列多态性不但能够反映了Glu-D1不同等位形式间的进化关系,也能够作为区分Glu-D1不同等位形式的分子标记用于分子标记辅助育种(Dong et al.2013)。近来一些普通小麦(Renan)、四倍体小麦(Langdon)和二倍体小麦(G1812)Glu-A1基因座位序列已被测序(Guet al.2004,2006;Dong et al.2012),这为通过分析不同倍性小麦Glu-A1基因座位序列多态性开发分子标记提供了条件。
发明内容
针对现有技术中的问题,本发明人通过分析Glu-A1基因座位序列多态性,开发了位于Glu-A1基因座位的2个分子标记,使得2个分子标记扩增产物在携带有Glu-A1a,Glu-A1b或Glu-A1c等位位点的普通小麦显示出单元型差异,从而区分出Glu-A1a、Glu-A1b或Glu-A1c基因型。
本发明的分子标记是基于Glu-A1基因座位所包含的基因组序列所开发,不受Glu-A1基因表达与否限制。所开发的分子标记Xid3和Xid4分别位于1Ay基因编码区和1Ax基因编码区,可以直接检测基因多态性。由于一个反转录转座子(Wis-3)插入普通小麦Glu-A1c位点(普通小麦中国春为代表)的1Ay亚基编码基因,标记Xid3的引物因而不能有效扩增;由于普通小麦Glu-A1b位点(普通小麦Renan为代表)的1Ax亚基编码基因相对于Glu-A1a和Glu-A1c基因座位的1Ax亚基编码基因在所检测中间重复区缺失18bp,标记Xi4的引物扩增扩增出较小片段(158bp)。因此结合使用该组分子标记可以有效区分普通小麦Glu-A1基因座位的三种等位形式。该组分子标记的开发改变了目前Glu-A1位点只有1Ax2*的特异分子标记,不能有效区分1Ax1和1Ax null的现状。通过检测多个小麦品种进行验证,发现鉴定结果可靠、重复性好,为育种材料Glu-A1位点高分子量麦谷蛋白优质亚基的有效鉴定和选择提供了一种简单、准确、快速的实用方法。
也就是说,本发明针对现代小麦品质育种中快速鉴定高分子量麦谷蛋白优质亚基的需要,开发了可以同时区分Glu-A1a、Glu-A1b或Glu-A1c等位位点的分子标记,并设计其引物。
本发明是根据六倍体小麦品种Renan Glu-A1基因座位序列与四倍体小麦品种Langdon Glu-A1基因座位序列及二倍体乌拉尔图小麦G1812Glu-A1基因座位序列的不同,开发了位于1Ay基因编码区及1Ax基因编码区的2个分子标记(分别为Xid3和Xid4)并设计了特异引物。2个分子标记扩增产物在携带有Glu-A1a、Glu-A1b或Glu-A1c等位位点的普通小麦显示出单元型差异,从而可以有效区分出Glu-A1a、Glu-A1b或Glu-A1c基因型。
本发明用于鉴别小麦高分子量麦谷蛋白基因座位Glu-A1a,Glu-A1b或Glu-A1c基因型所用的PCR引物序列如表1所示:
表1.分子标记Xid3和Xid4的引物序列
本发明通过分子标记Xid3和Xid4的引物扩增检测普通小麦Glu-A1不同等位位点所属的单元型从而区分Glu-A1a、Glu-A1b或Glu-A1c基因型情况如表2所示:
表2.分子标记Xid3和Xid4检测普通小麦Glu-A1不同等位位点所属的单元型
Glu-A1等位位点 Xid3扩增长度(bp) Xid4扩增长度(bp) 单元型
Glu-A1a 718 176 H1
Glu-A1b 718 158 H2
Glu-A1c 无扩增 176 H3
本领域技术人员应该理解,即使所用Glu-A1特异分子标记引物序列有所不同,凡是特异的检测普通小麦基因组含有图4方框所示的DNA分子多态性序列区域均可达到分子标记Xid3的检测效果;凡是特异的检测普通小麦基因组含有图5方框所示的DNA分子多态性序列区域均可达到分子标记Xid4的检测效果。
综上所述,本发明提供下述技术方案:
1.一种用于鉴别普通小麦Glu-A1基因座位不同等位变异的分子标记及其引物对,分子标记名称分别为Xid3和Xid4,用于分子标记Xid3的引物对由SEQ ID No.1和SEQ IDNo.2所示的DNA分子组成(在本文中称为第一引物对),用于分子标记Xid4的引物对由SEQID No.3和SEQ ID No.4所示的DNA分子组成(在本文中称为第二引物对)。
2.一种鉴定或辅助鉴定普通小麦品种是否含有Glu-A1基因座位并进一步确定所包含的Glu-A1基因座位是Glu-A1a、Glu-A1b或Glu-A1c基因型的方法,所述方法包括如下步骤:
(1)提取待测小麦品种的基因组DNA;
(2)以所述基因组DNA为模板,分别采用第1项所述的引物对进行PCR扩增,得到PCR扩增产物;
(3)检测PCR扩增产物的长度;并且
(4)基于步骤(3)检测到的PCR扩增产物的长度进行判断:
若采用标记Xid3的引物对(即,第一引物对)进行PCR无扩增产物,则待检测的小麦品种含有Glu-A1c基因型;
若采用标记Xid4的引物对(即,第二引物对)得到的PCR扩增产物大小为158bp,则待检测的小麦品种含有Glu-A1b基因型;
若采用标记Xid4的引物对(即,第二引物对)得到的PCR扩增产物大小为176bp,同时采用Xid3的引物对(即,第一引物对)得到的PCR扩增产物为718bp,则待检测的小麦品种含有Glu-A1a基因型。
3.根据第2项所述的方法,其中采用所述引物对进行PCR扩增的退火温度为60℃。
4.根据第3项所述的方法,其中步骤(2)的PCR扩增条件为:95℃预变性3min;94℃35s,60℃35s,72℃40s,共35个循环;72℃10min。
5.根据第2项所述的方法,其中步骤(3)通过琼脂糖经胶电泳方法来检测所述PCR扩增产物的长度。
6.根据第5项所述的方法,其中,采用所述第一引物对扩增的产物通过浓度为1%的琼脂糖凝胶电泳来检测所述PCR扩增产物的长度,采用所述第二引物对扩增的产物通过浓度为2%以上的琼脂糖凝胶电泳来检测所述PCR扩增产物的长度。
7.一种鉴定或辅助鉴定普通小麦品种是否含有Glu-A1基因座位并进一步确定所包含的Glu-A1基因座位是Glu-A1a、Glu-A1b或Glu-A1c基因型的试剂盒,所述试剂盒包含由SEQ ID No.1和SEQ ID No.2所示的第一引物对和由SEQ ID No.3和SEQ ID No.4所示的第二引物对。
8.由SEQ ID No.1和SEQ ID No.2所示的第一引物对和由SEQ ID No.3和SEQ IDNo.4所示的第二引物对在制备用于鉴定或辅助鉴定普通小麦品种是否含有Glu-A1基因座位并进一步确定所包含的Glu-A1基因座位是Glu-A1a、Glu-A1b或Glu-A1c基因型的试剂盒中的应用。
本发明的有益技术效果:
本发明使用的聚合酶链式扩增反应体系为常规PCR体系,不需要任何特殊的PCR反应仪和特殊的试剂,任何公司生产的PCR反应仪和任何生物试剂公司生产的PCR反应试剂均可使用而达到本发明的目的。
本发明的引物对组合鉴定方法简单、高效,能更精确、快捷的鉴别普通小麦Glu-A1位点Glu-A1a、Glu-A1b和Glu-A1c基因型。
附图说明
从下面结合附图的详细描述中,本发明的上述特征和优点将更明显,其中:
图1.六倍体小麦品种Renan与四倍体小麦品种Langdon及二倍体乌拉尔图小麦G1812的Glu-A1基因座位序列多态性及分子标记Xid3和Xid4在Glu-A1的位置示意图。Xid3和Xid4分别位于1Ay和1Ax编码区,受体激酶(Receptor kinase)、球蛋白(Globulin)、高分子量麦谷蛋白(HMW-GS)和蛋白激酶(Protein kinase)编码基因在Glu-A1基因座位的相对位置如图所示。a表示该基因在Glu-A1基因座位的a拷贝,b表示该基因在Glu-A1基因座位的b拷贝。Mite-5、Wis-3、Hawi-2、Erika-2和Nubude-1为转座元件名称。LTR表示所示转座元件长末端重复序列,Marker表示分子标记Xid3或Xid4。示意图中基因及转座子仅展示它们在Glu-A1基因座位的相对位置,没有严格按照比例展示。
图2.分子标记Xid3和Xid4在小麦基因组的的染色体定位。
图3.分子标记Xid3和Xid4在检测受试小麦代表性材料Glu-A1基因型示意图。
图4.分子标记Xid3的引物在普通小麦品种小偃81(含Glu-A1a)和Renan(含Glu-A1b)扩增产物序列及中国春(含Glu-A1c)相应序列多态性比较。中国春相应序列通过EnsemblPlants(http://plants.ensembl.org/)网站查询获得,转座子Wis-3序列较长,在图中用名称代替。红色方框包含序列为多态性序列区域,红色方框内虚线表示缺失的碱基,箭头所示序列为引物结合区域。
图5.分子标记Xid4的引物在普通小麦品种小偃81(含Glu-A1a)/Renan(含Glu-A1b)和中国春(含Glu-A1c)扩增产物序列多态性比较。红色方框包含序列为多态性序列区域,红色方框内虚线表示缺失的碱基,箭头所示序列为引物结合区域。
图6.SDS-PAGE方法检测受试小麦代表性材料HMW-GS组成示意图。其中Glu-A1b的2*亚基迁移率和Glu-D1a的2亚基(中国春为代表材料)迁移率十分相似。
具体实施方式
下面参照具体的实施例进一步描述本发明,但是本领域技术人员应该理解,本发明并不限于这些具体的实施例。本发明的保护范围由权利要求所界定。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
1.六倍体小麦品种Renan与四倍体小麦品种Langdon及二倍体乌拉尔图小麦G1812Glu-A1基因座位序列多态性比较
普通小麦品种Renan的Glu-A1基因座位BAC序列信息(DQ537335)、四倍体小麦品种Langdon的Glu-A1基因座位BAC序列信息(AY494981)和二倍体乌拉尔图小麦G1812的Glu-A1基因座位BAC序列信息(JQ240472)从NCBI数据库(http://www.ncbi.nlm.nih.gov/)下载获得。采用序列分析软件BioEdit(版本7.2.5,http://www.mbio.ncsu.edu/BioEdit/bioedit.html)进行序列比对。转座元件的插入和段序列插入多态性区域主要用来进行多态性标记开发和引物设计。六倍体小麦品种Renan与四倍体小麦品种Langdon及二倍体乌拉尔图小麦G1812的Glu-A1基因座位序列多态性及分子标记Xid3、Xid4和Xrj7在Glu-A1的位置示意图如图1所示。引物设计软件采用primer premier 5.0(PREMIER BiosoftInternational,USA).
2.小麦基因组DNA提取
将新鲜的小麦幼苗经液氮冷冻后充分研磨,取100mg粉末于灭菌2mL Eppendorf管中,加入1mL CTAB提取缓冲液{1.3%CTAB(Hexadecyl Trimethyl Ammonium Bromide,十六烷基三甲基溴化铵,购自Amresco公司),133mmol/L Tris-HCl pH8.0(Tris购自Amresco公司,HCl购自北京化工厂),13mmol/L EDTA(购自Amresco公司),0.93mol/L NaCl(购自北京化工厂),0.66%PVP 3600(购自Amresco公司),0.18mol/Lβ-巯基乙醇(购自北京鼎国生物技术有限责任公司)},混匀,65℃温浴1.5h,其间不时混合样品,以充分裂解细胞。待样品冷却至室温,加入1mL氯仿/异戊醇(24:1v/v,均购自北京化工厂)进行抽提,轻轻颠倒混匀1h,然后4℃,12000rpm离心15min。将上清液转移至一新的离心管中,重复氯仿/异戊醇抽提一次。吸取上清液至一新的离心管中,加入3μL RNase A(10mg/mL,购自Sigma公司),室温下在摇床上消化45min。缓慢加入420μL异丙醇(购自北京化工厂),轻轻上下摇晃,直到出现白色DNA沉淀。用枪头挑出DNA,用1mL Wash I溶液(75%乙醇,购自北京化工厂,200mM NaAc,购自北京化工厂)浸泡洗涤15min。轻柔离心,弃上清;吸干残余液体,DNA沉淀室温吹干至透明,加入100μL TE溶液(pH8.0)。待DNA充分溶解后,测定DNA浓度和质量。经适当稀释后直接用于PCR反应或储存于-70℃冰箱备用。
3.PCR
采用20μLPCR反应体系:2×PCR Mix 10μL(购自Transgene公司),100ng基因组DNA,5μmol/L引物各1μL,加灭菌双蒸水至20μL。使用的引物对序列见表1(即,SEQ ID No.1和SEQ ID No.2所示的第一引物对;SEQ ID No.3和SEQ ID No.4所示的第二引物对)。在一式两份PCR反应体系中分别添加所述两个引物对,分别进行PCR扩增反应:即,将上述PCR反应体系一式两份装在两个PCR管中,在第一个PCR管中添加第一引物对进行PCR扩增,在第二个PCR管中添加第二引物对进行PCR扩增。
PCR扩增条件:95℃预变性3min,94℃35s,60℃35s,72℃40s,35个循环;72℃10min。PCR反应产物采用琼脂糖凝胶电泳分析。其中采用标记Xid3引物对(即SEQ ID No.1和SEQ ID No.2所示的第一引物对)扩增的产物在浓度为1%的琼脂糖凝胶电泳分离即可,采用标记Xid4引物对(即SEQ ID No.3和SEQ ID No.4所示的第二引物对)扩增的产物在浓度为2%及以上的琼脂糖凝胶电泳分离效果较好。
采用PCR方法对分子标记Xid3和Xid4进行染色体定位如图2所示,采用分子标记Xid3和Xid4进行普通小麦材料间多态性验证如图3所示。本研究所检测的普通小麦材料总结在表3中。
表3.用以检测Glu-A1基因座位单元型的普通小麦材料
4.琼脂糖经胶电泳
采用1×TAE电泳缓冲液(40mM Tris-HCl,2mM EDTA;Tris购自Amresco公司,HCl购自北京化工厂,购自Amresco公司)配置1.5%琼脂糖(购自Biowest公司),微波炉加热溶化后在制胶板制胶。凝固后加入DNA样品在琼脂糖凝胶电泳装置(购自北京六一仪器厂)进行电泳分离,然后用0.5μg/mL的溴化乙锭(购自上海生工公司)染色20分钟,在凝胶成像仪(购自UVP公司)上进行拍照。
5.DNA扩增片段克隆
将PCR产物采用胶回收试剂盒(购自Promega公司)纯化回收、并估测浓度。取2μl目的片段DNA用于连接反应,连接反应使用Promega公司生产的pGEM-T Vector System试剂盒进行,直接克隆到pGEM-T载体中,按载体/插入片段1∶3的比例进行,总反应体积为10μl。所克隆序列送ThermoFisher公司测序。采用分子标记Xid3的引物对(SEQ ID No.1和SEQ IDNo.2)扩增序列多态性比较如图4所示,采用分子标记Xid4的引物对(SEQ ID No.3和SEQ IDNo.4)扩增序列多态性比较如图5所示。
结论:以待测小麦品种的基因组DNA为模板,同时采用SEQ ID No.1和SEQ ID No.2所示的第一引物对与SEQ 1D No.3和SEQ ID No.4所示的第二引物对进行PCR扩增,将PCR产物通过琼脂糖凝胶电泳方法来检测所述PCR扩增产物的长度,根据PCR产物的有无和具体长度可以判断待测小麦品种是否含有Glu-A1基因座位以及具体的基因型:
若采用SEQ ID No.1和SEQ ID No.2所示的第一引物对(用于扩增标记Xid3)进行PCR无扩增产物,则待检测的小麦品种含有Glu-A1c基因型;
若采用SEQ ID No.3和SEQ ID No.4所示的第二引物对(用于扩增标记Xid4)得到的PCR扩增产物大小为158bp,则待检测的小麦品种含有Glu-A1b基因型;
若采用SEQ ID No.3和SEQ ID No.4所示的第二引物对(用于扩增标记Xid4)得到的PCR扩增产物大小为176bp,同时采用SEQ ID No.1和SEQ ID No.2所示的第一引物对(用于扩增标记Xid3)得到的PCR扩增产物为718bp,则待检测的小麦品种含有Glu-A1a基因型。
6.十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)
配置15mL 5%的分离胶(30%Acr-Bis(29:1)6mL,1.0M Tris(pH8.8)3.5mL,10%SDS 150μL,150μL10%过硫酸铵和10μLTEMED),待分离胶凝固,配置6mL 5%的浓缩胶(30%Acr-Bis(29:1)1mL,1.0M Tris(pH6.8)0.75mL,10%SDS 60μL,60μL10%过硫酸铵和6μLTEMED),浓缩胶凝固前插上梳子。加入1×SDS电泳缓冲液(1.44%glycine,0.3%Tris,0.1%SDS)电泳分离高分子量麦谷蛋白组分。其中30%Acr-Bis(29:1)购自GenStar公司,Tris购自Thermo Fisher Scientific公司,SDS购自AMRESCO公司,过硫酸铵购自AMRESCO公司,TEMED购自Sigma公司,glycine购自AMRESCO公司。采用SDS-PAGE进行普通小麦材料间HMW-GS多态性检测如图6所示。
结论:通过SDS-PAG可以验证普通小麦小偃81、科农199和郑麦366为Glu-A1a(表达1亚基)材料,格兰尼、京411和旱选10号为Glu-A1b(表达2*亚基)材料,中国春、济麦22和郑麦9023为Glu-A1c(Glu-A1不表达任何亚基)材料,该结论和采用本发明所开发的分子标记检测结果一致。但是,同时发现格兰尼、京411和旱选10号Glu-A1b所表达的2*亚基与中国春和郑麦9023的Glu-D1a所表达的2亚基在SDS-PAG的迁移率几乎相同,区分起来十分困难,说明SDS-PAG并不是鉴定普通小麦Glu-D1a的有效方法。这一实验结果很好地证明了本发明的引物对组合鉴定方法简单、高效,能更精确、快捷的鉴别普通小麦Glu-A1位点Glu-A1a、Glu-A1b和Glu-A1c基因型。
应该理解,尽管参考其示例性的实施方案,已经对本发明进行具体地显示和描述,但是本领域的普通技术人员应该理解,在不背离由后附的权利要求所定义的本发明的精神和范围的条件下,可以在其中进行各种形式和细节的变化,可以进行各种实施方案的任意组合。
参考文献
Branlard G,Dardevet M,Saccomano R,Lagoutte F,Gourdon J(2001)Geneticdiversity of wheat storage proteins and bread wheat quality.Euphytica 119:59-67
Dong LL,Huo NX,Wang Y,Deal K,Luo MC,Wang DW,Anderson OD,Gu YQ(2012)Exploring the diploid wheat ancestral A genome through sequence comparison atthe high-molecular-weight glutenin locus region.Mol Genet Genomics 287:855-866
Dong Z,Yang Y,Li Y,Zhang K,Lou H,An X,Dong L,Gu Y,Anderson OD,Liu X,Qin H,Wang D(2013)Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat.PLoS One 8:e74859
Feldman M(2001)Origin of cultivated wheat.In:Bonjean AP,Angus WJ(eds)The world wheat book,a history of wheat breeding.Lavoisier Publishing,Paris,pp 3-56
Feldman M,Lupton FGH,Miller TE(1995)Wheats.Triticum spp.(Gramineae-Triticinae).In:Smartt J,Simmonds NW(eds)Evolution of crop plants,2ndedn.Longman Scientific,pp 184-192
Gu YQ,Coleman-Derr D,Kong XY,Anderson OD(2004)Rapid genome evolutionrevealed by comparative sequence analysis of orthologous regions from fourtriticeae genomes.Plant Physiol 135:459-470
Gu YQ,Salse J,Coleman-Derr D,Dupin A,Crossman C,Lazo GR,Huo N,BelcramH,Ravel C,Charmet G,Charles M,Anderson OD,Chalhoub B (2006)Types and rates ofsequence evolution at the high-molecular weight glutenin locus in hexaploidwheat and its ancestral genomes.Genetics 174:1493-1504
Huang S,Sirikhachornkit A,Su X,Faris J,Gill B,Haselkorn R,Gomicki P(2002)Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglyceratekinase of the Triticum/Aegilops complex and the evolutionary history ofpolyploid wheat.Proc Natl Acad Sci USA 99:8133-8138.
Lafiandra D,D'Ovidio R,Porceddu E,Margiotta B,Colaprico G(1993)Newdata supporting high Mr glutenin subunit 5 as the determinant of qualitydifferences among the pairs 5+10 vs 2+12.J Cereal Sci 18:197-205
Liu S,Chao S,Anderson JA(2008)New DNA markers for high molecularweight glutenin subunits in wheat.Theor Appl Genet 118:177-183
Ma W,Zhang W,Gale KR(2003)Multiplex-PCR typing of high molecularweight glutenin alleles in wheat.Euphytica 134:51-60
Payne PI(1987)Genetics of wheat storage proteins and the effect ofallelic variation on breadmaking quality.Ann Rev Plant Physiol 38:141-153
Payne PI,Lawrence GJ(1983)Catalogue of alleles for the complex geneloci Glu-A1,Glu-B1 and Glu-D1 which code for the high-molecular-weightsubunits of glutenin in hexaploid wheat.Cereal Res Comm 11:29-35
Ragupathy R,Naeem HA,Reimer E,Lukow OM,Sapirstein HD,Cloutier S(2008)Evolutionary origin of the segmental duplication encompassing the wheatGLU-B1 locus encoding the overexpressed Bx7(Bx7OE)high molecular weightglutenin subunit.Theor Appl Genet 116:283-296.
Shewry PR(2009)Wheat.J Exp Bot 60:1537-1553
Shewry PR,Halford NG(2002)Cereal seed storage proteins:structures,properties and role in grain utilization.J Exp Bot 53:947-958
Shewry PR,Halford NG,Tatham AS,Popineau Y,Lafiandra D,Belton PS(2003)The high molecular weight subunits of wheat glutenin and their role indetermining wheat processing properties.Adv Food Nutrition Res 45:219-302
Shiferaw B,Smale M,Braun H-J,Duveiller E,Reynolds M,Muricho G(2013)Crops that feed the world 10.Past successes and future challenges to the roleplayed by wheat in global food security.Food Sec 5:291-317
Wrigley CW,Asenstorfer R,Batey I,Cornish G,Day L,Mares D,Mrva K(2009)The biochemical and molecular basis of wheat quality.In:Carver BF(ed)Wheat:science and trade.Wiley,Ames
Zhang Y,Tang JW,Yan J,Zhang YL,Zhang Y,Xia XC,He ZH(2009)The glutenprotein and interactions between components determine mixograph properties inan F6 recombinant inbred line population in bread wheat.J Cereal Sci 50:219-226

Claims (8)

1.用于鉴别普通小麦Glu-A1基因座位不同等位变异的引物对组合,其由SEQ ID No.1和SEQ ID No.2所示的第一引物对和由SEQ ID No.3和SEQ ID No.4所示的第二引物对组成。
2.一种确定普通小麦Glu-A1基因座位是Glu-A1a、Glu-A1b或Glu-A1c基因型的方法,所述方法包括如下步骤:
(1)提取待测小麦品种的基因组DNA;
(2)以所述基因组DNA为模板,分别采用权利要求1所述的第一和第二引物对进行PCR扩增,得到PCR扩增产物;
(3)检测PCR扩增产物的长度;并且
(4)基于步骤(3)检测到的PCR扩增产物的长度进行判断:
若采用第一引物对进行PCR无扩增产物,则待检测的小麦品种是Glu-A1c基因型;
若采用第二引物对得到的PCR扩增产物大小为158bp,则待检测的小麦品种是Glu-A1b基因型;
若采用第二引物对得到的PCR扩增产物大小为176bp,同时采用第一引物对得到的PCR扩增产物为718bp,则待检测的小麦品种是Glu-A1a基因型。
3.根据权利要求2所述的方法,其中分别采用权利要求1所述的第一和第二引物对进行PCR扩增的退火温度为60℃。
4.根据权利要求3所述的方法,其中步骤(2)的PCR扩增条件为:95℃预变性3min;94℃35s,60℃ 35s,72℃ 40s,共35个循环;72℃ 10min。
5.根据权利要求2所述的方法,其中步骤(3)通过琼脂糖凝胶电泳方法来检测所述PCR扩增产物的长度。
6.根据权利要求5所述的方法,其中,采用所述第一引物对扩增的产物通过浓度为1%的琼脂糖凝胶电泳来检测所述PCR扩增产物的长度,采用所述第二引物对扩增的产物通过浓度为2%以上的琼脂糖凝胶电泳来检测所述PCR扩增产物的长度。
7.一种确定普通小麦Glu-A1基因座位是Glu-A1a,Glu-A1b或Glu-A1c基因型的试剂盒,所述试剂盒包含由SEQ ID No.1和SEQ ID No.2所示的第一引物对和由SEQ ID No.3和SEQID No.4所示的第二引物对。
8.由SEQ ID No.1和SEQ ID No.2所示的第一引物对和由SEQ ID No.3和SEQ ID No.4所示的第二引物对在制备用于确定普通小麦Glu-A1基因座位是Glu-A1a、Glu-A1b或Glu-A1c基因型的试剂盒中的应用。
CN201610203614.9A 2016-04-01 2016-04-01 一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方法和应用 Active CN105734148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610203614.9A CN105734148B (zh) 2016-04-01 2016-04-01 一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610203614.9A CN105734148B (zh) 2016-04-01 2016-04-01 一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方法和应用

Publications (2)

Publication Number Publication Date
CN105734148A CN105734148A (zh) 2016-07-06
CN105734148B true CN105734148B (zh) 2019-06-21

Family

ID=56253652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610203614.9A Active CN105734148B (zh) 2016-04-01 2016-04-01 一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方法和应用

Country Status (1)

Country Link
CN (1) CN105734148B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440893B (zh) * 2020-06-09 2022-12-06 山东省农业科学院生物技术研究中心 小麦Glu-A1位点等位基因分型的特异性引物及检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041524B1 (ja) * 2007-05-01 2008-01-30 独立行政法人農業・食品産業技術総合研究機構 オーストラリア産麺用小麦銘柄の判別方法
CN101570791A (zh) * 2009-06-02 2009-11-04 中国农业科学院作物科学研究所 鉴别小麦为携带哪种Glu-A3蛋白亚基品种的专用引物及其应用
CN101760507A (zh) * 2008-12-25 2010-06-30 中国科学院成都生物研究所 一种通量鉴定小麦高分子量麦谷蛋白亚基的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041524B1 (ja) * 2007-05-01 2008-01-30 独立行政法人農業・食品産業技術総合研究機構 オーストラリア産麺用小麦銘柄の判別方法
CN101760507A (zh) * 2008-12-25 2010-06-30 中国科学院成都生物研究所 一种通量鉴定小麦高分子量麦谷蛋白亚基的方法
CN101570791A (zh) * 2009-06-02 2009-11-04 中国农业科学院作物科学研究所 鉴别小麦为携带哪种Glu-A3蛋白亚基品种的专用引物及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Interaction between Glu-A1 and Glu-D1 alleles in physical dough property in Japanese soft wheats and development of allele-specific PCR markers for Glu-A1;Kanenori Takata等;《Breeding Research》;20081231;第10卷(第2期);摘要、第43页、第45页、表4、图2 *
Rapid Genome Evolution Revealed by Comparative Sequence Analysis of Orthologous Regions from Four Triticeae Genomes;Yong Qiang Gu等;《Plant Physiology》;20040531;第135卷(第1期);第461页右栏最后1段-462页和图2B *

Also Published As

Publication number Publication date
CN105734148A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
Sehgal et al. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci
Liu et al. Functional markers in wheat: current status and future prospects
Alghamdi et al. Faba bean genomics: current status and future prospects
Chen et al. Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus
Liu et al. Fine mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-related trait in Zea mays
Wanjugi et al. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat
Li et al. Identification of a recessive gene PmQ conferring resistance to powdery mildew in wheat landrace Qingxinmai using BSR-Seq analysis
Bie et al. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat
Sudha et al. Molecular studies on mungbean (Vigna radiata (L.) Wilczek) and ricebean (Vigna umbellata (Thunb.)) interspecific hybridisation for Mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for ricebean
King et al. Exploitation of interspecific diversity for monocot crop improvement
Jia et al. Characterization of wheat yellow rust resistance gene Yr17 using EST-SSR and rice syntenic region
CN104152450B (zh) 与黄瓜白粉病抗性主效基因共分离的InDel分子标记
Seyedimoradi et al. Geographical diversity pattern in Iranian landrace durum wheat (Triticum turgidum) accessions using start codon targeted polymorphism and conserved DNA-derived polymorphism markers.
Li et al. Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2Mb based on transcriptome sequencing
Huseynova et al. Screening for drought stress tolerance in wheat genotypes using molecular markers
Wu et al. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat
Gu et al. Development, identification and utilization of introgression lines using Chinese endemic and synthetic wheat as donors
CN105734148B (zh) 一种对普通小麦Glu-A1基因座位不同等位变异进行分型的方法和应用
Shi et al. Multiplex single nucleotide polymorphism (SNP) assay for detection of soybean mosaic virus resistance genes in soybean
Wu et al. Event-specific qualitative and quantitative PCR detection methods for transgenic rapeseed hybrids MS1× RF1 and MS1× RF2
CN106755465B (zh) 与小麦旗叶长QTL QFll.sicau-2D紧密连锁的分子标记及应用
Kosterin Pea (Pisum sativum L.): the uneasy fate of the first genetical object
Chen et al. Distribution of new satellites and simple sequence repeats in annual and perennial Glycine species
Wang et al. Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii
Sharma et al. Molecular marker-assisted breeding for crop improvement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant