CN105732066B - 一种市政污水处理厂污泥的再利用方法 - Google Patents

一种市政污水处理厂污泥的再利用方法 Download PDF

Info

Publication number
CN105732066B
CN105732066B CN201610132525.XA CN201610132525A CN105732066B CN 105732066 B CN105732066 B CN 105732066B CN 201610132525 A CN201610132525 A CN 201610132525A CN 105732066 B CN105732066 B CN 105732066B
Authority
CN
China
Prior art keywords
parts
powder
sludge
sintering
described step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610132525.XA
Other languages
English (en)
Other versions
CN105732066A (zh
Inventor
杨如如
杨建威
孙和平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jirui Construction Co ltd
Original Assignee
Zhejiang Jirui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Jirui Construction Co Ltd filed Critical Zhejiang Jirui Construction Co Ltd
Priority to CN201610132525.XA priority Critical patent/CN105732066B/zh
Publication of CN105732066A publication Critical patent/CN105732066A/zh
Application granted granted Critical
Publication of CN105732066B publication Critical patent/CN105732066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及一种市政污水处理厂污泥的再利用方法,属于废旧材料回收技术领域。步骤:在污泥中加入无机酸,调节pH为酸性;加入Fe3+,搅拌均匀后,进行电解,再进行固液分离后,得到固体物质;将固体物质与水混合均匀,干燥后,粉碎成细粉;将细粉在高温炉烧制,得到烧结粉体;将烧结粉体、钛酸钾晶须、水混合均匀,再加入锌盐和铝酸钠,然后在加热,熟化反应,过滤后将颗粒物烘干,得到无机化合物包覆的粉体;将无机化合物包覆的粉体与其它的骨料混合均匀,经过球磨、压制成型、烧成,即可。制备得到的渗水砖具有渗水性能好、强度高的优点。

Description

一种市政污水处理厂污泥的再利用方法
技术领域
本发明涉及一种市政污水处理厂污泥的再利用方法,属于废旧材料回收技术领域。
背景技术
市政污泥是在污水处理过程中产生的固体沉淀物,其含水率较高,同时含有大量有机物、病原体、无机颗粒、胶体、重金属元素等物质。因此,市政污泥对环境的影响较大,必须对市政污泥进行妥善的处理。为了较好地解决污泥处置问题,国内外科研人员进行了大量的研究与实践。
目前我国污水处理厂每年排放干污泥约为550×104~600×104吨,其中城市污水处理厂每年排放的干污泥约达50×104吨,并且每年以大于10%的速度在增长。如杭州现有四堡、七格两座城市污水处理厂(污水日处理 能力共110万m3,其中二级生化处理规模为90万m3),日产污泥(含水率75~85%)约600吨。由于数量巨大,污泥的堆放和投弃均会对环境造成二次污染,故污泥的处置处理面临着巨大的困难。国内外污泥的主要处置方式有填埋、投海、焚烧、堆肥等,但这些方法在实际应用上都存在一 定的限制条件。因此,探求污泥更为有效的处置方式,使其真正达到减量化、无害化、资源化的目的,已成为我国乃至世界广为关注的热点问题。
CN101747050A公开一种利用城市污泥烧制高性能陶粒的方法,特点是以城市污泥、粉煤灰和河底淤泥为原料烧制高性能陶粒,各组分所占按重量比为城市污泥30.0~45.0%,粉煤灰20.0~40.0%,河底淤泥20.0~40.0%,按上述比例制备生料球,在干燥后置于700~800℃的箱式电阻炉中进行40~45分钟预热,预热完成后置于1200~1250℃的温度下的烧制30~35分钟,在烧制完成后均匀降温15~20分钟至1130~1180℃后出炉冷却,即获得高性能陶粒成品。
发明内容
本发明的目的是:提供一种市政污水处理厂污泥的再利用方法,可以将市政污水厂中的污泥回收利用制成透水砖。
技术方案是:
一种市政污水处理厂污泥的再利用方法,包括如下步骤:
第1步,在污泥中加入无机酸,调节pH为酸性;
第2步,向第1步中得到的污泥中加入Fe3+,搅拌均匀后,进行电解,再进行固液分离后,得到固体物质;
第3步,将固体物质与水按照重量比1:0.6~0.9的比例混合均匀,干燥后,粉碎成细粉;
第4步,将第3步得到的细粉在高温炉以1200~1250℃的温度烧制,得到烧结粉体;
第5步,按重量份计,将烧结粉体10~20份、钛酸钾晶须10~15份、水100~160份混合均匀,再加入锌盐4~6份和铝酸钠3~5份,然后在50℃~100℃下加热反应,再把混合液加入高压反应釜中,在140~160℃下熟化反应,过滤后将颗粒物烘干,得到无机化合物包覆的粉体;
第6步,按重量份计,将无机化合物包覆的粉体30~50份、粉煤灰5~20份、硫酸钙晶须1~2份、氧化铝粉体5~10份、废玻璃粉5~10份、石子10~15份、滑石粉5~10份、石英砂3~6份、膨润土3~6份、硅溶胶3~4份、硅藻土5~8份、石蜡2~3份混合均匀,放入行星球磨机中混料 20 min,用压力机压制成型,然后于 100 ℃下干燥 8 h,待试样充分干燥后,放入高温箱式电阻炉中烧成,试验烧成温度为1200 ℃,烧结时间为 1 h,升温速率为 3℃/min,烧结完成后随炉冷却取出。
所述的第1步中,调节pH至2~3;采用的是5~20wt%的硫酸。
所述的第2步中,加入Fe3+的浓度为0.4~0.7g/L。
所述的第2步中,电解是在电解池中进行,电解的电压范围是20~50V,电解时间是4~7h。
所述的第3步中,细粉的目数是200~400目。
所述的第4步中,烧制的时间是30~35分钟。
所述的第5步中,加热反应的时间是1~3小时,熟化反应的时间是6~10小时,熟化反应的压力是0.5~0.6MPa。
所述的第5步中,锌盐为硫酸锌、乙酸锌、硝酸锌或无水氯化锌。
所述的第6步中,硫酸钙晶须优选平均直径1~8 μm、长度30~200 μm;废玻璃粉优选粒度0.5~3 mm;石子的粒度优选为1~5 mm;滑石粉的粒度优选为50~500 μm;石英砂的粒度优选为0.5~10 mm。
有益效果
本发明通过首先将污泥经酸化、电解之后,去除其中的重金属离子,然后将污泥制成细粉,在其上包覆无机层,能够提高最终制备得到的渗水砖的透水性;再将其与其它的组分颗粒材料混合后,制备得到的渗水砖具有渗水性能好、强度高的优点。
具体实施方式
实施例1
第1步,在污泥中加入5wt%的硫酸,调节pH至2~3;
第2步,向第1步中得到的污泥中加入Fe3+使其浓度为0.4g/L,搅拌均匀后,电解池中进行电解,电解的电压范围是20V,电解时间是4h,再进行固液分离后,得到固体物质;
第3步,将固体物质与水按照重量比1:0.6的比例混合均匀,干燥后,粉碎成细粉,细粉的目数是200~400目;
第4步,将第3步得到的细粉在高温炉以1200℃的温度烧制30分钟,得到烧结粉体;
第5步,按重量份计,将烧结粉体10份、钛酸钾晶须10份、水100份混合均匀,再加入硫酸锌4份和铝酸钠3份,然后在50℃下加热反应1小时,再把混合液加入高压反应釜中,在140℃、0.5MPa下熟化反应6小时,过滤后将颗粒物烘干,得到无机化合物包覆的粉体;
第6步,按重量份计,将无机化合物包覆的粉体30份、粉煤灰5份、硫酸钙晶须1份、氧化铝粉体5份、废玻璃粉5份、石子10份、滑石粉5份、石英砂3份、膨润土3份、硅溶胶3份、硅藻土5份、石蜡2份混合均匀,其中,硫酸钙晶须直径1~8 μm、长度30~200 μm;废玻璃粉粒度0.5~3 mm;石子的粒度为1~5 mm;滑石粉的粒度为50~500 μm;石英砂的粒度为0.5~10 mm,放入行星球磨机中混料 20 min,用压力机压制成型,然后于 100 ℃下干燥 8 h,待试样充分干燥后,放入高温箱式电阻炉中烧成,试验烧成温度为1200 ℃,烧结时间为 1 h,升温速率为 3℃/min,烧结完成后随炉冷却取出。
实施例2
第1步,在污泥中加入20wt%的硫酸,调节pH至2~3;
第2步,向第1步中得到的污泥中加入Fe3+使其浓度为0.7g/L,搅拌均匀后,电解池中进行电解,电解的电压范围是50V,电解时间是7h,再进行固液分离后,得到固体物质;
第3步,将固体物质与水按照重量比1: 0.9的比例混合均匀,干燥后,粉碎成细粉,细粉的目数是200~400目;
第4步,将第3步得到的细粉在高温炉以1250℃的温度烧制35分钟,得到烧结粉体;
第5步,按重量份计,将烧结粉体20份、钛酸钾晶须15份、水160份混合均匀,再加入硫酸锌6份和铝酸钠5份,然后在100℃下加热反应3小时,再把混合液加入高压反应釜中,在160℃、0.6MPa下熟化反应10小时,过滤后将颗粒物烘干,得到无机化合物包覆的粉体;
第6步,按重量份计,将无机化合物包覆的粉体50份、粉煤灰20份、硫酸钙晶须2份、氧化铝粉体10份、废玻璃粉10份、石子15份、滑石粉10份、石英砂6份、膨润土6份、硅溶胶4份、硅藻土8份、石蜡3份混合均匀,其中,硫酸钙晶须直径1~8 μm、长度30~200 μm;废玻璃粉粒度0.5~3 mm;石子的粒度为1~5 mm;滑石粉的粒度为50~500 μm;石英砂的粒度为0.5~10 mm,放入行星球磨机中混料 20 min,用压力机压制成型,然后于 100 ℃下干燥 8h,待试样充分干燥后,放入高温箱式电阻炉中烧成,试验烧成温度为1200 ℃,烧结时间为1 h,升温速率为 3℃/min,烧结完成后随炉冷却取出。
实施例3
第1步,在污泥中加入10wt%的硫酸,调节pH至2~3;
第2步,向第1步中得到的污泥中加入Fe3+使其浓度为0.5g/L,搅拌均匀后,电解池中进行电解,电解的电压范围是40V,电解时间是5h,再进行固液分离后,得到固体物质;
第3步,将固体物质与水按照重量比1:0.7的比例混合均匀,干燥后,粉碎成细粉,细粉的目数是200~400目;
第4步,将第3步得到的细粉在高温炉以1220℃的温度烧制32分钟,得到烧结粉体;
第5步,按重量份计,将烧结粉体15份、钛酸钾晶须12份、水120份混合均匀,再加入硫酸锌5份和铝酸钠4份,然后在70℃下加热反应2小时,再把混合液加入高压反应釜中,在150℃、0.55MPa下熟化反应8小时,过滤后将颗粒物烘干,得到无机化合物包覆的粉体;
第6步,按重量份计,将无机化合物包覆的粉体40份、粉煤灰10份、硫酸钙晶须2份、氧化铝粉体8份、废玻璃粉8份、石子12份、滑石粉8份、石英砂5份、膨润土5份、硅溶胶4份、硅藻土6份、石蜡2份混合均匀,其中,硫酸钙晶须直径1~8 μm、长度30~200 μm;废玻璃粉粒度0.5~3 mm;石子的粒度为1~5 mm;滑石粉的粒度为50~500 μm;石英砂的粒度为0.5~10 mm,放入行星球磨机中混料 20 min,用压力机压制成型,然后于 100 ℃下干燥 8 h,待试样充分干燥后,放入高温箱式电阻炉中烧成,试验烧成温度为1200 ℃,烧结时间为 1 h,升温速率为 3℃/min,烧结完成后随炉冷却取出。
对照例1
与实施例3的区别在于:第5步中,烧结粉体和钛酸钾晶须未经过包覆,而是直接进入第6步中制备渗水砖。
第1步,在污泥中加入10wt%的硫酸,调节pH至2~3;
第2步,向第1步中得到的污泥中加入Fe3+使其浓度为0.5g/L,搅拌均匀后,电解池中进行电解,电解的电压范围是40V,电解时间是5h,再进行固液分离后,得到固体物质;
第3步,将固体物质与水按照重量比1:0.7的比例混合均匀,干燥后,粉碎成细粉,细粉的目数是200~400目;
第4步,将第3步得到的细粉在高温炉以1220℃的温度烧制32分钟,得到烧结粉体;
第7步,按重量份计,将烧结粉体22份、钛酸钾晶须16份、粉煤灰10份、硫酸钙晶须2份、氧化铝粉体8份、废玻璃粉8份、石子12份、滑石粉8份、石英砂5份、膨润土5份、硅溶胶4份、硅藻土6份、石蜡2份混合均匀,其中,硫酸钙晶须直径1~8 μm、长度30~200 μm;废玻璃粉粒度0.5~3 mm;石子的粒度为1~5 mm;滑石粉的粒度为50~500 μm;石英砂的粒度为0.5~10 mm,放入行星球磨机中混料 20 min,用压力机压制成型,然后于 100 ℃下干燥 8h,待试样充分干燥后,放入高温箱式电阻炉中烧成,试验烧成温度为1200 ℃,烧结时间为1 h,升温速率为 3℃/min,烧结完成后随炉冷却取出。
对照例2
与实施例3的区别在于:第5步中未加入钛酸钾晶须。
第1步,在污泥中加入10wt%的硫酸,调节pH至2~3;
第2步,向第1步中得到的污泥中加入Fe3+使其浓度为0.5g/L,搅拌均匀后,电解池中进行电解,电解的电压范围是40V,电解时间是5h,再进行固液分离后,得到固体物质;
第3步,将固体物质与水按照重量比1:0.7的比例混合均匀,干燥后,粉碎成细粉,细粉的目数是200~400目;
第4步,将第3步得到的细粉在高温炉以1220℃的温度烧制32分钟,得到烧结粉体;
第5步,按重量份计,将烧结粉体15份、水120份混合均匀,再加入硫酸锌5份和铝酸钠4份,然后在70℃下加热反应2小时,再把混合液加入高压反应釜中,在150℃、0.55MPa下熟化反应8小时,过滤后将颗粒物烘干,得到无机化合物包覆的粉体;
第6步,按重量份计,将无机化合物包覆的粉体40份、粉煤灰10份、硫酸钙晶须2份、氧化铝粉体8份、废玻璃粉8份、石子12份、滑石粉8份、石英砂5份、膨润土5份、硅溶胶4份、硅藻土6份、石蜡2份混合均匀,其中,硫酸钙晶须直径1~8 μm、长度30~200 μm;废玻璃粉粒度0.5~3 mm;石子的粒度为1~5 mm;滑石粉的粒度为50~500 μm;石英砂的粒度为0.5~10 mm,放入行星球磨机中混料 20 min,用压力机压制成型,然后于 100 ℃下干燥 8 h,待试样充分干燥后,放入高温箱式电阻炉中烧成,试验烧成温度为1200 ℃,烧结时间为 1 h,升温速率为 3℃/min,烧结完成后随炉冷却取出。
性能测试
抗压强度测试采用 CSS-88000电子万能试验机,试样尺寸为100mm×100mm×40mm,加载速度为0.5 mm / min,取 5个试样测试结果的平均值。透水系数测定参照 JC/T945-2005,透水仪和试件之间用胶泥密封,计时读数计量,然后计算透水系数.
实施例1~实施例3的陶瓷渗水砖的性能技术指标见表1。
表1 实施例1~3以及对照例中的陶瓷渗水砖性能参数
从表中可以看出,通过本发明的方法可以较好地利用市政污泥,将其制备成渗水砖。对照例1相对于实施例3来说,通过将烧结粉体和钛酸钾晶须表面包覆无机层之后,可以较好地与其它粒子形成间隔和稳定的结构,提高其孔隙率进而提高渗水性能;实施例3与对照例2相比可以看出,通过在包覆颗粒中加入钛酸钾晶须可以使整个渗水砖提高空隙率,使渗水性能提高。

Claims (1)

1.一种市政污水处理厂污泥的再利用方法,其特征在于,包括如下步骤:
第1步,在污泥中加入无机酸,调节pH为酸性;
第2步,向第1步中得到的污泥中加入Fe3+,搅拌均匀后,进行电解,再进行固液分离后,得到固体物质;
第3步,将固体物质与水按照重量比1:0.6~0.9的比例混合均匀,干燥后,粉碎成细粉;
第4步,将第3步得到的细粉在高温炉以1200~1250℃的温度烧制,得到烧结粉体;
第5步,按重量份计,将烧结粉体10~20份、钛酸钾晶须10~15份、水100~160份混合均匀,再加入锌盐4~6份和铝酸钠3~5份,然后在50℃~100℃下加热反应,再把混合液加入高压反应釜中,在140~160℃下熟化反应,过滤后将颗粒物烘干,得到无机化合物包覆的粉体;
第6步,按重量份计,将无机化合物包覆的粉体30~50份、粉煤灰5~20份、硫酸钙晶须1~2份、氧化铝粉体5~10份、废玻璃粉5~10份、石子10~15份、滑石粉5~10份、石英砂3~6份、膨润土3~6份、硅溶胶3~4份、硅藻土5~8份、石蜡2~3份混合均匀,放入行星球磨机中混料20min,用压力机压制成型,然后于100℃下干燥8h,待试样充分干燥后,放入高温箱式电阻炉中烧成,试验烧成温度为1200℃,烧结时间为1h,升温速率为3℃/min,烧结完成后随炉冷却取出;
所述的第1步中,调节pH至2~3;采用的是5~20wt%的硫酸;
所述的第2步中,加入Fe3+的浓度为0.4~0.7g/L;
所述的第2步中,电解是在电解池中进行,电解的电压范围是20~50V,电解时间是4~7h;
所述的第3步中,细粉的目数是200~400目;
所述的第4步中,烧制的时间是30~35分钟;
所述的第5步中,加热反应的时间是1~3小时,熟化反应的时间是6~10小时,熟化反应的压力是0.5~0.6MPa;
所述的第5步中,锌盐为硫酸锌、乙酸锌、硝酸锌或无水氯化锌;
所述的第6步中,硫酸钙晶须平均直径1~8μm、长度30~200μm;废玻璃粉粒度0.5~3mm;石子的粒度为1~5mm;滑石粉的粒度为50~500μm;石英砂的粒度为0.5~10mm。
CN201610132525.XA 2016-03-09 2016-03-09 一种市政污水处理厂污泥的再利用方法 Active CN105732066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610132525.XA CN105732066B (zh) 2016-03-09 2016-03-09 一种市政污水处理厂污泥的再利用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610132525.XA CN105732066B (zh) 2016-03-09 2016-03-09 一种市政污水处理厂污泥的再利用方法

Publications (2)

Publication Number Publication Date
CN105732066A CN105732066A (zh) 2016-07-06
CN105732066B true CN105732066B (zh) 2018-01-30

Family

ID=56250194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610132525.XA Active CN105732066B (zh) 2016-03-09 2016-03-09 一种市政污水处理厂污泥的再利用方法

Country Status (1)

Country Link
CN (1) CN105732066B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522471B (zh) * 2017-07-03 2020-10-09 华北水利水电大学 一种渗水无机材料及其制备方法
CN107954620A (zh) * 2017-12-12 2018-04-24 安徽宇瑞环保建设有限公司 一种对污水处理厂中污泥的利用方法
CN108249888A (zh) * 2017-12-22 2018-07-06 广东科达洁能股份有限公司 一种烧结透水砖专用的粘结剂及其制备方法
CN117535685B (zh) * 2024-01-09 2024-04-02 常熟理工学院 一种从市政污泥中回收单质磷的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265007B (zh) * 2008-04-11 2011-07-27 同济大学 一种采用电动修复技术去除城市污泥中的重金属的方法
CN102398983A (zh) * 2010-09-14 2012-04-04 吴名旭 造纸废水絮凝剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533649B1 (ko) * 2014-06-20 2015-07-03 우진건설주식회사 미세전해 반응을 이용한 폐수처리방법 및 그 미세전해물질

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265007B (zh) * 2008-04-11 2011-07-27 同济大学 一种采用电动修复技术去除城市污泥中的重金属的方法
CN102398983A (zh) * 2010-09-14 2012-04-04 吴名旭 造纸废水絮凝剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials;Cheng-Fang Lin et al.;《Waste Management》;20061115;第970–978页 *
用含重金属的污泥烧制轻骨料并应用于透水混凝土路面砖;李振卿等;《建筑砌块与砌块建筑》;20071231;第36-40页 *

Also Published As

Publication number Publication date
CN105732066A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
Liu et al. Effect of SiO2 and Al2O3 on characteristics of lightweight aggregate made from sewage sludge and river sediment
Ahmad et al. Characterization of water treatment plant's sludge and its safe disposal options
CN105732066B (zh) 一种市政污水处理厂污泥的再利用方法
Wan et al. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization
Zhou et al. Preparation of hardened tiles from waste phosphogypsum by a new intermittent pressing hydration
CN104083945B (zh) 一种利用煤矸石和建筑垃圾制备的沸石陶粒及其制备技术
CN103894407A (zh) 一种修复重金属污染土壤的方法
CN100368334C (zh) 以铁尾矿为原料生产烧结砖的方法
Pei et al. Na+-solidification behavior of SiO2-Al2O3-CaO-MgO (10 wt%) ceramics prepared from red mud
Algamal et al. USAGE OF THE SLUDGE FROM WATER TREATMENT PLANT IN BRICK-MAKING INDUSTRY.
CN110104691A (zh) 一种利用煤矸石制备聚合氯化铝铁钙的配方及制备方法
CN105130221A (zh) 综合利用废弃混凝土和污泥制生态熟料的方法
CN113105169A (zh) 一种以河道底泥为原材料的陶粒制备方法
CN102173749A (zh) 高掺量城市给水厂污泥制备陶瓷砖的技术
CN111362716A (zh) 基于河道底泥制备的陶粒滤料及其方法
Al-Qadhi et al. Influence of a two-stage sintering process on characteristics of porous ceramics produced with sewage sludge and coal ash as low-cost raw materials
CN102815925A (zh) 一种利用污泥与河道底泥制备陶粒与重金属无害化固定化的方法
Wang et al. Preparation of sustainable non-combustion filler substrate from waterworks sludge/aluminum slag/gypsum/silica/maifan stone for phosphorus immobilization in constructed wetlands
Lin et al. Strengthening tiles manufactured with sewage sludge ash replacement by adding micro carbon powder
CN107785089B (zh) 一种利用废分子筛处理放射性废物的方法
CN109929560A (zh) 一种利用煤矸石制备磁性生物载体的方法
CN109320207A (zh) 采用泥类废弃物的陶粒制备生产线
Ghosh et al. Evaluation of iron ore tailings for the production of building materials.
Mgbemene et al. Influence of additives on kaolinite clay properties-applications, trends, and a case study
CN113480323A (zh) 一种渣土-拜耳法赤泥基陶粒及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yang Ruru

Inventor after: Yang Jianwei

Inventor after: Sun Heping

Inventor before: Li Jie

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20171221

Address after: 325200 Zhejiang city of Wenzhou province Ruian city Kumho Street Yuxi Road Lianxing village

Applicant after: ZHEJIANG JIRUI CONSTRUCTION Co.,Ltd.

Address before: 610000 Sichuan city of Chengdu province Jinjiang District River Qiaojin zhengxinjieyuan C District 7 Building 2 unit 801

Applicant before: Li Jie

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for reusing sludge from municipal sewage treatment plants

Effective date of registration: 20231127

Granted publication date: 20180130

Pledgee: Zhejiang Ruian Rural Commercial Bank Co.,Ltd.

Pledgor: ZHEJIANG JIRUI CONSTRUCTION Co.,Ltd.

Registration number: Y2023980067554

PE01 Entry into force of the registration of the contract for pledge of patent right