CN105731650B - 一种完全生物调控的硝基酚强化电化学降解方法 - Google Patents

一种完全生物调控的硝基酚强化电化学降解方法 Download PDF

Info

Publication number
CN105731650B
CN105731650B CN201410745666.XA CN201410745666A CN105731650B CN 105731650 B CN105731650 B CN 105731650B CN 201410745666 A CN201410745666 A CN 201410745666A CN 105731650 B CN105731650 B CN 105731650B
Authority
CN
China
Prior art keywords
anode
cathode
nitrophenols
chamber
degradation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410745666.XA
Other languages
English (en)
Other versions
CN105731650A (zh
Inventor
张丽彬
王连军
华琮歆
沈锦优
李健生
孙秀云
韩卫清
刘晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201410745666.XA priority Critical patent/CN105731650B/zh
Publication of CN105731650A publication Critical patent/CN105731650A/zh
Application granted granted Critical
Publication of CN105731650B publication Critical patent/CN105731650B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

本发明公开了一种完全生物调控的硝基酚强化电化学降解方法。硝基酚首先在电池阴极室进行阳极微生物菌群催化的电化学还原反应,生成还原产物氨基酚;之后在电池阳极室进行阴极微生物菌群催化的氨基酚的后续电化学氧化反应,以上述两步反应实现硝基酚物质的生物强化电化学降解。本发明利用微生物燃料电池中阴极、阳极菌群微生物的协同催化作用,在无外加电能的条件下,实现硝基酚污染物的低成本、高效去除,开辟微生物燃料电池阳极、阴极菌群协同作用下实现污染物降解的新途径。

Description

一种完全生物调控的硝基酚强化电化学降解方法
技术领域
本发明涉及了一种微生物燃料电池应用,更具体的说是完全生物调控作用下实现硝基酚强化降解的生物电化学技术。
背景技术
微生物燃料电池(microbial fuel cell)是利用微生物(产电菌)的催化作用,将燃料(有机物质)的化学能直接转化为电能的一种生物电化学装置。附着在电池阳极的微生物氧化有机物质,放出质子和电子;电子通过外电路传递至阴极,质子通过质子交换膜传递至阴极;电池阴极的电子受体接受电子,完成整个产电过程。传统的微生物燃料电池研究多数着眼于系统产能的提高,然而该技术应用于废水处理领域时,在维持稳定产电的同时开展对污染物的降解、去除的研究更具有实际意义。废水处理是公认的微生物燃料电池最有前途的应用领域。
硝基酚是化工废水中极具代表性的一类有毒、难降解物质,因现有的生物电化学技术降解此类物质通常采用化学阴极还原,需要外部输入电能强化还原过程,增加了能耗;同时还原产物氨基酚仍需做后续处理,方能实现硝基酚的完全降解。针对此类污染物的处理,亟待开发经济有效的新技术。
发明内容
硝基酚类物质的生物电化学还原过程中通常需要外加电能进行强化,并未能对硝基酚进行完全矿化。本发明拟采用硝基酚在完全生物调控的微生物燃料电池中进行生物阴极还原、生物阳极氧化的顺序处理,在无需外加电能的条件下实现硝基酚的生物强化电化学降解。
实现发明目的的具体技术方案为:
一种完全生物调控的硝基酚强化电化学降解方法,采用双室型微生物燃料电池反应器,包括启动期和运行期,启动期首先在阳极室的电极液中接种厌氧污泥,阳极室封闭、阴极室采用空气阴极运行方式,以乙酸钠为阳极碳源,驯化阳极菌群在碳布上形成生物膜,使反应器进入稳定运行;之后停止阴极曝气、在阴极室的电极液中接种厌氧污泥,并按每个反应周期向阴极室加入浓度由低至高的对硝基酚,以碳酸氢钠为阴极碳源,驯化阴极菌群在碳布上形成生物膜;启动期结束后进入运行期,在阳极室中加入乙酸钠作为阳极碳源及电子供体,进行阳极氧化反应,阴极室加入待处理的硝基酚及无机碳源碳酸氢钠,进行硝基酚阴极还原反应,之后将硝基酚阴极还原产物转入阳极再次进行氧化反应。
所述的对硝基酚的浓度范围在0.1-0.9mM之间。
所述的启动期和运行期内的反应器的操作温度为30℃。
启动期和运行期内乙酸钠的加入量以COD计为1000mg/L。
所述的待处理的硝基酚的浓度为25-100mg/L。
所述的启动期和运行期内碳酸氢钠加入量为10mM。
所述的电极液由如下组分组成:NaH2PO4.2H2O 5.6g/L、Na2HPO4.12H2O 6.07g/L、NH4Cl 310mg/L、KCl 130mg/L,及微量元素:FeCl3·4H2O 2g/L、CoCl2·6H2O2g/L、MnCl2·4H2O 0.5g/L、CuCl2·2H2O 0.03g/L、ZnCl20.05g/L、H3BO30.05g/L、(NH4)6Mo7O24·2H2O0.09g/L、Na2SeO3·4H2O 0.1g/L、NiCl2·6H2O 0.05g/L、EDTA 1g/L和HCl(36%w/w)1mL/L。
本发明原理:
硝基酚物质结构上存在吸电子基团-硝基,导致苯环上的电子云密度降低,因而更易受到亲电子攻击,具有被还原降解的可能性。硝基酚还原后形成的氨基酚毒性降低、可生化性提高,具有被氧化降解的可能性。微生物燃料电池中,阴极接受来自阳极基质氧化放出的电子,是一个理想的有机物还原场所;阳极可在微生物的催化作用下发生有机物失电子氧化反应。本发明中,硝基酚首先在电池阴极室进行阳极微生物菌群催化的电化学还原反应,生成还原产物氨基酚;之后在电池阳极室进行阴极微生物菌群催化的氨基酚的后续电化学氧化反应,以上述两步反应实现硝基酚物质的生物强化电化学降解。
与现有技术相比,发明的有益效果是:
本发明利用微生物燃料电池中阴极、阳极菌群微生物的协同催化作用,在无外加电能的条件下,实现硝基酚污染物的低成本、高效去除,开辟微生物燃料电池阳极、阴极菌群协同作用下实现污染物降解的新途径。
附图说明
图1是本发明双室微生物燃料电池反应器的结构示意图。
图中:1-挡板,2-碳布阳极,3-阳极室,4-质子交换膜,5-阴极室,6-碳布阴极,7-胶塞。
具体实施方式
下面的实施例可以使本专业技术人员更全面地理解本发明,但不以任何方式限制本发明。
下面结合附图和具体实施方式,对本发明作进一步说明。
图1中,双室微生物燃料电池反应器,以有机玻璃材料制成,挡板1与阳极室3和阴极室5由螺栓铆接。阳极室3和阴极室5容积分别为200ml,阳极2、阴极6均采用碳布材料,阳极室3和阴极室5之间以质子交换膜4分隔,阳极室3、阴极室5均以胶塞7密封。阳极2、阴极6、质子交换膜4的面积均为50cm2
反应器启动期:阳极室3和阴极室5中加入电极液(含有NaH2PO4.2H2O 5.6g/L、Na2HPO4.12H2O 6.07g/L、NH4Cl 310mg/L、KCl 130mg/L及微量元素:FeCl3·4H2O2g/L、CoCl2·6H2O 2g/L、MnCl2·4H2O 0.5g/L、CuCl2·2H2O 0.03g/L、ZnCl20.05g/L、H3BO30.05g/L、(NH4)6Mo7O24·2H2O 0.09g/L、Na2SeO3·4H2O 0.1g/L、NiCl2·6H2O0.05g/L、EDTA 1g/L和HCl(36%w/w)1mL/L)。反应器中加入的厌氧污泥取自江苏丰登农药有限公司厌氧池。首先启动阳极:阳极室3的阳极2以厌氧污泥接种,以乙酸钠为阳极微生物碳源及电子供体,反应器阴极室5曝气;之后启动生物阴极:阴极室5的阳极6以厌氧污泥接种,以碳酸氢钠为阴极微生物无机碳源,加入浓度范围在0.1-0.9mM之间、浓度由低至高的对硝基酚驯化阴极微生物。电池外接可变电阻箱控制在1000Ω,以万用表记录电压。在电池启动达到连续两个产电周期的电压峰值相同时,视为反应器进入稳定运行期。
反应器运行期:电池外接可变电阻箱控制在250Ω。硝基酚在反应器中进行阴极还原、阳极后续氧化两步处理过程,具体见以下实施例。实施例中的双室微生物燃料电池均为如上所述。
实施例1
如图1所示,向双室微生物燃料电池的阳极室3、阴极室5加入电极液(含有NaH2PO4.2H2O 5.6g/L、Na2HPO4.12H2O 6.07g/L、NH4Cl 310mg/L、KCl 130mg/L及微量元素:FeCl3·4H2O 2g/L、CoCl2·6H2O 2g/L、MnCl2·4H2O 0.5g/L、CuCl2·2H2O 0.03g/L、ZnCl20.05g/L、H3BO30.05g/L、(NH4)6Mo7O24·2H2O 0.09g/L、Na2SeO3·4H2O0.1g/L、NiCl2·6H2O 0.05g/L、EDTA 1g/L和HCl(36%w/w)1mL/L)。以乙酸钠为阳极碳源及电子供体,加入阳极室3中,使初始COD为1000mg/L。将50mg/L对硝基酚和10mM碳酸氢钠加入阴极室5。经过50h反应器运行,阴极硝基酚降解率达100%,氨基酚生成率达48%。之后,将阴极液转移至阳极,经过48h反应器运行,实现氨基酚完全降解。
实施例2
如图1所示,向双室微生物燃料电池的阳极室3、阴极室5加入电极液(含有NaH2PO4.2H2O 5.6g/L、Na2HPO4.12H2O 6.07g/L、NH4Cl 310mg/L、KCl 130mg/L及微量元素:FeCl3·4H2O 2g/L、CoCl2·6H2O 2g/L、MnCl2·4H2O 0.5g/L、CuCl2·2H2O 0.03g/L、ZnCl20.05g/L、H3BO30.05g/L、(NH4)6Mo7O24·2H2O 0.09g/L、Na2SeO3·4H2O0.1g/L、NiCl2·6H2O 0.05g/L、EDTA 1g/L和HCl(36%w/w)1mL/L)。以乙酸钠为阳极碳源及电子供体,加入阳极室3中,使初始COD为1000mg/L。将100mg/L对硝基酚和10mM碳酸氢钠加入阴极室5。经过50h反应器运行,阴极硝基酚降解率达73%,氨基酚生成率达29%。之后,将阴极液转移至阳极,经过24h反应器运行,实现氨基酚完全降解。
实施例3
如图1所示,向双室微生物燃料电池的阳极室3、阴极室5加入电极液(含有NaH2PO4.2H2O 5.6g/L、Na2HPO4.12H2O 6.07g/L、NH4Cl 310mg/L、KCl 130mg/L及微量元素:FeCl3·4H2O 2g/L、CoCl2·6H2O 2g/L、MnCl2·4H2O 0.5g/L、CuCl2·2H2O 0.03g/L、ZnCl20.05g/L、H3BO30.05g/L、(NH4)6Mo7O24·2H2O 0.09g/L、Na2SeO3·4H2O0.1g/L、NiCl2·6H2O 0.05g/L、EDTA 1g/L和HCl(36%w/w)1mL/L)。以乙酸钠为阳极碳源及电子供体,加入阳极室3中,使初始COD为1000mg/L。将25mg/L对硝基酚和10mM碳酸氢钠加入阴极室5。经过45h反应器运行,阴极硝基酚降解率达85%,氨基酚生成率达34%。将阴极液转移至阳极室3,经过36h反应器运行,实现氨基酚完全降解。

Claims (6)

1.一种完全生物调控的硝基酚强化电化学降解方法,其特征在于,采用双室型微生物燃料电池反应器,包括启动期和运行期,启动期首先在阳极室的电极液中接种厌氧污泥,阳极室封闭、阴极室采用空气阴极运行方式,以乙酸钠为阳极碳源,驯化阳极菌群在碳布上形成生物膜,使反应器进入稳定运行;之后停止阴极曝气、在阴极室的电极液中接种厌氧污泥,并按每个反应周期向阴极室加入浓度由低至高的对硝基酚,以碳酸氢钠为阴极碳源,驯化阴极菌群在碳布上形成生物膜;启动期结束后进入运行期,在阳极室中加入乙酸钠作为阳极碳源及电子供体,进行阳极氧化反应,阴极室加入待处理的对硝基酚及无机碳源碳酸氢钠,进行对硝基酚阴极还原反应,之后将对硝基酚阴极还原产物转入阳极再次进行氧化反应,其中,电极液由如下组分组成:NaH2PO4.2H2O 5.6 g/L、Na2HPO4.12H2O 6.07 g/L、NH4Cl 310 mg/L、KCl 130 mg/L,及FeCl3·4H2O 2 g/L、CoCl2·6H2O 2 g/L、MnCl2·4H2O0.5 g/L、CuCl2·2H2O 0.03 g/L、ZnCl2 0.05 g/L、H3BO3 0.05 g/L、(NH4)6Mo7O24·2H2O0.09 g/L、Na2SeO3·4H2O 0.1 g/L、NiCl2·6H2O 0.05 g/L、EDTA 1 g/L 和HCl 1 mL/L。
2.如权利要求1所述的完全生物调控的硝基酚强化电化学降解方法,其特征在于,对硝基酚的浓度范围在0.1 -0.9 mM之间。
3.如权利要求1所述的完全生物调控的硝基酚强化电化学降解方法,其特征在于,启动期和运行期内反应器的操作温度为30℃。
4.如权利要求1所述的完全生物调控的硝基酚强化电化学降解方法,其特征在于,启动期和运行期内乙酸钠的加入量以COD计为 1000 mg/ L。
5.如权利要求1所述的完全生物调控的硝基酚强化电化学降解方法,其特征在于,待处理的对硝基酚的浓度为25-100 mg/L。
6.如权利要求1所述的完全生物调控的硝基酚强化电化学降解方法,其特征在于,启动期和运行期内碳酸氢钠加入量为10 mM。
CN201410745666.XA 2014-12-09 2014-12-09 一种完全生物调控的硝基酚强化电化学降解方法 Expired - Fee Related CN105731650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410745666.XA CN105731650B (zh) 2014-12-09 2014-12-09 一种完全生物调控的硝基酚强化电化学降解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410745666.XA CN105731650B (zh) 2014-12-09 2014-12-09 一种完全生物调控的硝基酚强化电化学降解方法

Publications (2)

Publication Number Publication Date
CN105731650A CN105731650A (zh) 2016-07-06
CN105731650B true CN105731650B (zh) 2018-04-03

Family

ID=56237067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410745666.XA Expired - Fee Related CN105731650B (zh) 2014-12-09 2014-12-09 一种完全生物调控的硝基酚强化电化学降解方法

Country Status (1)

Country Link
CN (1) CN105731650B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956541A (zh) * 2019-03-05 2019-07-02 河海大学 一种基于微生物燃料电池处理农药废水的方法
CN113003702B (zh) * 2021-03-15 2023-01-20 南京理工大学 一种利用电化学调控硫循环强化厌氧还原硝基苯的方法
CN113003703B (zh) * 2021-03-16 2022-12-13 南京理工大学 一种处理含氮杂环化合物废水的装置及方法
CN114455693A (zh) * 2022-03-08 2022-05-10 南京理工大学 电调控硫转化强化硝基芳香化合物降解的方法
CN114804327A (zh) * 2022-05-24 2022-07-29 厦门理工学院 一种利用微生物燃料电池处理酚类废水的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974856A (zh) * 2006-11-03 2007-06-06 华东理工大学 邻硝基酚电解还原制邻氨基酚的方法
US7687161B2 (en) * 2003-06-27 2010-03-30 The University Of Western Ontario Method for generating electricity
CN101924228A (zh) * 2010-08-25 2010-12-22 天津理工大学 一种微生物燃料电池及其处理苯胺废水的方法
CN103073114A (zh) * 2013-02-06 2013-05-01 哈尔滨工程大学 一种低处理成本的废水脱色方法
CN103926302A (zh) * 2014-04-25 2014-07-16 黑龙江大学 一种以石墨烯负载纳米镍为电极测定水体系中对硝基苯酚的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687161B2 (en) * 2003-06-27 2010-03-30 The University Of Western Ontario Method for generating electricity
CN1974856A (zh) * 2006-11-03 2007-06-06 华东理工大学 邻硝基酚电解还原制邻氨基酚的方法
CN101924228A (zh) * 2010-08-25 2010-12-22 天津理工大学 一种微生物燃料电池及其处理苯胺废水的方法
CN103073114A (zh) * 2013-02-06 2013-05-01 哈尔滨工程大学 一种低处理成本的废水脱色方法
CN103926302A (zh) * 2014-04-25 2014-07-16 黑龙江大学 一种以石墨烯负载纳米镍为电极测定水体系中对硝基苯酚的方法

Also Published As

Publication number Publication date
CN105731650A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
Cui et al. Recent advancements in azo dye decolorization in bio-electrochemical systems (BESs): Insights into decolorization mechanism and practical application
Zhen et al. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode
Huang et al. Adaptively evolving bacterial communities for complete and selective reduction of Cr (VI), Cu (II), and Cd (II) in biocathode bioelectrochemical systems
Kelly et al. Nutrients removal and recovery in bioelectrochemical systems: a review
CN105731650B (zh) 一种完全生物调控的硝基酚强化电化学降解方法
Kaewkannetra et al. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology
Zhang et al. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell
Lovley Powering microbes with electricity: direct electron transfer from electrodes to microbes
Hu et al. Feasible use of microbial fuel cells for pollution treatment
Cerrillo et al. Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems
CN103145240B (zh) 高浓度有机废水厌氧生物处理同步产电方法及装置
CN105280940B (zh) 以焦化活性菌作为生物催化剂降解焦化废水同步产电的方法
Liu et al. Continuous bioelectricity generation with simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell
Wu et al. Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment
CN108448144B (zh) 一种微生物燃料电池
Gezginci et al. The effect of different substrate sources used in microbial fuel cells on microbial community
Castellano-Hinojosa et al. Diversity of electroactive and non-electroactive microorganisms and their potential relationships in microbial electrochemical systems: A review
CN103956510A (zh) 一种同步脱氮除磷双室微生物燃料电池
Selvaraj et al. An integrated biological and electrochemical process for recovery of sulfur from an industrial effluent contaminated pond water and its preliminary application in high performance battery
CN103086508A (zh) 一种提高脱氮效果的微生物燃料电池废水处理系统
Wang et al. Impact of periodic polarization on groundwater denitrification in bioelectrochemical systems
Velvizhi Overview of bioelectrochemical treatment systems for wastewater remediation
Yang et al. Treatment and nutrient recovery of synthetic flowback water from shale gas extraction by air‐cathode (PMo/CB) microbial desalination cells
CN105858878A (zh) 一种用于处理含有高浓度难降解有机污染物污水的装置
Liu et al. The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180403

Termination date: 20201209

CF01 Termination of patent right due to non-payment of annual fee