CN105718957A - Polarized SAR image classification method based on nonsubsampled contourlet convolutional neural network - Google Patents
Polarized SAR image classification method based on nonsubsampled contourlet convolutional neural network Download PDFInfo
- Publication number
- CN105718957A CN105718957A CN201610051110.XA CN201610051110A CN105718957A CN 105718957 A CN105718957 A CN 105718957A CN 201610051110 A CN201610051110 A CN 201610051110A CN 105718957 A CN105718957 A CN 105718957A
- Authority
- CN
- China
- Prior art keywords
- layer
- sar image
- pixel
- convolutional neural
- scattering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000010287 polarization Effects 0.000 claims abstract description 38
- 239000011159 matrix material Substances 0.000 claims abstract description 36
- 238000012549 training Methods 0.000 claims abstract description 31
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 19
- 230000001427 coherent effect Effects 0.000 claims abstract description 4
- 238000001914 filtration Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 2
- 239000013598 vector Substances 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 15
- 238000013507 mapping Methods 0.000 claims 7
- 238000003475 lamination Methods 0.000 claims 1
- VMXUWOKSQNHOCA-UKTHLTGXSA-N ranitidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UKTHLTGXSA-N 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- 238000011176 pooling Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/211—Selection of the most significant subset of features
- G06F18/2111—Selection of the most significant subset of features by using evolutionary computational techniques, e.g. genetic algorithms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于非下采样轮廓波卷积神经网络的极化SAR图像分类方法,主要解决现有技术难以避免相干斑噪声的影响及分类精度低的问题,其实现步骤是:对待分类的极化SAR图像进行去噪,对去噪得到的极化散射矩阵S进行Pauli分解;将Pauli分解得到的图像特征组合成特征矩阵F,并对其归一化,记作F1;对每个像素点取F1周围的22×22块,得到基于块的特征矩阵F2;从F2中选取训练数据集和测试数据集;构造非下采样轮廓波卷积神经网络,对训练数据集进行训练;利用训练好的非下采样轮廓波卷积神经网络对测试数据集进行分类。本发明提高了极化SAR图像特征的表达能力和分类精度,可用于目标识别。
The invention discloses a polarimetric SAR image classification method based on a non-subsampled contourlet convolutional neural network, which mainly solves the problem that it is difficult to avoid the influence of coherent speckle noise and the problem of low classification accuracy in the prior art. The implementation steps are: treat the classification Denoise the polarimetric SAR image, and perform Pauli decomposition on the denoised polarization scattering matrix S; combine the image features obtained by Pauli decomposition into a feature matrix F, and normalize it, denoted as F1; for each Take the 22 × 22 blocks around F1 to get the block-based feature matrix F2; select the training data set and test data set from F2; construct a non-subsampling contourlet convolutional neural network to train the training data set; use A non-subsampled contourlet convolutional neural network is trained to classify the test dataset. The invention improves the expression ability and classification accuracy of the polarimetric SAR image features, and can be used for target recognition.
Description
技术领域technical field
本发明属于图像处理技术领域,具体涉及一种极化SAR图像分类方法,可用于目标识别。The invention belongs to the technical field of image processing, and in particular relates to a polarimetric SAR image classification method, which can be used for target recognition.
背景技术Background technique
极化SAR是一种高分辨率主动式有源微波遥感成像雷达,具有全天候、全天时、分辨率高、可侧视成像等优点,能获得目标更丰富的信息。极化SAR图像分类的目的是利用机载或者星载极化SAR传感器获得的极化测量数据确定每个像素所属的类别,在农业、林业、军事、地质学、水文学和海洋等方面具有广泛的研究和应用价值。Polarization SAR is a high-resolution active microwave remote sensing imaging radar, which has the advantages of all-weather, all-time, high resolution, side-view imaging, etc., and can obtain richer information on targets. The purpose of polarimetric SAR image classification is to use the polarization measurement data obtained by airborne or spaceborne polarimetric SAR sensors to determine the category to which each pixel belongs. It has a wide range of applications in agriculture, forestry, military, geology, hydrology, and ocean research and application value.
现在普遍使用的极化SAR图像分类方法是基于像素的方法,即仅利用各个像素本身的特征进行分类。这些方法虽然能够较好地保留图像中像素级的细节,但由于相干斑的影响,单个像素的测量值与真实值之间存在误差,分类图中难以避免存在较多的孤立像素和小块区域,增加了分类难度。The commonly used polarimetric SAR image classification method is based on pixels, that is, only the characteristics of each pixel are used for classification. Although these methods can better preserve the pixel-level details in the image, due to the influence of coherent speckle, there is an error between the measured value of a single pixel and the real value, and it is difficult to avoid the existence of many isolated pixels and small areas in the classification map. , increasing the classification difficulty.
现有的基于散射特性的极化SAR图像目标特征提取方法,包括Cloude分解、Freeman分解等。Existing target feature extraction methods based on scattering characteristics in polarimetric SAR images include Cloude decomposition, Freeman decomposition, etc.
1997年,Cloude等人提出了Cloude分解,对H/α平面进行划分,通过H和α两个表征极化数据的特征值把各像素化为相应区域的类别。H/α分类存在的一个缺陷是区域的划分过于武断,当同一类的数据分布在两类或几类的边界时,分类器性能将变差,另一个不足之处是,当同一个区域里共存几种不同的地物时,将不能有效区分;In 1997, Cloude et al. proposed Cloude decomposition to divide the H/α plane, and convert each pixel into the category of the corresponding area through the two eigenvalues of H and α that characterize the polarization data. One defect of H/α classification is that the division of regions is too arbitrary. When the same class of data is distributed on the boundary of two or more classes, the performance of the classifier will deteriorate. Another shortcoming is that when the data in the same area When several different features coexist, they cannot be effectively distinguished;
2004年,Lee等人提出了一种基于Freeman分解的特征提取方法,该方法能够保持各类的极化散射特性,但分类结果易受Freeman分解性能的影响,对不同波段的极化数据该算法的普适性差。In 2004, Lee et al. proposed a feature extraction method based on Freeman decomposition. This method can maintain various polarization scattering characteristics, but the classification results are easily affected by the performance of Freeman decomposition. For polarization data of different bands, the algorithm poor universality.
这些特征提取方法均没有考虑到极化SAR图像的多尺度、多分辨特性,对背景复杂的极化SAR图像很难得到较高的分类精度。These feature extraction methods do not take into account the multi-scale and multi-resolution characteristics of polarimetric SAR images, and it is difficult to obtain high classification accuracy for polarimetric SAR images with complex backgrounds.
发明内容Contents of the invention
本发明的目的在于针对上述问题,提出一种基于非下采样轮廓波卷积神经网络的极化SAR图像分类方法,以得到具有多尺度、多分辨特性的图像特征,提升分类精度。The purpose of the present invention is to solve the above problems and propose a polarimetric SAR image classification method based on non-subsampled contourlet convolutional neural network to obtain image features with multi-scale and multi-resolution characteristics and improve classification accuracy.
本发明的思路是:基于卷积神经网络对图像块特征进行处理,并通过在该网络中引入非下采样轮廓波变换,有效提高极化SAR图像特征的表达能力,其实现方案包括如下:The idea of the present invention is: based on the convolutional neural network to process the image block features, and by introducing non-subsampling contourlet transformation into the network, the expression ability of the polarimetric SAR image features is effectively improved, and the implementation scheme includes the following:
(1)对待分类的极化SAR图像进行去噪,得到极化SAR图像滤波后的极化散射矩阵S;(1) Denoise the polarimetric SAR image to be classified, and obtain the polarimetric scattering matrix S after filtering the polarimetric SAR image;
(2)对滤波后的极化散射矩阵S进行Pauli分解,将Pauli分解得到的奇次散射、偶次散射、体散射的值作为极化SAR图像的图像特征;(2) Perform Pauli decomposition on the filtered polarization scattering matrix S, and use the values of odd scattering, even scattering and volume scattering obtained by Pauli decomposition as the image features of the polarimetric SAR image;
(3)将Pauli分解得到的图像特征组合成极化SAR图像的基于像素点的特征矩阵F,每个像素点对应3维Pauli分解特征,并将F中的元素值归一化到[0,1]之间,记作F1;(3) Combine the image features obtained by Pauli decomposition into a pixel-based feature matrix F of the polarimetric SAR image, each pixel corresponds to a 3-dimensional Pauli decomposition feature, and normalize the element values in F to [0, 1], denoted as F1;
(4)对每个像素点取F1周围22×22的块,得到基于块的特征矩阵F2,即每个像素点对应3个22×22的块;(4) Take a 22×22 block around F1 for each pixel to obtain a block-based feature matrix F2, that is, each pixel corresponds to three 22×22 blocks;
(5)从基于块的特征矩阵F2中选取训练数据集和测试数据集:(5) Select training data set and test data set from block-based feature matrix F2:
(5a)将极化SAR图像地物分为15类,分别从每个类别中随机选取N个有标记的像素点作为训练样本D1,其余有标记的像素点作为测试样本T1,N取300~700之间的整数;(5a) Divide the polarimetric SAR image ground objects into 15 categories, randomly select N marked pixels from each category as training samples D1, and the remaining marked pixels as test samples T1, N takes 300~ an integer between 700;
(5b)用Canny算子提取极化SAR图像的边缘点,在训练样本D1中加入Canny算子提取的边缘点,即增加置信度较高的训练样本,得到更新后的训练数据集D和测试数据集T;(5b) Use the Canny operator to extract the edge points of the polarimetric SAR image, add the edge points extracted by the Canny operator to the training sample D1, that is, increase the training samples with higher confidence, and obtain the updated training data set D and test data set T;
(6)构造非下采样轮廓波卷积神经网络:(6) Construct a non-subsampled contourlet convolutional neural network:
(6a)选择一个由输入层→卷积层→池化层→卷积层→池化层→全连接层→全连接层→softmax分类器组成的8层卷积神经网络,并确定卷积神经网络的滤波器大小以及各层的特征映射图;(6a) Select an 8-layer convolutional neural network consisting of input layer → convolutional layer → pooling layer → convolutional layer → pooling layer → fully connected layer → fully connected layer → softmax classifier, and determine the convolutional neural network The filter size of the network and the feature maps of each layer;
(6b)用非下采样轮廓波变换层替换卷积神经网络中的第2层卷积层,得到非下采样轮廓波卷积神经网络;(6b) Replace the second layer of convolutional layer in the convolutional neural network with a non-subsampling contourlet transformation layer to obtain a non-subsampling contourlet convolutional neural network;
(7)用非下采样轮廓波卷积神经网络对训练数据集进行训练;(7) Training the training data set with a non-subsampled contourlet convolutional neural network;
(8)利用训练好的非下采样轮廓波卷积神经网络对测试数据集进行分类,得到极化SAR图像测试数据集中每个像素点的像素类别。(8) Use the trained non-subsampled contourlet convolutional neural network to classify the test data set, and obtain the pixel category of each pixel in the polarimetric SAR image test data set.
本发明与现有的技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明结合像素空间相关性提取图像块特征,减弱了相干斑影响,从而提升了分类精度。1. The present invention combines pixel spatial correlation to extract image block features, weakens the influence of coherent speckles, and thus improves classification accuracy.
2.本发明由于采用非下采样轮廓波卷积神经网络,并在卷积神经网络中引入非下采样轮廓波变换得到具有多尺度、多分辨特性的图像特征,因而能更好的逼近原图像,提升了分类精度。2. Since the present invention adopts non-subsampling contourlet convolutional neural network, and introduces non-subsampling contourlet transformation into the convolutional neural network to obtain image features with multi-scale and multi-resolution characteristics, it can better approximate the original image , improving the classification accuracy.
附图说明Description of drawings
图1是本发明的实现流程图;Fig. 1 is the realization flowchart of the present invention;
图2是本发明中对待分类图像去噪后的伪彩色图;Fig. 2 is the pseudo-color figure after denoising of image to be classified among the present invention;
图3是本发明中对待分类图像的人工标记图;Fig. 3 is the manual marking diagram of the image to be classified in the present invention;
图4是用本发明对待分类图像的分类结果图。Fig. 4 is a diagram of classification results of images to be classified using the present invention.
具体实施方式detailed description
以下结合附图对本发明的实现步骤和实验效果作进一步详细描述:Below in conjunction with accompanying drawing, implementation steps and experimental effects of the present invention are described in further detail:
参照图1,本发明的具体实现步骤如下:With reference to Fig. 1, the concrete realization steps of the present invention are as follows:
步骤1,对待分类的极化SAR图像进行去噪。Step 1, denoise the polarimetric SAR image to be classified.
常用的极化SAR图像去噪方法有均值滤波、中值滤波、局域滤波、精致极化LEE滤波等,本发明采用的是精致极化LEE滤波法,具体步骤如下:Commonly used polarization SAR image denoising methods include mean filtering, median filtering, local filtering, refined polarization LEE filtering, etc. The present invention uses the refined polarization LEE filtering method, and the specific steps are as follows:
(1a)设定精致极化LEE滤波的滑动窗口,该滑动窗口的大小为5×5像素;(1a) Set the sliding window of refined polarization LEE filtering, the size of the sliding window is 5×5 pixels;
(1b)将滑动窗口在输入的极化SAR图像的像素上,从左到右、从上到下漫游,每漫游一步时,将滑动窗口按照像素空间位置,从左到右、从上到下依次分成9个子窗口,每个子窗口的大小为3×3像素,子窗口之间有重叠;(1b) Roam the sliding window from left to right and from top to bottom on the pixels of the input polarimetric SAR image, and move the sliding window from left to right and from top to bottom according to the pixel space position at each roaming step Divide into 9 sub-windows in turn, the size of each sub-window is 3×3 pixels, and there is overlap between the sub-windows;
(1c)将每个子窗口对应位置的像素值求均值,将所得到的均值构成3×3像素的均值窗口;(1c) average the pixel values at the corresponding positions of each sub-window, and form a mean window of 3×3 pixels with the obtained mean;
(1d)选取水平、垂直、45度和135度的四个方向的梯度模版,将均值窗口分别与四个模版进行加权,对所得到的加权结果求绝对值,选出所有绝对值中的最大值,将该最大值对应的方向作为边缘方向;(1d) Select the gradient templates in the four directions of horizontal, vertical, 45 degrees and 135 degrees, weight the mean window with the four templates, calculate the absolute value of the obtained weighted results, and select the largest of all absolute values value, the direction corresponding to the maximum value is taken as the edge direction;
(1e)从9个子窗口中取中心窗口边缘方向的左右2个子窗口,分别对这2个子窗口内的所有像素值求均值,用得到的2个均值分别减去中心窗口所有像素值的均值,将均值差值中绝对值小的值所对应的子窗口作为方向窗口,其中,中心窗口是指5×5窗口中心的3×3的子窗口;(1e) Take two left and right sub-windows in the direction of the edge of the central window from the nine sub-windows, calculate the mean value of all pixel values in the two sub-windows, and subtract the mean value of all pixel values in the center window from the two mean values obtained, Use the sub-window corresponding to the smaller absolute value in the mean difference as the direction window, wherein the center window refers to the 3×3 sub-window at the center of the 5×5 window;
(1f)按照式<1>,得到精致极化LEE滤波的权值:(1f) According to the formula <1>, the weight of the refined polarization LEE filter is obtained:
其中,b表示精致极化LEE滤波的权值,var(y)表示方向窗口内极化SAR总功率图像像素的方差值,y表示方向窗口内极化SAR总功率图像的像素,p表示方向窗口内极化SAR总功率图像所有像素的均值,表示输入的极化SAR图像相干斑噪声的方差值;Among them, b represents the weight of the refined polarization LEE filter, var(y) represents the variance value of the polarization SAR total power image pixels in the direction window, y represents the pixel of the polarization SAR total power image in the direction window, and p represents the direction The mean value of all pixels in the polarimetric SAR total power image in the window, Represents the variance value of the speckle noise of the input polarimetric SAR image;
(1g)按照式<2>,得到滤波后极化SAR图像中心像素的极化相干矩阵T:(1g) According to formula <2>, the polarization coherence matrix T of the central pixel of the filtered polarimetric SAR image is obtained:
T=w+b(z-w),<2>T=w+b(z-w), <2>
其中,w表示方向窗口内极化SAR图像像素的极化相干矩阵的均值,b表示精致LEE滤波的权值,z表示极化SAR图像中心像素的极化相干矩阵;Among them, w represents the mean value of the polarization coherence matrix of the polarimetric SAR image pixel in the direction window, b represents the weight of the refined LEE filter, and z represents the polarization coherence matrix of the central pixel of the polarimetric SAR image;
(1h)按照式<3>,可求得水平发射且水平接收的散射分量SHH、垂直发射且垂直接收的散射分量SVV、水平发射且垂直接收的散射分量SHV:(1h) According to formula <3>, the scattering component SHH of horizontal emission and horizontal reception, the scattering component S VV of vertical emission and vertical reception, and the scattering component SHV of horizontal emission and vertical reception can be obtained:
其中,T11、T22、T33为极化相干矩阵T的对角线上元素。Wherein, T 11 , T 22 , and T 33 are elements on the diagonal of the polarization coherence matrix T.
待分类图像去噪后的伪彩色图如图2所示。The pseudo-color image of the image to be classified after denoising is shown in Figure 2.
步骤2,对滤波后的极化散射矩阵S进行Pauli分解,将Pauli分解得到的奇次散射、偶次散射、体散射的值作为极化SAR图像的图像特征。Step 2: Perform Pauli decomposition on the filtered polarimetric scattering matrix S, and use the values of odd scattering, even scattering, and volume scattering obtained from Pauli decomposition as the image features of the polarimetric SAR image.
(2a)定义基本的散射矩阵,称为Pauli基:{Sa,Sb,Sc,Sd},公式如下:(2a) Define the basic scattering matrix, called the Pauli basis: {S a , S b , S c , S d }, the formula is as follows:
其中
(2b)根据式<4>定义的Pauli基,得到极化散射矩阵S的表达式:(2b) According to the Pauli basis defined by formula <4>, the expression of polarization scattering matrix S is obtained:
其中a对应奇次散射的值,b对应偶次散射的值,c表示体散射的值,d表示不存在的地物类型所对应散射成分的值;Among them, a corresponds to the value of odd scattering, b corresponds to the value of even scattering, c indicates the value of volume scattering, and d indicates the value of the scattering component corresponding to the type of non-existing ground objects;
(2c)求解式<5>,得到散射值a、b、c、d,将其表示为向量形式如下:(2c) Solve formula <5> to obtain the scattering values a, b, c, d, and express them as vectors as follows:
当满足互易条件SHV=SVH时,式<6>简化为:When the reciprocity condition S HV = S VH is satisfied, formula <6> is simplified as:
将式<3>求得的SHH、SVV、SHV代入式<7>,求得极化特征K。Substitute SHH , S VV , and SHV obtained from formula <3> into formula <7> to obtain the polarization characteristic K.
步骤3,将Pauli分解得到的图像特征组合成特征矩阵F,并对其进行归一化。Step 3, combine the image features obtained by Pauli decomposition into a feature matrix F, and normalize it.
构造一个特征矩阵F,矩阵大小设定为M1×M2×3,将Pauli分解得到的奇次散射、偶次散射、体散射的值赋给特征矩阵F,其中M1为待分类图像的长,M2为待分类图像的宽;Construct a feature matrix F, the size of the matrix is set to M1×M2×3, and assign the values of odd scattering, even scattering, and volume scattering obtained by Pauli decomposition to the feature matrix F, where M1 is the length of the image to be classified, and M2 is the width of the image to be classified;
对特征矩阵F归一化,采用特征线性缩放法,即先求出特征矩阵F的最大值max(F);再将特征矩阵F中的每个元素均除以最大值max(F),得到归一化的特征矩阵F1。To normalize the feature matrix F, the feature linear scaling method is used, that is, the maximum value max(F) of the feature matrix F is first obtained; then each element in the feature matrix F is divided by the maximum value max(F) to obtain Normalized feature matrix F1.
步骤4,对归一化后的每个像素点取F1周围22×22的块,得到基于块的特征矩阵F2,即每个像素点对应3个22×22的块,特征矩阵F2大小为22×22×(M1×M2)×3。Step 4, take a 22×22 block around F1 for each pixel after normalization, and obtain a block-based feature matrix F2, that is, each pixel corresponds to three 22×22 blocks, and the size of the feature matrix F2 is 22 ×22×(M1×M2)×3.
步骤5,从基于块的特征矩阵F2中选取训练数据集和测试数据集。Step 5, select a training dataset and a testing dataset from the block-based feature matrix F2.
(5a)将极化SAR图像地物分为15类,分别从每个类别中随机选取N个有标记的像素点作为训练样本D1,其余有标记的像素点作为测试样本T1,N取300~700之间的整数;(5a) Divide the polarimetric SAR image ground objects into 15 categories, randomly select N marked pixels from each category as training samples D1, and the remaining marked pixels as test samples T1, N takes 300~ Integer between 700;
(5b)用Canny算子提取极化SAR图像的边缘点,在训练样本D1中加入Canny算子提取的边缘点,即增加置信度较高的训练样本,得到更新后的训练数据集D和测试数据集T。(5b) Use the Canny operator to extract the edge points of the polarimetric SAR image, add the edge points extracted by the Canny operator to the training sample D1, that is, increase the training samples with higher confidence, and obtain the updated training data set D and test Data set T.
步骤6,构造非下采样轮廓波卷积神经网络。Step 6. Construct a non-subsampling contourlet convolutional neural network.
(6a)选择一个由输入层→卷积层→池化层→卷积层→池化层→全连接层→全连接层→softmax分类器组成的8层卷积神经网络,并确定卷积神经网络的滤波器大小以及各层的特征映射图;(6a) Select an 8-layer convolutional neural network consisting of input layer → convolutional layer → pooling layer → convolutional layer → pooling layer → fully connected layer → fully connected layer → softmax classifier, and determine the convolutional neural network The filter size of the network and the feature maps of each layer;
(6b)用非下采样轮廓波变换层替换卷积神经网络中的第2层卷积层,得到非下采样轮廓波卷积神经网络,得到如下8层结构:(6b) Replace the second convolutional layer in the convolutional neural network with a non-subsampled contourlet transformation layer to obtain a non-subsampled contourlet convolutional neural network, and obtain the following 8-layer structure:
输入层→非下采样轮廓波变换层→池化层→卷积层→池化层→全连接层→全连接层→softmax分类器;Input layer→non-subsampling contourlet transform layer→pooling layer→convolution layer→pooling layer→full connection layer→full connection layer→softmax classifier;
各层的参数为:The parameters of each layer are:
第1层输入层:输出特征映射图=3;Layer 1 input layer: output feature map = 3;
第2层非下采样轮廓波变换层:输出特征映射图=12;The second layer of non-subsampling contourlet transformation layer: output feature map = 12;
第3层池化层:下采样尺度=2;The third layer of pooling layer: downsampling scale = 2;
第4层卷积层:输出特征映射图=20,滤波器尺寸=4;The fourth layer of convolutional layer: output feature map = 20, filter size = 4;
第5层池化层:下采样尺度=2;Layer 5 pooling layer: downsampling scale = 2;
第6层全连接层:输出特征映射图=100;Layer 6 fully connected layer: output feature map = 100;
第7层全连接层:输出特征映射图=64;Layer 7 fully connected layer: output feature map = 64;
第8层softmax分类器:输出特征映射图=15。Layer 8 softmax classifier: output feature map=15.
步骤7,用非下采样轮廓波卷积神经网络对训练数据集进行训练。Step 7, use the non-subsampled contourlet convolutional neural network to train the training data set.
将训练数据集的特征矩阵作为非下采样轮廓波卷积神经网络的输入,网络输出层是对应的预测类标,通过求解预测类标与人工标记的正确类标之间的误差,并对误差进行反向传播,优化非下采样轮廓波卷积神经网络的权值,本发明误差反向传播方式与卷积神经网络相同,人工标记的正确类标如图3所示。The feature matrix of the training data set is used as the input of the non-subsampled contourlet convolutional neural network, and the network output layer is the corresponding predicted class label. By solving the error between the predicted class label and the manually marked correct class label, and calculating the error Perform backpropagation to optimize the weight of the non-subsampled contourlet convolutional neural network. The error backpropagation method of the present invention is the same as that of the convolutional neural network, and the correct class label of the artificial mark is shown in Figure 3.
步骤8,利用训练好的非下采样轮廓波卷积神经网络对测试数据集进行分类,得到极化SAR图像测试数据集中每个像素点的像素类别。Step 8: Use the trained non-subsampled contourlet convolutional neural network to classify the test data set, and obtain the pixel category of each pixel in the polarimetric SAR image test data set.
本发明的效果可以通过以下仿真实验进一步说明:Effect of the present invention can be further illustrated by following simulation experiments:
1.仿真条件:1. Simulation conditions:
仿真实验采用NASA/JPL实验室AIRSAR系统的L波段荷兰Flevoland地区的全极化数据,基于Pauli分解得到的图像大小为750×1024像素点。The simulation experiment uses the full polarization data of the L-band Flevoland area in the Netherlands from the AIRSAR system of the NASA/JPL laboratory, and the image size obtained based on Pauli decomposition is 750×1024 pixels.
硬件平台为:Intel(R)Xeon(R)CPUE5-2620,2.00GHz*18,内存为64G。The hardware platform is: Intel(R) Xeon(R) CPUE5-2620, 2.00GHz*18, and the memory is 64G.
软件平台为:MATLAB_2014a。The software platform is: MATLAB_2014a.
2.仿真内容与结果:2. Simulation content and results:
用本发明方法在上述仿真条件下进行实验,即分别从极化SAR数据的每个类别中随机选取700个有标记的像素点作为训练样本,其余有标记的像素点作为测试样本,训练数据集占样本总数的6%,得到如图4的分类结果,从图4可以看出:除了极少数错分像素点,分类结果的区域一致性较好,轮廓非常清晰。Carry out experiments under the above-mentioned simulation conditions with the method of the present invention, namely randomly select 700 marked pixels from each category of the polarimetric SAR data as training samples, and the remaining marked pixels as test samples, the training data set Accounting for 6% of the total number of samples, the classification results shown in Figure 4 are obtained. It can be seen from Figure 4 that except for a few misclassified pixels, the regional consistency of the classification results is good, and the outline is very clear.
再依次减少训练样本,使训练数据集占样本总数的5%、4%、3%,将本发明与卷积神经网络的测试数据集精度以及模型训练时间进行对比,结果如表1所示:Then reduce the training samples successively, so that the training data set accounts for 5%, 4%, and 3% of the total number of samples, and compare the accuracy of the test data set and the model training time of the present invention with the convolutional neural network, and the results are as shown in Table 1:
表1Table 1
从表1可见,本发明在训练数据集占样本总数的6%、5%、4%、3%时,测试数据集精度均高于卷积神经网络,且需要的模型训练时间更短;在训练数据集占样本总数的3%时,本发明可以得到92%的分类精度,而卷积神经网络的分类精度不收敛。As can be seen from Table 1, when the present invention accounts for 6%, 5%, 4%, and 3% of the total number of samples in the training data set, the accuracy of the test data set is higher than that of the convolutional neural network, and the required model training time is shorter; When the training data set accounts for 3% of the total number of samples, the present invention can obtain a classification accuracy of 92%, but the classification accuracy of the convolutional neural network does not converge.
综上,本发明通过在卷积神经网络中引入非下采样轮廓波变换有效提高了极化SAR图像特征的表达能力,提升分类精度,并减少了模型训练时间。在样本数目较少时,优势明显。In summary, the present invention effectively improves the expression ability of polarimetric SAR image features, improves classification accuracy, and reduces model training time by introducing non-subsampling contourlet transform into convolutional neural network. When the sample size is small, the advantage is obvious.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610051110.XA CN105718957A (en) | 2016-01-26 | 2016-01-26 | Polarized SAR image classification method based on nonsubsampled contourlet convolutional neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610051110.XA CN105718957A (en) | 2016-01-26 | 2016-01-26 | Polarized SAR image classification method based on nonsubsampled contourlet convolutional neural network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105718957A true CN105718957A (en) | 2016-06-29 |
Family
ID=56154470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610051110.XA Pending CN105718957A (en) | 2016-01-26 | 2016-01-26 | Polarized SAR image classification method based on nonsubsampled contourlet convolutional neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105718957A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106203489A (en) * | 2016-07-01 | 2016-12-07 | 西安电子科技大学 | Classification of Polarimetric SAR Image method based on multiple dimensioned depth direction wave network |
CN106203444A (en) * | 2016-07-01 | 2016-12-07 | 西安电子科技大学 | Classification of Polarimetric SAR Image method based on band ripple Yu convolutional neural networks |
CN106407986A (en) * | 2016-08-29 | 2017-02-15 | 电子科技大学 | Synthetic aperture radar image target identification method based on depth model |
CN106934419A (en) * | 2017-03-09 | 2017-07-07 | 西安电子科技大学 | Classification of Polarimetric SAR Image method based on plural profile ripple convolutional neural networks |
CN107154054A (en) * | 2017-05-22 | 2017-09-12 | 西安电子科技大学 | Polarization SAR remote sensing imagery change detection method based on depth confidence network |
CN107169492A (en) * | 2017-05-26 | 2017-09-15 | 西安电子科技大学 | Polarization SAR object detection method based on FCN CRF master-slave networks |
CN107239797A (en) * | 2017-05-23 | 2017-10-10 | 西安电子科技大学 | Polarization SAR terrain classification method based on full convolutional neural networks |
CN107239799A (en) * | 2017-05-26 | 2017-10-10 | 西安电子科技大学 | Polarization SAR image classification method with depth residual error net is decomposed based on Pauli |
CN107239751A (en) * | 2017-05-22 | 2017-10-10 | 西安电子科技大学 | High Resolution SAR image classification method based on the full convolutional network of non-down sampling contourlet |
CN107256414A (en) * | 2017-06-27 | 2017-10-17 | 哈尔滨工业大学 | Polarimetric SAR Image convolutional neural networks sorting technique based on spatial feature collection of illustrative plates |
CN107292336A (en) * | 2017-06-12 | 2017-10-24 | 西安电子科技大学 | A kind of Classification of Polarimetric SAR Image method based on DCGAN |
CN107316013A (en) * | 2017-06-14 | 2017-11-03 | 西安电子科技大学 | Hyperspectral image classification method with DCNN is converted based on NSCT |
CN107358258A (en) * | 2017-07-07 | 2017-11-17 | 西安电子科技大学 | SAR image target classification based on the double CNN passages of NSCT and Selective Attention Mechanism |
CN107358202A (en) * | 2017-07-13 | 2017-11-17 | 西安电子科技大学 | Polarization SAR remote sensing imagery change detection method based on depth curve ripple heap stack network |
CN107368852A (en) * | 2017-07-13 | 2017-11-21 | 西安电子科技大学 | A kind of Classification of Polarimetric SAR Image method based on non-down sampling contourlet DCGAN |
CN107832798A (en) * | 2017-11-20 | 2018-03-23 | 西安电子科技大学 | Polarimetric SAR Image object detection method based on NSCT ladder pessimistic concurrency controls |
CN107944353A (en) * | 2017-11-10 | 2018-04-20 | 西安电子科技大学 | SAR image change detection based on profile ripple BSPP networks |
CN108169745A (en) * | 2017-12-18 | 2018-06-15 | 电子科技大学 | A kind of borehole radar target identification method based on convolutional neural networks |
CN108388927A (en) * | 2018-03-26 | 2018-08-10 | 西安电子科技大学 | Small sample polarization SAR terrain classification method based on the twin network of depth convolution |
CN108564098A (en) * | 2017-11-24 | 2018-09-21 | 西安电子科技大学 | Based on the polarization SAR sorting technique for scattering full convolution model |
CN108830799A (en) * | 2018-05-03 | 2018-11-16 | 南京邮电大学 | Polarization SAR image speckle suppression method based on opposite polarisation total variation |
CN110516552A (en) * | 2019-07-29 | 2019-11-29 | 南京航空航天大学 | A method and system for classifying multi-polarization radar images based on timing curves |
CN110516728A (en) * | 2019-08-20 | 2019-11-29 | 西安电子科技大学 | Polarimetric SAR Object Classification Method Based on Denoising Convolutional Neural Network |
CN111104860A (en) * | 2019-11-19 | 2020-05-05 | 浙江工业大学 | Unmanned aerial vehicle water quality chromaticity monitoring method based on machine vision |
CN116206203A (en) * | 2023-03-08 | 2023-06-02 | 中国石油大学(华东) | Oil spill detection method based on SAR and Dual-EndNet |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104318245A (en) * | 2014-10-20 | 2015-01-28 | 西安电子科技大学 | Sparse depth network based polarization SAR (Synthetic Aperture Radar) image classification |
CN104331707A (en) * | 2014-11-02 | 2015-02-04 | 西安电子科技大学 | Polarized SAR (synthetic aperture radar) image classification method based on depth PCA (principal component analysis) network and SVM (support vector machine) |
CN104408481A (en) * | 2014-12-05 | 2015-03-11 | 西安电子科技大学 | Deep wavelet neural network-based polarimetric SAR (synthetic aperture radar) image classification method |
CN104850836A (en) * | 2015-05-15 | 2015-08-19 | 浙江大学 | Automatic insect image identification method based on depth convolutional neural network |
CN105069468A (en) * | 2015-07-28 | 2015-11-18 | 西安电子科技大学 | Hyper-spectral image classification method based on ridgelet and depth convolution network |
CN105139028A (en) * | 2015-08-13 | 2015-12-09 | 西安电子科技大学 | SAR image classification method based on hierarchical sparse filtering convolutional neural network |
CN105139395A (en) * | 2015-08-19 | 2015-12-09 | 西安电子科技大学 | SAR image segmentation method based on wavelet pooling convolutional neural networks |
-
2016
- 2016-01-26 CN CN201610051110.XA patent/CN105718957A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104318245A (en) * | 2014-10-20 | 2015-01-28 | 西安电子科技大学 | Sparse depth network based polarization SAR (Synthetic Aperture Radar) image classification |
CN104331707A (en) * | 2014-11-02 | 2015-02-04 | 西安电子科技大学 | Polarized SAR (synthetic aperture radar) image classification method based on depth PCA (principal component analysis) network and SVM (support vector machine) |
CN104408481A (en) * | 2014-12-05 | 2015-03-11 | 西安电子科技大学 | Deep wavelet neural network-based polarimetric SAR (synthetic aperture radar) image classification method |
CN104850836A (en) * | 2015-05-15 | 2015-08-19 | 浙江大学 | Automatic insect image identification method based on depth convolutional neural network |
CN105069468A (en) * | 2015-07-28 | 2015-11-18 | 西安电子科技大学 | Hyper-spectral image classification method based on ridgelet and depth convolution network |
CN105139028A (en) * | 2015-08-13 | 2015-12-09 | 西安电子科技大学 | SAR image classification method based on hierarchical sparse filtering convolutional neural network |
CN105139395A (en) * | 2015-08-19 | 2015-12-09 | 西安电子科技大学 | SAR image segmentation method based on wavelet pooling convolutional neural networks |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106203489B (en) * | 2016-07-01 | 2019-02-15 | 西安电子科技大学 | Polarimetric SAR Image Classification Method Based on Multiscale Depth Directional Wave Network |
CN106203444A (en) * | 2016-07-01 | 2016-12-07 | 西安电子科技大学 | Classification of Polarimetric SAR Image method based on band ripple Yu convolutional neural networks |
CN106203444B (en) * | 2016-07-01 | 2019-02-19 | 西安电子科技大学 | Polarimetric SAR Image Classification Method Based on Strip Wave and Convolutional Neural Network |
CN106203489A (en) * | 2016-07-01 | 2016-12-07 | 西安电子科技大学 | Classification of Polarimetric SAR Image method based on multiple dimensioned depth direction wave network |
CN106407986A (en) * | 2016-08-29 | 2017-02-15 | 电子科技大学 | Synthetic aperture radar image target identification method based on depth model |
CN106407986B (en) * | 2016-08-29 | 2019-07-19 | 电子科技大学 | A Depth Model-Based Approach for Target Recognition in Synthetic Aperture Radar Images |
CN106934419A (en) * | 2017-03-09 | 2017-07-07 | 西安电子科技大学 | Classification of Polarimetric SAR Image method based on plural profile ripple convolutional neural networks |
CN107239751A (en) * | 2017-05-22 | 2017-10-10 | 西安电子科技大学 | High Resolution SAR image classification method based on the full convolutional network of non-down sampling contourlet |
CN107239751B (en) * | 2017-05-22 | 2020-11-03 | 西安电子科技大学 | High-resolution SAR image classification method based on non-subsampled contourlet full convolution network |
CN107154054A (en) * | 2017-05-22 | 2017-09-12 | 西安电子科技大学 | Polarization SAR remote sensing imagery change detection method based on depth confidence network |
CN107239797A (en) * | 2017-05-23 | 2017-10-10 | 西安电子科技大学 | Polarization SAR terrain classification method based on full convolutional neural networks |
CN107239799A (en) * | 2017-05-26 | 2017-10-10 | 西安电子科技大学 | Polarization SAR image classification method with depth residual error net is decomposed based on Pauli |
CN107169492B (en) * | 2017-05-26 | 2020-07-07 | 西安电子科技大学 | Polarimetric SAR target detection method based on FCN-CRF master-slave network |
CN107169492A (en) * | 2017-05-26 | 2017-09-15 | 西安电子科技大学 | Polarization SAR object detection method based on FCN CRF master-slave networks |
CN107292336A (en) * | 2017-06-12 | 2017-10-24 | 西安电子科技大学 | A kind of Classification of Polarimetric SAR Image method based on DCGAN |
CN107316013A (en) * | 2017-06-14 | 2017-11-03 | 西安电子科技大学 | Hyperspectral image classification method with DCNN is converted based on NSCT |
CN107316013B (en) * | 2017-06-14 | 2020-04-07 | 西安电子科技大学 | Hyperspectral image classification method based on NSCT (non-subsampled Contourlet transform) and DCNN (data-to-neural network) |
CN107256414A (en) * | 2017-06-27 | 2017-10-17 | 哈尔滨工业大学 | Polarimetric SAR Image convolutional neural networks sorting technique based on spatial feature collection of illustrative plates |
CN107358258A (en) * | 2017-07-07 | 2017-11-17 | 西安电子科技大学 | SAR image target classification based on the double CNN passages of NSCT and Selective Attention Mechanism |
CN107368852A (en) * | 2017-07-13 | 2017-11-21 | 西安电子科技大学 | A kind of Classification of Polarimetric SAR Image method based on non-down sampling contourlet DCGAN |
CN107358202A (en) * | 2017-07-13 | 2017-11-17 | 西安电子科技大学 | Polarization SAR remote sensing imagery change detection method based on depth curve ripple heap stack network |
CN107944353A (en) * | 2017-11-10 | 2018-04-20 | 西安电子科技大学 | SAR image change detection based on profile ripple BSPP networks |
CN107944353B (en) * | 2017-11-10 | 2019-12-24 | 西安电子科技大学 | SAR Image Change Detection Method Based on Contour Wave BSPP Network |
CN107832798A (en) * | 2017-11-20 | 2018-03-23 | 西安电子科技大学 | Polarimetric SAR Image object detection method based on NSCT ladder pessimistic concurrency controls |
CN108564098A (en) * | 2017-11-24 | 2018-09-21 | 西安电子科技大学 | Based on the polarization SAR sorting technique for scattering full convolution model |
CN108564098B (en) * | 2017-11-24 | 2021-09-03 | 西安电子科技大学 | Polarization SAR classification method based on scattering complete convolution model |
CN108169745A (en) * | 2017-12-18 | 2018-06-15 | 电子科技大学 | A kind of borehole radar target identification method based on convolutional neural networks |
CN108388927A (en) * | 2018-03-26 | 2018-08-10 | 西安电子科技大学 | Small sample polarization SAR terrain classification method based on the twin network of depth convolution |
CN108388927B (en) * | 2018-03-26 | 2021-10-29 | 西安电子科技大学 | Small sample polarimetric SAR ground object classification method based on deep convolutional Siamese network |
CN108830799B (en) * | 2018-05-03 | 2022-04-08 | 南京邮电大学 | Polarization SAR image speckle suppression method based on relative polarization total variation |
CN108830799A (en) * | 2018-05-03 | 2018-11-16 | 南京邮电大学 | Polarization SAR image speckle suppression method based on opposite polarisation total variation |
CN110516552A (en) * | 2019-07-29 | 2019-11-29 | 南京航空航天大学 | A method and system for classifying multi-polarization radar images based on timing curves |
CN110516728A (en) * | 2019-08-20 | 2019-11-29 | 西安电子科技大学 | Polarimetric SAR Object Classification Method Based on Denoising Convolutional Neural Network |
CN110516728B (en) * | 2019-08-20 | 2022-12-06 | 西安电子科技大学 | Polarized SAR terrain classification method based on denoising convolutional neural network |
CN111104860A (en) * | 2019-11-19 | 2020-05-05 | 浙江工业大学 | Unmanned aerial vehicle water quality chromaticity monitoring method based on machine vision |
CN111104860B (en) * | 2019-11-19 | 2022-02-15 | 浙江工业大学 | A method for monitoring water quality and chromaticity of unmanned aerial vehicle based on machine vision |
CN116206203A (en) * | 2023-03-08 | 2023-06-02 | 中国石油大学(华东) | Oil spill detection method based on SAR and Dual-EndNet |
CN116206203B (en) * | 2023-03-08 | 2023-08-18 | 中国石油大学(华东) | Oil Spill Detection Method Based on SAR and Dual-EndNet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105718957A (en) | Polarized SAR image classification method based on nonsubsampled contourlet convolutional neural network | |
CN105868793A (en) | Polarization SAR image classification method based on multi-scale depth filter | |
CN104077599B (en) | Polarization SAR image classification method based on deep neural network | |
CN102982338B (en) | Classification of Polarimetric SAR Image method based on spectral clustering | |
CN105138970B (en) | Classification of Polarimetric SAR Image method based on spatial information | |
CN110415199B (en) | Multispectral remote sensing image fusion method and device based on residual learning | |
CN107944370B (en) | Polarimetric SAR Image Classification Method Based on DCCGAN Model | |
CN101140325A (en) | A method for synergistically improving the resolution of hyperspectral images with spatial-spectral information | |
CN104751172B (en) | The sorting technique of Polarimetric SAR Image based on denoising autocoding | |
CN110516728B (en) | Polarized SAR terrain classification method based on denoising convolutional neural network | |
CN107358260A (en) | A kind of Classification of Multispectral Images method based on surface wave CNN | |
CN105160353B (en) | Polarization SAR data terrain classification method based on multiple features collection | |
CN107239799A (en) | Polarization SAR image classification method with depth residual error net is decomposed based on Pauli | |
CN107292336A (en) | A kind of Classification of Polarimetric SAR Image method based on DCGAN | |
CN103839073A (en) | Polarization SAR image classification method based on polarization features and affinity propagation clustering | |
CN104217436B (en) | SAR image segmentation method based on multiple features combining sparse graph | |
Liang et al. | Maximum likelihood classification of soil remote sensing image based on deep learning | |
CN105138966B (en) | Classification of Polarimetric SAR Image method based on fast density peak value cluster | |
CN103365985A (en) | A class-adaptive classification method for polarimetric SAR | |
CN107239757B (en) | A Target Detection Method for Polarimetric SAR Image Based on Deep Ladder Network | |
CN107341511A (en) | Classification of Polarimetric SAR Image method based on super-pixel Yu sparse self-encoding encoder | |
CN107358192A (en) | A kind of polarization SAR image classification method based on depth Curvelet residual error nets | |
CN111626380A (en) | Polarized SAR image classification method based on super-pixels and convolution network | |
CN113421198B (en) | Hyperspectral image denoising method based on subspace non-local low-rank tensor decomposition | |
CN107832798B (en) | Target detection method in polarimetric SAR images based on NSCT ladder network model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160629 |
|
RJ01 | Rejection of invention patent application after publication |