CN105713663B - 一种以f‑t合成产物制备节温器用蜡介质的方法 - Google Patents

一种以f‑t合成产物制备节温器用蜡介质的方法 Download PDF

Info

Publication number
CN105713663B
CN105713663B CN201510928621.0A CN201510928621A CN105713663B CN 105713663 B CN105713663 B CN 105713663B CN 201510928621 A CN201510928621 A CN 201510928621A CN 105713663 B CN105713663 B CN 105713663B
Authority
CN
China
Prior art keywords
temperature
wax
accordance
wax layer
sweating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510928621.0A
Other languages
English (en)
Other versions
CN105713663A (zh
Inventor
孙剑锋
全辉
陈保莲
何凤友
赵亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Publication of CN105713663A publication Critical patent/CN105713663A/zh
Application granted granted Critical
Publication of CN105713663B publication Critical patent/CN105713663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种以F‑T合成产物制备节温器用蜡介质的方法。以适宜的F‑T合成产物为原料,经加氢转化将其中的烯烃和含氧化合物转化为适宜组分;加氢产物经蒸馏制取适当馏程的组分;再采用发汗装置,在普通发汗方法的基础上,在冷却降温过程中增加高温恒温阶段和低温恒温阶段,并在升温过程增加恒温阶段;并在升温发汗过程中强制气流通过蜡层,携带出液态组分,从而加快了固态组分与液态组分的分离速度,并增强了分离效果,使得发汗脱油方法可以生产出熔点在70℃以上的节温器用蜡介质产品。本发明方法具有装置投资低、生产过程简单且操作费用低、无溶剂污染等优点。

Description

一种以F-T合成产物制备节温器用蜡介质的方法
技术领域
本发明属于特种蜡生产技术领域,特别是涉及一种以F-T合成产物制备节温器用蜡介质的方法。
背景技术
蜡质温控阀以蜡类物质作为感应温度变化的介质,当环境温度变化时,蜡类物质的体积产生变化,进而控制阀门开度,从而调节物流流量,达到调整、控制温度的目的。蜡质温控阀所用蜡类物质称作蜡介质。
节温器又称调温器,其作用是根据冷却水温度的高低自动调节进入散热器的水量,改变水的循环范围,以调节冷却系统的散热能力,保证发动机在合适的温度范围内工作。
常用的节温器是蜡式节温器,属蜡质温控阀。蜡式节温器一般采用套管式结构,控温范围10~12℃,根据发动机的最佳工作温度区域,又按标称温度分成70、72、76、80、82等规格,标称温度为70℃的节温器的控温区间为70℃~80℃。对节温器行程要求为:常温~标称温度+2℃的行程小于1 mm,控温范围内(标称温度~标称温度+10℃或标称温度+12℃)行程大于8mm。
蜡式节温器是依靠其所用的蜡介质随温度变化产生体积变化作为输出动作的原动力。当冷却水温度低于规定值时,节温器感温体内的蜡介质呈固态,节温器阀在弹簧的作用下关闭发动机与散热器之间的通道,冷却水经水泵返回发动机,进行发动机内小循环;当冷却水温度达到规定值后,蜡介质产生固→液相变,体积膨胀,并压迫橡胶管使其收缩。在橡胶管收缩的同时对推杆作用以向上的推力,推杆对阀门有向下的反推力使阀门开启。这时冷却水经由散热器和节温器阀,再经水泵流回发动机,进行大循环。这样蜡式节温器就能根据冷却水温度的变化自动调节进入散热器的水量,从而保证发动机在合适的温度范围内工作。
从蜡式节温器的工作原理可以看出,蜡介质是其接收环境温度变化进而输出相应动作的主体,因而蜡介质的性质是蜡式节温器性能的决定因素。
一般蜡介质处于液体状态时,其膨胀系数约为6.7×10-4,固态时的膨胀系数比液态时稍大,而在固←→液相变范围内膨胀系数远大于此值。对节温器用蜡介质的要求就是相变过程的体积膨胀应与节温器的控温范围一致,反映在推杆行程上就是要在节温器的控温范围内大于8mm,而在控温范围以外行程要很小。
石油蜡是原油经过炼制加工后从含蜡馏分油中制得的各类蜡产品的总称,包括液体石蜡、石蜡和微晶蜡。液体石蜡常温下为液态。通常石蜡的熔点为52℃~74℃,微晶蜡的熔点为65℃~90℃。商品石油蜡是多种碳数的正构烷烃、异构烷烃、环烷烃等的烃类混合物,其碳数分布较宽,正构烷烃含量较低。
商品石油蜡直接用作节温器的蜡介质时,会导致大循环开启过早(常温~标称温度+2℃范围内推杆的行程大于1 mm),使发动机预热时间延长;同时由于推杆行程较小(标称温度~标称温度+10℃或标称温度+12℃的行程小于8mm),会导致发动机正常工作时大循环的水量不足,引起发动机过热。所以商品石油蜡必须经分离提纯以缩小碳数分布范围并提高正构烷烃含量,才能用作节温器的蜡介质。
费-托(F-T)合成技术是1923年发明的,1936年在德国实现工业化。F-T合成技术主要包括高温合成技术和低温合成技术。二十世纪九十年代以来,F-T合成工艺及催化剂都取得了突破性的进展,F-T合成产品日益丰富,为生产节温器用蜡介质提供了新的原料。
在石油蜡生产工艺方面常用的石油蜡分离加工手段主要有蒸馏、发汗脱油、溶剂脱油等。
蒸馏是利用不同分子量烃类的沸点不同达到分离提纯的目的,减小蒸馏的沸程可以有效降低产物碳分布的宽度,但对提高正构烷烃含量影响不大,并且由于蒸馏过程需要将石油蜡加热到沸点以上,消耗大量的能量。同时熔点在70℃的烃类的沸点在500℃(常压)以上,采用蒸馏进行分离时效率大大下降。
溶剂脱油方法是利用正构烷烃与异构烷烃在溶剂中的溶解度不同达到分离提纯的目的,可以有效提高产物中的正构烷烃含量,但对碳分布的宽窄影响不大,同时溶剂脱蜡生产设备投资大;生产过程中需要大量使用溶剂,回收溶剂需要消耗大量的能量;溶剂中含有苯系物,会对环境造成影响;溶剂易燃,容易造成生产事故。
发汗脱油方法是利用蜡中各种组分熔点不同的性质进行分离提纯的。石油蜡中各种组分的分子量和结构的不同都会使其熔点不同。同为正构烷烃时,分子量较大的正构烷烃的熔点较高,而分子量较小的正构烷烃的熔点较低;分子量相同时,异构烷烃和环烷烃的熔点要低于正构烷烃,且异构程度越高熔点就越低。所以发汗脱油既能降低产物碳分布的宽度又能提高正构烷烃含量。
与蒸馏分离方法相比,由于各种烃类的熔点温度远低于沸点温度,所以发汗分离过程的能耗远低于蒸馏分离;与溶剂分离方法相比,发汗分离过程不使用溶剂,所以发汗分离过程对环境无影响。而且发汗法即能降低产物碳分布的宽度又能提高正构烷烃含量,所以对制备节温器用蜡介质而言,发汗脱油分离过程在生产过程和产品性能两方面都有优势。
普通的发汗分离过程主要包括以下步骤:(1)准备工作:垫水,用水充满发汗装置皿板下部空间;(2)装料:原料加热至熔点以上呈液态时装入发汗装置;(3)降温结晶:将原料以不大于4℃/h的降温速率缓慢冷却到其熔点以下10~20℃。在冷却过程中,熔点最高的组分先以粗的纤维状晶体形态结晶出来,随着蜡层温度继续降低,其它组分按熔点由高到低的顺序依次结晶形成固体;(4)升温发汗:当蜡层温度达到预设的降温终止温度之后,放掉垫水;再将原料缓慢地加热到预设的发汗终止温度。在升温发汗过程中,随着蜡层温度缓慢升高,熔点较低的环烷烃、异构烷烃和分子量较低的正构烷烃按熔点由低到高的顺序先后熔化成液态并流出(蜡下),最后得到的发汗装置内的剩余物(蜡上)就是熔点高、碳分布窄、正构烷烃含量高的蜡;(5)粗产品收集:升温发汗过程结束后继续升高温度,以熔化取出蜡上,即为粗产品;(6)产品精制、成型、包装:精制过程通常采用白土精制:将粗产品熔化后升温至预定温度,加入白土并恒温搅拌至预定时间后过滤;再经成型、包装即为目的产品。
普通发汗脱油工艺可以生产熔点在40℃~60℃的皂蜡和低熔点石蜡,不适宜生产熔点在70℃左右的节温器用蜡介质。有试验表明,普通发汗工艺生产熔点在70℃左右的节温器用蜡介质产品时,发汗后期蜡上的碳分布宽度和正构烷烃含量与收率无关,即蜡上的碳分布宽度不随收率的下降而下降,正构烷烃含量也不随收率的下降而提高,所以普通发汗分离工艺不适宜制备熔点在70℃左右的节温器用蜡介质。
多年来,发汗脱油工艺在生产设备和工艺方面得到了一些发展,如CN89214332(立式方形多段隔板发汗罐)、CN98233254.8(石蜡发汗罐)、CN201320127680.4(管式石蜡脱油装置)等,在发汗脱油生产设备上作了改进;CN91206202(一种高效石蜡发汗罐)在发汗脱油工艺上作了改进。但这些改进仍不能生产熔点在70℃左右的节温器用蜡介质。
现有技术中的蜡介质制备手段,有采用溶剂法的,如:DD 241,829、DD 241,830 等专利介绍以溶剂萃取的方法制备80~90℃范围内控温的蜡介质。DD 247,572、SU 1,084,289、RU 2,009,171、US 5,223,122 等专利介绍的制备方式,均以溶剂萃取为主。这些专利介绍的制备方式对环境有污染。
现有技术中的蜡介质制备手段,也有采用(多段)发汗或(与蒸馏方法)组合发汗的,如:CN02109670.8(淋浴自动调温阀用蜡质感温介质)等专利的目的产品的熔点都在50℃以下;CN201110353409.8(一种控温阀用蜡质感温介质的制备方法)等专利的目的产品熔点也在50℃以下,且控温范围宽,不适合用作节温器用蜡介质。
发汗工艺具有投资少、生产过程简单、操作费用低、处理量适中、产品质量指标易于调整等优点,更重要的是,发汗脱油工艺是目前已知用于工业规模生产石蜡产品的唯一无溶剂脱油方法,在提倡绿色低碳、环保节能的今天,采用发汗脱油工艺生产节温器用蜡介质的需求更加迫切。
发明内容
针对现有技术的不足,本发明提供一种以F-T合成产物制备节温器用蜡介质的方法,包括加氢转化、蒸馏、发汗三部分,具体地说是以适宜的F-T合成产物为原料,在催化剂存在下进行加氢转化,将其中的烯烃和含氧化合物转化为节温器用蜡介质的适宜组分;加氢产物经蒸馏制取适当馏程的组分;再采用发汗装置,在普通发汗方法的基础上,在冷却降温过程中的适当温度增加高温恒温阶段,并增加在冷却过程结束后的低温恒温阶段和升温发汗过程的恒温阶段;在冷却过程结束后在蜡层表面均匀铺满混合的金属颗粒,并在升温发汗过程中强制气流通过蜡层,携带出液态组分(油和较低熔点的蜡),从而加快了固态组分(较高熔点的蜡)与液态组分的分离速度,并增强了固态组分与液态组分的分离效果,使发汗脱油这种无溶剂脱油方法可以生产出熔点在70℃以上的节温器用蜡介质产品。
本发明的一种以F-T合成产物制备节温器用蜡介质的方法,具体包括以下内容:
(一)加氢转化:F-T合成产物在加氢催化剂作用下进行加氢转化,将其中的烯烃和含氧化合物转化为正构烷烃;
(二)蒸馏:将上述经加氢转化所得产物在蒸馏装置中制取初馏点为450~500℃、终馏点为510~540℃的馏分;
(三)发汗,包括以下过程:
(1)在发汗装置中垫水;
(2)以过程(二)蒸馏制取的馏分为原料,加热熔化后装入发汗装置;
(3)以1.0℃/h~3.0℃/h的速率将蜡层降温至适当温度,高温恒温一段时间;再以0.5℃/h~2.5℃/h的速率降温至原料熔点以下5℃~20℃的预定温度,并低温恒温一段时间;
(4)排出发汗装置中的垫水;然后以0.5℃/h~2.5℃/h的速率升温,蜡层达到预定温度后恒温一段时间,然后停止发汗;其中在升温发汗过程中强制气流通过蜡层;
(5)粗产品经精制、成型和包装后即得到节温器用蜡介质产品。
本发明的以F-T合成产物制备节温器用蜡介质的方法中,所述F-T合成产物的正构烷烃的重量含量应在85%以上,优选正构烷烃含量大于等于95%的F-T合成产物。
本发明的方法中,所述加氢转化过程的操作条件为:压力3~10MPa、温度150~300℃、液时体积空速0.2~2.0h-1和氢油(液)体积比100~1000:1。所述的加氢转化催化剂为Ni/Al2O3、W-Ni/Al2O3、Mo-Ni/Al2O3、W-Mo-Ni/Al2O3催化剂等,催化剂中活性金属组分以氧化物计的重量含量为20%~70%。加氢转化催化剂可以按本领域常规方法制备,催化剂使用时可以根据需要按照本领域常规方法将活性金属氧化物还原或硫化,以提高催化剂活性。
本发明的方法中,过程(二)所述的蒸馏装置可以选择本领域的常规蒸馏装置。所述蒸馏装置一般是具有接近2块理论塔板的减压蒸馏装置。
本发明的方法中,优选在原料降温结晶以后、而在升温发汗过程前(此时蜡层处于固体状态),在蜡层的表面均匀铺满10~100目,优选20~50目的固体颗粒。固体颗粒的密度一般大于4 g/cm3,可以是非金属、金属及合金等材质,优选密度为6~12 g/cm3的金属及合金颗粒,如锌、铁、铜、铅及其合金等化学性质较稳定的低价格金属材质。可以选择两种或两种以上的不同密度的固体颗粒,密度相邻的两种固体颗粒材质的密度差为1~5 g/cm3。两种以上固体颗粒可按重量份数相近的比例混合。此处所述的密度是指构成固体颗粒的材质的密度,如金属颗粒的密度是指金属的密度,而非颗粒的堆密度。发汗过程结束后可以回收固体颗粒并清洗以重复使用。
本发明的方法中,所述的发汗装置一般为发汗皿,并在蜡层以上增加可拆卸的密封系统及加压装置和/或在蜡层以下增加真空装置。所述的强制气流通过蜡层采用在蜡层上方增大压力(气压)或者在蜡层下方降低压力(气压),使蜡层上下形成压力差实现。所述的压力差一般为0.1~5.0个大气压,优选为0.2~2.0个大气压,用以强制气流通过蜡层。
本发明的方法中,步骤(3)中所述的降温过程在高温恒温段之前的降温速率优选1.5℃/h~2.5℃/h。
本发明的方法中,步骤(3)中所述的降温过程的高温恒温段的适当温度是原料(过程(二)所得馏分)熔点-1.0℃~熔点+2.0℃,优选为原料熔点~熔点+1.0℃。冷却降温过程的高温恒温段的时间为0.01~4.0小时,优选为1.0~4.0小时。
本发明的方法中,步骤(3)中所述的降温过程在高温恒温段之后的降温速率优选1.0℃/h~2.0℃/h。
本发明的方法中,步骤(3)中所述降温的预定温度优选为原料熔点以下8℃~15℃。
本发明的方法中,步骤(3)中降温至预定温度后,增加恒温阶段以使固体结晶更充分,冷却降温过程的低温恒温阶段的时间为0.01~3.0小时,优选为1.0~3.0小时。
本发明的方法中,步骤(4)中所述的升温发汗过程的升温速率优选1.0℃/h~2.0℃/h。所述升温的预定温度为目的产品标称温度~标称温度+10℃。
本发明的方法中,步骤(4)中升温发汗至制取产品的预定温度后,增加恒温阶段以使固态组分与液态组分分离更充分,恒温阶段的时间为0.01~5.0小时,优选为1.0~5.0小时。
本发明的方法中,所述蜡层的升温速率和降温速率,可以通过空气浴、水浴、油浴或者其他可行的方式进行控制,优选采用水浴或油浴进行控制。采用水浴或油浴等方式控制升温速率和降温速率时,可在发汗皿外增加夹套,夹套与可移动盘管及循环系统相连,循环系统具有程序降温/加热功能,循环系统加入水或油等物质作为循环介质;装料后将盘管浸没在蜡层中,可使蜡层升/降温过程更快、蜡层温度更均匀。
本发明的方法中,所述的强制气流通过蜡层可以在升温发汗过程任意阶段实施,优选在升温发汗初期实施。
本发明的方法中,所述的强制气流通过蜡层是采用在蜡层上方增加气压实现的。如在蜡层上方施加0.2~1.5个大气压(表压)的压力,而蜡层下方保持为常压。
本发明的方法中,所述的强制气流通过蜡层是采用在蜡层下方降低气压实现的。如可在蜡层上方保持常压,而在蜡层下方维持-0.2~-0.8个大气压(表压)的压力。
商品石油蜡直接用作节温器的温敏介质时,会导致大循环开启过早且控温范围内推杆行程较小。这是由商品石油蜡的化学组成引起的,即商品石油蜡的碳数分布较宽且含有较多的异构烷烃和环烷烃。由于商品石油蜡碳数分布较宽,即含有较多的低分子量的成分,低分子量成分的熔点低于节温器的控温范围,这些成分会提前熔化而产生体积膨胀,导致大循环开启过早;同时由于商品石油蜡含有较多的异构烷烃和环烷烃(一般异构烷烃和环烷烃的膨胀系数小于正构烷烃),这就会使在节温器控温范围内推杆的行程较小,导致大循环的水量不足。所以商品石油蜡必须经分离提纯以缩小碳数分布范围并提高正构烷烃含量,才能用作节温器的蜡类温敏介质。
作为节温器用蜡介质,从使用性能上说,要求有适宜的控温范围和大的体积变化,从其化学组成上就是要有适当的平均碳数、高的正构烷烃含量和窄的碳数分布。以石油为原料制备节温器用蜡介质不仅生产成本高,而且由于其中含有一定量的非适宜组分,影响了节温器用蜡介质的使用性能。低温F-T合成产物的重组分主要为正构烷烃,但是还含有一定量的烯烃和含氧化合物,而且碳数分布非常宽,该产物本身不适宜直接作为节温器用蜡介质。
普通发汗脱油方法是利用蜡和油熔点不同的性质进行分离生产石油蜡产品的,但是对于熔点在70℃左右的石油蜡产品,由于原料化学组成复杂,导致结晶时晶体结构更加细小致密,对液态组分的排出形成巨大的滤流阻力,这就造成仅靠重力自然分离的普通发汗过程中固态组分与液态组分难以完全分离。因此普通发汗脱油工艺不能生产熔点在70℃以上的节温器用蜡介质产品。
本发明为了制备高性能的节温器用蜡介质,通过对节温器用蜡介质使用性能与其化学组成的关系和F-T合成产物的组成的深入研究,针对低温F-T合成产物含有一定量的烯烃和含氧化合物,且碳数分布非常宽是造成低温F-T合成产物不能满足节温器用蜡介质产品技术要求的原因,通过选择适当的催化剂和反应条件,将低温F-T合成产物中的烯烃和含氧化合物等非适宜组分转化为正构烷烃;并通过减压蒸馏对需要的组分富集;再通过发汗降低碳数分布宽度以使产物的性能满足节温器用蜡介质的技术要求。
本发明为了使发汗脱油这种无溶剂生产石油蜡的方法可以制备熔点在70℃以上的节温器用蜡介质产品,针对普通发汗过程中固态组分与液态组分难以分离原因,通过在升温发汗过程中采用强制气流通过蜡层携带出液态组分的方法,同时还优选在冷却降温过程中增加高温恒温阶段,并在冷却降温过程结束后(即升温发汗过程前)在蜡层表面均匀铺满固体颗粒的方法进行改进;同时增加冷却降温过程的低温恒温阶段和升温发汗至预设温度后的恒温阶段等过程。这些措施有效地降低了产物碳分布的宽度并提高正构烷烃含量,使产物的性能能够满足节温器用蜡介质的技术要求。
针对普通发汗过程的研究表明,发汗过程中,液态组分是顺着结晶部分逐渐排出的,类似于液体在毛细管中流动的情况。由于熔点在70℃左右的蜡细小致密的结晶结构,会使对液态组分形成的滤流阻力急剧增大,这就导致仅靠重力自然分离过程的普通发汗方法不能生产节温器用蜡介质产品。
在冷却降温过程中增加高温恒温阶段可以使石油蜡的结晶更大,利于升温发汗过程中液态组分的排出。针对石油蜡结晶过程的研究表明,其化学组成是决定结晶形态的最主要原因,同时冷却过程的条件也会影响结晶形态,尤其是在熔点附近的温度下的冷却条件对结晶形态的影响最明显。熔点在70℃左右的蜡在冷却到熔点附近时,较大分子量的正构烷烃已形成结晶析出,这部分结晶体可以作为后续形成结晶的晶核,此时增加高温恒温阶段,可以使晶核能够充分增长,形成更大尺寸的晶体,这种更大尺寸的晶体虽然不如低熔点蜡的结晶那样粗大,但这种增大的晶体结构对发汗阶段排出液态组分也是十分有利的。
在冷却降温过程结束后在蜡层表面均匀铺满固体颗粒同时在升温发汗过程中强制气流通过蜡层也有利于升温发汗过程中液态组分的排出。在冷却降温过程结束后(即升温发汗过程前),此时蜡层处于固体状态,在蜡层表面均匀铺满固体颗粒。在升温发汗过程中,随着蜡层温度升高蜡层变软,金属颗粒由于密度大,在重力作用下将以较慢的速度沉降,在蜡层内形成上下贯穿的细小通道,降低了滤流阻力,有利于液态组分的快速排出。不同密度和粒径的固体颗粒的沉降速度不同,采用混合的固体颗粒可以保证在发汗全过程中在蜡层的不同高度都有较多的排出液态组分的通道。同时强制气流通过蜡层,携带出液态组分从而增强了固态组分与液态组分的分离效果。再辅以冷却过程的低温恒温阶段使固体结晶更充分,以及发汗过程的恒温阶段使固态组分与液态组分分离更充分等方法,使发汗脱油工艺可以生产碳数分布范围窄且正构烷烃含量高的节温器用蜡介质产品。
本发明的优点是:通过选择适当的催化剂和反应条件,将原料中的烯烃及含氧化合物通过加氢方法转化为节温器用蜡介质的适宜组分(正构烷烃),同时不产生其它杂质。然后通过蒸馏富集目的组分。再采用强制气流通过蜡层携带出液态组分的方法,加快了固态组分与液态组分的分离速度,并增强了固态组分与液态组分的分离效果。而通过在升温发汗过程中使混合固体颗粒沉降,形成的上下贯穿蜡层的细小通道,更利于液态组分的快速排出。并从而使得发汗脱油工艺可以生产碳数分布范围较窄且正构烷烃含量较高的蜡产品,这些产品可以用作节温器用蜡介质。本发明方法装置投资低、生产过程无溶剂污染环境。
附图说明
图1是利用本发明实施例1制备的节温器用蜡介质(Ⅰ)、(Ⅱ)制备的节温器推杆的行程性能曲线。
图2利用本发明实施例2制备的节温器用蜡介质(Ⅲ)、(Ⅳ)制备的节温器推杆的行程性能曲线。
图中横坐标为温度,纵坐标为行程。
具体实施方式
本发明通过选用适宜的低温F-T合成产物为原料,经加氢转化、减压蒸馏、发汗等工艺过程制备熔点在70℃以上的节温器用蜡介质。具体为低温F-T合成产物在催化剂作用下进行加氢转化;加氢产物在蒸馏装置中制取470~530℃馏分;发汗皿上部连接可拆卸的密封装置并与缓冲罐和压缩机连接,和/或在发汗皿下部连接缓冲罐和真空泵;发汗皿外增加夹套,夹套与可移动盘管和循环系统相连,循环系统具有程序降温/加热功能;以蒸馏制取的馏分为原料加热熔化后装入发汗皿,将盘管浸没在原料中并固定;在夹套和盘管内通入低温介质以降低蜡层温度至原料熔点温度附近并恒温一段时间;在蜡层表面均匀铺满混合颗粒;加热循环介质提高蜡层温度;连接密封装置并启动压缩机以在蜡层以上形成正压,和/或启动真空泵以在蜡层以下形成负压,用以强制气流通过蜡层;蜡层温度达到预设温度并恒温一段时间后停止发汗过程。蜡上经精制、成型、包装后即为节温器用蜡介质产品。
以下通过实施例1-2具体说明本发明以F-T合成产物制备节温器用蜡介质的方法。
实施例1
本实施例包括:(一)加氢转化、(二)蒸馏、(三)发汗三个部分。
(一)加氢转化
以中国石油化工股份有限公司低温F-T合成实验装置的蜡油产物为原料,在FHJ-2催化剂(一种Ni/Al2O3商业催化剂,抚顺石油化工研究院研制生产,以氧化物计活性金属镍含量为40%,催化剂在使用前进行常规还原处理)作用下在反应压力5.0MPa、反应温度200℃、体积空速1.0h-1 和氢油体积比500:1的条件下进行加氢以转化其中的烯烃和含氧化合物,加氢产物中正构烷烃含量97.36%。
(二)蒸馏
将上述经加氢转化所得产物在接近2块理论塔板的减压蒸馏装置中,在13.3Pa ~133Pa之间压力条件下,制备470℃~530℃的馏分。
470℃~530℃馏分熔点71.1℃,收率8.03%(相对于蜡油原料),针入度(25℃)12(0.1mm)。
(三)发汗
本部分包括:(1)准备工作、(2)装料、(3)降温—高温恒温—降温—低温恒温结晶、(4)升温—恒温发汗、(5)发汗装置清理、(6)产品精制和成型、包装等过程。
(1)准备工作
将发汗皿上部的密封系统与缓冲罐和压缩机连接好。在发汗皿下部安装缓冲罐并连接真空泵。
发汗皿皿板下部垫水。
将发汗皿的夹套与可移动盘管和具有程序制冷/加热功能的循环系统相连,以水为导热介质;启动循环系统的加热功能,使循环水介质升温至75℃。
(2)装料
以(二)部分蒸馏制备的470℃~530℃馏分为原料,加热熔化后加入发汗皿。将盘管浸没在原料蜡层中并固定。
(3)降温—高温恒温—降温—低温恒温结晶
启动循环系统的制冷功能,以2.0℃/h的降温速率使蜡层温度下降至72.0℃并恒温2.0小时进行高温恒温,以使结晶充分增长;再以1.5℃/h的降温速率使蜡层温度下降至60.0℃并恒温2.0小时进行低温恒温,以使结晶更充分。
关闭循环系统的制冷功能。
(4)升温—恒温发汗
排出发汗皿垫水。
发汗皿出口连接蜡下储罐;连接发汗皿上部密封装置;启动压缩机并保持缓冲罐内压力稳定在1.0~1.2个大气压(表压),发汗皿皿板下方保持常压;启动循环系统加热功能,以1.5℃/h的升温速率使蜡层温度升高到73.0℃并恒温4.0小时以使蜡层中的固态组分与液态组分充分分离。
发汗皿出口换接粗产品储罐(Ⅰ),并保持缓冲罐内压力稳定在1.0~1.2个大气压(表压),发汗皿皿板下方保持常压;继续以1.0℃/h的升温速率使蜡层温度升高到75.0℃并恒温4.0小时以使蜡层中的固态组分与液态组分充分分离。
停压缩机。拆除密封装置。
发汗皿出口换接粗产品储罐(Ⅱ);开启真空泵并保持缓冲罐内压力稳定在-0.4~-0.6大气压(表压),蜡层上方保持常压;以1.0℃/h的升温速率使蜡层温度升高到77.0℃并恒温4.0小时以使蜡层中的固态组分与液态组分充分分离。
停真空泵,终止发汗脱油过程。
(5)发汗装置清理
发汗皿出口换接蜡上储罐;继续升高循环水的温度到90℃熔化取出蜡上,以清理发汗装置。
(6)产品精制和成型、包装
粗产品(Ⅰ)、(Ⅱ)分别经白土精制、成型和包装后即为节温器用蜡介质产品(Ⅰ)和产品(Ⅱ)。
节温器用蜡介质产品(Ⅰ)性质:熔点74.2℃。
节温器用蜡介质产品(Ⅰ)的收率为11.63%(相对于原料470℃~530℃馏分)。
由节温器用蜡介质产品(Ⅰ)制备的节温器产品推杆的行程—温度关系如图1中曲线(Ⅰ)所示。从图1中曲线(Ⅰ)可以看出,节温器推杆行程在72℃时行程小于1mm,70℃~80℃间行程大于8mm,符合标称温度为70℃节温器的技术要求。
节温器用蜡介质产品(Ⅱ)性质:熔点76.3℃。
节温器用蜡介质产品(Ⅱ)的收率为12.05%(相对于原料470℃~530℃馏分)。
由节温器用蜡介质产品(Ⅱ)制备的节温器产品推杆的行程—温度关系如图1中曲线(Ⅱ)所示。从图1中曲线(Ⅱ)可以看出,节温器推杆行程在74℃时行程小于1mm,72℃~82℃间行程大于8mm,符合标称温度为72℃节温器的技术要求。
实施例2
本实施例包括:(一)加氢转化、(二)蒸馏、(三)发汗三个部分。
(一)加氢转化
同实施例1。
(二)蒸馏
同实施例1。
(三)发汗
本部分包括:(1)准备工作、(2)装料、(3)降温—高温恒温—降温—低温恒温结晶、(4)升温—恒温发汗、(5)发汗装置清理及金属颗粒回收、(6)产品精制和成型、包装等过程。
(1)准备工作
筛分出20目~40目的铅颗粒和锌颗粒,按重量比为1:1混合均匀。
将发汗皿上部的密封系统与缓冲罐和压缩机连接好。在发汗皿下部安装缓冲罐并连接真空泵。
发汗皿皿板下部垫水;在发汗皿底部铺双层中速滤纸。
将发汗皿的夹套与可移动盘管和具有程序制冷/加热功能的循环系统相连,以水为导热介质;启动循环系统的加热功能,使循环水介质升温至75℃。
(2)装料
以实施例1中(二)部分蒸馏制备的470℃~530℃馏分为原料,加热熔化后加入底部铺好滤纸的发汗皿。将盘管浸没在原料蜡层中并固定。
(3)降温—高温恒温—降温—低温恒温结晶
启动循环系统的制冷功能,以2.0℃/h的降温速率使蜡层温度下降至72.0℃并恒温2.0小时进行高温恒温,以使结晶充分增长;再以1.5℃/h的降温速率使蜡层温度下降至60.0℃并恒温2.0小时进行低温恒温,以使结晶更充分。
关闭循环系统的制冷功能。
(4)升温—恒温发汗
在蜡层表面均匀铺满前述的铅、锌混合颗粒。
排出发汗皿垫水。
发汗皿出口连接蜡下储罐;连接发汗皿上部密封装置;启动压缩机并保持缓冲罐内压力稳定在1.0~1.2个大气压(表压),发汗皿皿板下方保持常压;启动循环系统加热功能,以1.5℃/h的升温速率使蜡层温度升高到73.0℃并恒温4.0小时以使蜡层中的固态组分与液态组分充分分离。
发汗皿出口换接粗产品储罐(Ⅲ),并保持缓冲罐内压力稳定在1.0~1.2个大气压(表压),发汗皿皿板下方保持常压;继续以1.0℃/h的升温速率使蜡层温度升高到75.0℃并恒温4.0小时以使蜡层中的固态组分与液态组分充分分离。
停压缩机。拆除密封装置。
发汗皿出口换接粗产品储罐(Ⅳ);开启真空泵并保持缓冲罐内压力稳定在-0.4~-0.6大气压(表压),蜡层上方保持常压;以1.0℃/h的升温速率使蜡层温度升高到77.0℃并恒温4.0小时以使蜡层中的固态组分与液态组分充分分离。
停真空泵,终止发汗脱油过程。
(5)发汗装置清理及金属颗粒回收
发汗皿出口换接蜡上储罐;继续升高循环水的温度到90℃熔化取出蜡上,以清理发汗装置。
收集滤纸上的混合金属颗粒,清洗、晾干以备重复使用。
(6)产品精制和成型、包装
粗产品(Ⅲ)、(Ⅳ)分别经白土精制、成型和包装后即为节温器用蜡介质产品(Ⅲ)和产品(Ⅳ)。
节温器用蜡介质产品(Ⅲ)性质:熔点74.4℃。
节温器用蜡介质产品(Ⅲ)的收率为11.59%(相对于原料470℃~530℃馏分)。
由节温器用蜡介质产品(Ⅲ)制备的节温器产品推杆的行程—温度关系如图2中曲线(Ⅲ)所示。从图2中曲线(Ⅲ)可以看出,节温器推杆行程在72℃时行程小于1mm,70℃~80℃间行程大于8mm,符合标称温度为70℃节温器的技术要求。
节温器用蜡介质产品(Ⅳ)性质:熔点76.5℃。
节温器用蜡介质产品(Ⅳ)的收率为12.02%(相对于原料470℃~530℃馏分)。
由节温器用蜡介质产品(Ⅳ)制备的节温器产品推杆的行程—温度关系如图2中曲线(Ⅳ)所示。从图2中曲线(Ⅳ)可以看出,节温器推杆行程在74℃时行程小于1mm,72℃~82℃间行程大于8mm,符合标称温度为72℃节温器的技术要求。
通过实施例1-2可以看出,本发明以F-T合成产物制备节温器用蜡介质的方法,在加氢转化过程中通过选择适当的催化剂和反应条件,将F-T合成产物中的烯烃及含氧化合物转化为节温器用蜡介质的适宜组分;再通过蒸馏富集目的组分;在发汗过程中通过在升温过程中混合金属颗粒沉降,形成的上下贯穿蜡层的细小通道,并在升温发汗过程中强制气流通过蜡层的方法,增强了固态组分与液态组分的分离效果,制备出碳数分布范围较窄且正构烷烃含量较高的蜡产品,可以用作节温器用蜡介质。

Claims (25)

1.一种以F-T合成产物制备节温器用蜡介质的方法,具体包括以下内容:
(一)加氢转化:F-T合成产物在加氢催化剂作用下进行加氢转化,将其中的烯烃和含氧化合物转化为正构烷烃;
(二)蒸馏:将上述经加氢转化所得产物在蒸馏装置中制取初馏点为450~500℃、终馏点为510~540℃的馏分;
(三)发汗,包括以下过程:
(1)在发汗装置中垫水;
(2)以过程(二)蒸馏制取的馏分为原料,加热熔化后装入发汗装置;
(3)以1.0℃/h~3.0℃/h的速率将蜡层降温至适当温度,高温恒温0.01~4.0小时;再以0.5℃/h~2.5℃/h的速率降温至原料熔点以下5℃~20℃的预定温度,并低温恒温0.01~3.0小时;
(4)排出发汗装置中的垫水;然后以0.5℃/h~2.5℃/h的速率升温,蜡层达到预定温度后恒温一段时间,然后停止发汗;其中在升温发汗过程中强制气流通过蜡层;
(5)粗产品经精制、成型和包装后得到节温器用蜡介质产品;
其中,步骤(3)所述的适当温度为过程(二)蒸馏制取馏分的熔点-1.0℃~熔点+2.0℃。
2.按照权利要求1所述的方法,其特征在于,所述F-T的合成产物中正构烷烃的重量含量为85%以上。
3.按照权利要求1所述的方法,其特征在于,所述加氢转化过程的操作条件为:压力3~10MPa、温度150~300℃、液时体积空速0.2~2.0h-1和氢液体积比100~1000:1。
4.按照权利要求1所述的方法,其特征在于,所述的强制气流通过蜡层是采用在蜡层上方增大气压和/或者在蜡层下方降低气压,使蜡层上下形成压力差实现的;所述的压力差为0.1~5.0个大气压。
5.按照权利要求1所述的方法,其特征在于,步骤(3)中所述的降温过程在高温恒温段之前的降温速率为1.5℃/h~2.5℃/h,在高温恒温段之后的降温速率为1.0℃/h~2.0℃/h。
6.按照权利要求1所述的方法,其特征在于,步骤(3)中所述的适当温度为过程(二)蒸馏制取馏分的熔点~熔点+1.0℃。
7.按照权利要求1所述的方法,其特征在于,步骤(3)中所述的高温恒温的时间为1.0~4.0小时。
8.按照权利要求1所述的方法,其特征在于,步骤(3)中所述降温的预定温度为过程(二)蒸馏制取馏分的熔点以下8℃~15℃。
9.按照权利要求1所述的方法,其特征在于,步骤(3)中所述的低温恒温阶段的时间为1.0~3.0小时。
10.按照权利要求1所述的方法,其特征在于,步骤(4)中所述升温的速率为1.0℃/h~2.0℃/h。
11.按照权利要求1所述的方法,其特征在于,步骤(4)中所述升温的预定温度为目的产品标称温度~标称温度+10℃。
12.按照权利要求1所述的方法,其特征在于,步骤(4)中所述恒温的时间为0.01~5.0小时。
13.按照权利要求1所述的方法,其特征在于,所述的强制气流通过蜡层在升温发汗过程任意阶段实施。
14.按照权利要求1所述的方法,其特征在于,所述的强制气流通过蜡层是采用在蜡层上方增加气压实现的:在蜡层上方施加0.2~1.5个大气压的表压压力,而蜡层下方保持为常压。
15.按照权利要求1所述的方法,其特征在于,所述的强制气流通过蜡层是采用在蜡层下方降低气压实现的:在蜡层上方保持常压,而在蜡层下方维持-0.2~-0.8个大气压的表压压力。
16.按照权利要求1所述的方法,其特征在于,在步骤(3)原料降温结晶以后、而在升温发汗过程前在蜡层的表面均匀铺满10~100目的固体颗粒。
17.按照权利要求16所述的方法,其特征在于,所述的固体颗粒材质的密度大于4 g/cm3
18.按照权利要求17所述的方法,其特征在于,所述的固体颗粒选自锌、铁、铜、铅及其合金中的一种或几种。
19.按照权利要求18所述的方法,所述的固体颗粒选择两种以上的不同密度的固体颗粒,密度相邻的两种固体颗粒材质的密度差为1~5 g/cm3
20.按照权利要求2所述的方法,其特征在于,所述F-T的合成产物中正构烷烃的重量含量为95%以上。
21.按照权利要求4所述的方法,其特征在于,所述的压力差为0.2~2.0个大气压。
22.按照权利要求12所述的方法,其特征在于,步骤(4)中所述恒温的时间为1.0~5.0小时。
23.按照权利要求13所述的方法,其特征在于,所述的强制气流通过蜡层在升温发汗初期实施。
24.按照权利要求16所述的方法,其特征在于,所述固体颗粒的目数为20~50目。
25.按照权利要求17所述的方法,其特征在于,所述的固体颗粒材质的密度为6~12 g/cm3
CN201510928621.0A 2014-12-18 2015-12-15 一种以f‑t合成产物制备节温器用蜡介质的方法 Active CN105713663B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410786047 2014-12-18
CN2014107860475 2014-12-18

Publications (2)

Publication Number Publication Date
CN105713663A CN105713663A (zh) 2016-06-29
CN105713663B true CN105713663B (zh) 2017-10-03

Family

ID=56146907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510928621.0A Active CN105713663B (zh) 2014-12-18 2015-12-15 一种以f‑t合成产物制备节温器用蜡介质的方法

Country Status (1)

Country Link
CN (1) CN105713663B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107523068B (zh) * 2016-06-17 2020-07-03 中国石油化工股份有限公司 一种发汗生产3d打印蜡材料的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB687235A (en) * 1950-03-24 1953-02-11 Bataafsche Petroleum Improvements in and relating to the treatment of paraffin wax
CN103102971B (zh) * 2011-11-10 2015-11-18 中国石油化工股份有限公司 一种控温阀用蜡质感温介质的制备方法

Also Published As

Publication number Publication date
CN105713663A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
CN105802664B (zh) 一种以f‑t合成产物生产相变材料的方法
CN105713666B (zh) 一种以f‑t合成产物制备节温器用介质的方法
CN105713663B (zh) 一种以f‑t合成产物制备节温器用蜡介质的方法
CN106883882A (zh) 一种发汗及以f-t合成产物生产相变材料的方法
CN105779001B (zh) 一种节能用相变蜡材料的制备方法
CN105754655B (zh) 一种行程均匀线性的节温器用蜡类温敏介质的制备方法
CN105779002B (zh) 一种发汗及制备微晶蜡的方法
CN105754658B (zh) 一种发汗及制备高正构烃含量、窄碳数分布蜡产品的方法
CN105778996B (zh) 一种发汗及制备皂蜡和石蜡的方法
CN105733678B (zh) 一种以f‑t合成产物生产节温器用蜡介质的方法
CN105778998B (zh) 一种节温器用蜡类温敏介质的制备方法
CN105778997B (zh) 一种导热性能稳定的蜡式节温器用介质的制备方法
CN105754654B (zh) 一种微晶蜡的制备方法
CN105754660B (zh) 一种节温器用介质的制备方法
CN105754659B (zh) 一种高熔点石蜡的制备方法
CN105778999B (zh) 一种高滴熔点微晶蜡的制备方法
CN105754653B (zh) 一种液体石蜡的制备方法
CN105802666B (zh) 一种蜡类相变材料的生产方法
CN105802668B (zh) 一种节温器用蜡类温敏介质的生产方法
CN105779000B (zh) 一种皂蜡的制备方法
CN105733679B (zh) 一种发汗及生产皂蜡和石蜡的方法
CN105778868B (zh) 一种蜡类相变材料的制备方法
CN106883888B (zh) 一种发汗及生产高滴熔点微晶蜡的方法
CN106883877B (zh) 一种发汗及生产节温器用蜡类温敏介质的方法
CN105754657B (zh) 一种低熔点石蜡的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant