CN105705277A - 去除中间层材料的高温合金材料沉积 - Google Patents

去除中间层材料的高温合金材料沉积 Download PDF

Info

Publication number
CN105705277A
CN105705277A CN201480061202.5A CN201480061202A CN105705277A CN 105705277 A CN105705277 A CN 105705277A CN 201480061202 A CN201480061202 A CN 201480061202A CN 105705277 A CN105705277 A CN 105705277A
Authority
CN
China
Prior art keywords
temperature alloy
layer
alloy material
deposition
substrate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480061202.5A
Other languages
English (en)
Inventor
G·J·布鲁克
A·卡梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Power Generations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Power Generations Inc filed Critical Siemens Power Generations Inc
Publication of CN105705277A publication Critical patent/CN105705277A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B21/00Unidirectional solidification of eutectic materials
    • C30B21/02Unidirectional solidification of eutectic materials by normal casting or gradient freezing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K25/00Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
    • B23K25/005Welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]

Abstract

一种沉积高温合金材料的多层包层(40)的方法和所形成的装置。材料(20)的第一层例如通过高温合金粉末(54)的激光包覆被沉积在基底(22)上。所沉积的材料包括定向凝固区域(24)和最上面的等轴区域(26)。最上面的区域例如通过磨削被去除以露出定向凝固材料的平坦表面(28)。沉积在暴露出的平坦表面上的材料(32)的第二层将再次具有定向凝固区域(34)和最上面的等轴区域(36)。重复该过程,直到实现包层材料的所希望厚度,多层包层在贯穿其厚度在各层之间没有等轴材料。

Description

去除中间层材料的高温合金材料沉积
技术领域
本发明一般涉及材料技术领域,并且更具体地沉积高温合金材料而不开裂的方法。
背景技术
取决于被焊接材料的类型,焊接工艺差别很大。一些材料在各种条件下更容易焊接,而其他材料需要特殊处理,以实现结构良好的接合,而不使周围基底材料劣化。
人们认识到,由于其对焊接凝固裂纹和应变时效开裂的敏感性,高温合金材料是最难焊接的材料之一。术语“高温合金”在本文中被使用,因为它是本领域通常使用的;即在高温下表现出优异的机械强度和耐蠕变性能的高度耐腐蚀和耐氧化的合金。高温合金通常包括高的镍或钴含量。高温合金的例子包括在售商标和品牌下合金:Hastelloy,Inconel合金(例如IN738、IN792、IN939),Rene合金(例如ReneN5、Rene80、Rene142),Haynes合金,MarM,CM247,CM247LC,C263,718,X-750,ECY768,282,X45,PWA1483和CMSX(例如CMSX-4)单晶合金。
一些高温合金材料的焊接修复已成功完成,通过预热材料到非常高的温度(例如达高于1600°F或870℃),以在修复过程中显著增加材料的延展性。这种技术被称为热箱焊接或在升高温度(SWET)焊接修复的高温合金焊接,它通常使用手动GTAW工艺完成。然而,热箱焊接受到保持均匀的部件处理表面温度的困难和保持完整的惰性气体保护的困难以及在这种极端的温度下在部件附近工作给操作者施加的身体困难的限制。
一些高温合金材料的焊接应用可以使用冷却板,以限制基底材料的加热来进行;从而限制基底热效应的出现和引起开裂的应力问题。然而,这种技术对于许多零件的几何形状不便于使用冷却板的修复应用是不实际的。
图1是一个常规的图,其示出了作为其铝和钛含量的函数的各种合金的相对焊接性。合金如IN718,其具有相对较低的这些元素的含量,并必然相对较低的γ基本含量(primecontent),被认为是相对可焊接的,虽然这种焊接通常被限制到部件的低应力区域。合金例如IN939具有相对较高的这些元素的含量,通常不被认为是可焊接的,或只能使用上面讨论的特殊步骤被焊接,这增加了材料的温度/延展性并最小化工艺的热输入。虚线10表示可焊性区域的可识别上边界。线10在纵轴上与3wt.%的铝相交,在横轴上与6wt.%的钛相交。可焊性区域以外的合金被认为是使用已知工艺非常困难或不可能进行焊接的,并且具有最高铝含量的合金一般被发现是最难以焊接的,如由箭头所表示的。
还已知的是,利用选择性激光熔化(SLM)或选择性激光烧结(SLS)熔融一薄层高温合金粉末颗粒到高温合金基底上。在激光加热过程中,通过施加惰性气体,例如氩气,将熔池从大气屏蔽。这些工艺往往捕获氧化物(例如铝和铬的氧化物),它们附着在沉积材料层内的颗粒表面上,造成孔隙、夹杂物,和与被困氧化物相关的其他缺陷。后处理热等静压(HIP)经常被用来去除这些空隙、夹杂物和裂缝,以改善沉积涂层的性能。非常薄的层(即1mm的几分之一)的高温合金材料的激光微包覆(microcladding)已经取得了一定的成功。然而,这样的过程是缓慢的,并且因此成本高,并且在非可焊接性区域的高温合金沉积仍然是个问题。
附图说明
本发明在下面的说明书中基于附图进行说明,所述附图示出:
图1是示出了作为其铝和钛含量的函数的各种合金的相对可焊性的常规图表。
图2是现有技术材料沉积的剖面图。
图3A-3D示出了根据本发明的方法的步骤。
图4示出了本发明的一个实施例的步骤。
图5是本发明的部件修复方法的流程图。
具体实施方式
本发明人已开发了一种技术,该技术能够以远远超过现有技术中所实现的层厚度成功沉积非常难以焊接的高温合金材料,所沉积的材料还具有有利的定向凝固(directionally-solidified)晶体结构。本发明人已经认识包覆材料的某些特性,并且已经开发出本发明来利用这些特性的有利方面,并克服这些特性的有害方面。
图2是通过激光包覆工艺沉积在多晶等轴(equiaxed)基底14上的材料层12的横截面图。在大致平坦表面上的大面积激光包覆倾向于在沉积材料中产生大致垂直于表面的温度梯度。对于适度的沉积行进速度,温度梯度仅稍微从行进进展方向法线偏斜。在沉积材料主要通过到下层基底的热损失冷却时,外延凝固(epitaxialsolidification)沿着这样的温度梯度发生。因此,微结构趋向于定向凝固,晶粒大约垂直于基底表面生长。这种效果类似于定向凝固铸造工艺,其中铸模提供具有相对低的热传导的壁,并且热从模具的底部被提取,以使原料晶粒垂直增长。这种效果在图2的区域16的大致垂直定向晶粒中被示出。
沉积材料12的顶部区域18具有由表面张力作用引起的稍微圆形形状。而与到基底的热损失相比,到周围大气的热损失相对较低,这将沿大致垂直于圆形轮廓的顶部区域18存在温度梯度。因此单向凝固在该区域丢失,并且晶粒结构一般是等轴的,如在图2中所示。在该第一沉积12上方的材料的第二层沉积(未示出)将趋向于产生更多等轴材料,因为温度梯度随后将垂直于圆形表面。
对于难焊高温合金材料,等轴凝固的发生通常与微裂纹相关联。本发明人已经发现,通过多个沉积材料层形成的包层可以靠近基底无裂纹,但在后续层中表现出多种有害的裂纹。这种开裂原因可能包括等轴材料更可能弱化的晶界面积以及在凝固和沉积收缩过程中应力可能不利的被定向的可能性的事实。
本发明的发明人已经发现,通过在多层包覆过程中包括中间层材料去除步骤,可以实现甚至更难以焊接的高温合金材料的无裂纹沉积。特别地,沉积材料层到基底表面上之后,材料层的等轴材料部分被去除以暴露定向凝固材料的表面。材料去除过程可以是通过研磨、机加工或有效地去除沉积材料层的上部等轴区域的任何其他工艺,如沉积12的层18。定向凝固材料的暴露表面然后优选平行于原始基底表面,并垂直于晶粒生长的方向,并且它已准备好使用另一材料层来包覆。材料去除和沉积步骤然后被重复直到获得定向凝固材料的所需厚度。
一种这样的方法参照图3A-3D进行了更详细的说明。图3A是沉积在基底22上的合金材料20的第一层的横截面图,例如通过激光包覆工艺。合金材料20和基底22在一些实施例中可以是高温合金材料。合金材料20包括定向凝固区域24和等轴区域26。如本文中所使用的这些区域的名称并不意图排除在区域中的其他晶型的一些附带量,而是表明在区域中的主要晶体形态。由于正常的表面张力的影响,等轴区域26具有不平行于基底22的表面30的上表面27。
图3B示出了经历材料去除工艺之后图3A的结构,其中等轴区域24已被去除以暴露定向凝固材料24的表面28。暴露表面28优选是平的,平行于基底22的初始表面30,并垂直于定向凝固材料24的纵向生长轴线。一些定向凝固材料可以在材料去除步骤中被去除。
图3C示出了合金材料32的第二层已经被沉积到定向凝固表面28之后图3B的结构。第二层32还包括定向凝固区域34和上覆等轴区域36。相对平坦的定向凝固表面28提供散热器,用于创建在材料沉积过程中生长定向凝固区域34必要的温度梯度。没有等轴材料被保持在定向凝固材料24、34的层间,并且定向凝固因此从层延伸到层。在具有四层一个测试样品中,定向凝固微观结构延伸到第四层的近顶端,而利用轻磨削(小于约1mm的材料去除)在层之间没有开裂。类似的研磨在多遍一个接一个(sidebyside)的高温合金的激光熔覆中可能是有价值的。
图3D示出了等轴区域36已被去除之后的图3C的结构,以暴露另一个平面定向凝固表面38,其可用于实现具有所需厚度的多层包层40所需材料的进一步沉积。不同于现有技术的高温合金材料多层包覆,按照本发明的包层40不包括通过其厚度的等轴材料。当基底表面30是平坦的,或者至少在材料沉积区域合理地平坦时,有可能产生定向凝固材料在基底22上的包层40,无论基底22是否被定向凝固或等轴化。
可选地,层之间的包覆进展方向可以随着进一步有助于保持定向凝固而改变。采用缓慢行进速度,温度梯度仅从行进方向的法线稍微倾斜,从而导致晶粒生长纵向轴线与基底表面平面之间的小程度的非垂直度。沉积在相同行进方向上的附加层可能会导致进展性偏斜,这可能最终导致等轴凝固。通过颠倒进展的方向(即首先进入图3的平面,然后从图3的平面离开),偏斜温度梯度将在层之间切换并且从而在垂直方向上保持凝固。在各种实施例中,沉积方向可以在每层之间颠倒,或一些多个层可以在颠倒之间进行沉积。
图4示出了根据本发明的实施例可用于沉积高温合金材料的材料沉积工艺(例如图3A的层20或图3C的层34)。在图4中,基底50正经历焊剂辅助激光包覆工艺。基底50由粉末层52覆盖,其包括合金粉末层54和焊剂材料覆盖层56。在其它实施例中,合金粉末和焊剂粉末在被沉积到基底上之前被混合在一起。能量束如激光束58相对于基底50横动以形成移动熔池60。熔池60重新固化以形成由熔渣层64覆盖的包层62。如在本发明人的共同未决美国专利申请公开US2013/0140278A1,代理人案卷2012P22347US中更充分地描述的,其通过引用并入本文,焊剂材料56和所得的熔渣层64提供了许多有利于防止包层62和下面的基底材料50开裂的功能。首先,它们的功能是在激光束58的下游区域从大气屏蔽熔融材料区域和固化(但仍然是热的)包层材料62两者。熔渣浮到表面,以从大气中分离熔融或热金属,并且焊剂可被配制以在一些实施例中产生保护气体,从而避免或最小化昂贵的惰性气体的使用。第二,熔渣64用作允许固化材料缓慢而均匀地冷却的盖层,从而减少可能有助于焊后再加热或者应变时效开裂的残余应力。熔渣64的绝热效果也往往通过相对于到基底50的热损失降低到大气的热损失,来降低在固化熔池60顶部凝固的等轴材料体积。第三,熔渣64有助于成形熔融金属池。第四,焊剂材料56提供清洁效果,用于去除有助于焊接凝固裂纹的痕量杂质,例如硫和磷。这种清洁包括金属粉末的脱氧。最后,该焊剂材料56可提供能量吸收和捕获功能,以更有效地将激光束58转换成热能,从而有利于在该过程中热量输入的精确控制,和所得材料温度的严格控制。另外,焊剂可以被配制成在处理过程中补偿挥发元素的损失或积极促进否则由金属粉末本身提供的元素沉积。此过程可在室温下针对如下材料在高温合金基底上产生超过2mm(例如高达4mm或6mm)厚的高温合金包覆的无裂纹沉积,所述材料迄今被认为只可用热箱处理或通过使用冷却板被接合,包括具有在图1中位于线10上方的组成的材料。这与现有的SLM工艺形成对比,其例如通常沉积仅有200微米的层。在参照图3B和3D描述的材料去除步骤之前或期间,熔渣层64然后被去除。如上所述,这样所沉积的包覆材料62将包括由等轴区域覆盖的定向凝固区域。而更大的层厚度可以实现这一过程,在一个实施例中,粉末状合金材料54被沉积以具有足够的厚度,使得高温合金包层62的这样所沉积层厚度大于2mm,并且该厚度的至少1mm被去除以暴露至少1mm厚度的定向凝固高温合金材料表面。
此处所描述的工艺可以具有到燃气涡轮发动机中使用的高温合金部件的修复应用,例如叶片和导叶。图5示出了用于修复这些部件的方法的步骤。在步骤70中,燃气涡轮发动机在服务中被移除,并且发动机的热气通路部件从发动机中被移除用于修理。如果部件包括陶瓷热障涂层,在步骤72中,涂层的一部分可以在待修复区域中被去除。在检查过程中,在修复区域中的缺陷被去除,例如通过在步骤74中的磨削或机加工,其具有加工后的检查,以确认缺陷被去除。研磨或机加工可优选形成平坦表面,或者说大致平坦的表面具有足够低的曲率,以便从该表面的定向凝固步骤将发展主要柱状晶粒材料。然后,高温合金修复材料层在步骤76中被沉积,如采用激光熔覆工艺。这样的过程会产生具有靠近平坦表面的定向凝固区域和等轴材料的最上面区域的包覆材料层。修复材料层然后在步骤78中被磨平以去除等轴材料并还原平面或基本平坦的表面。如果在步骤80中需要材料的附加厚度,步骤76和78被重复,直到获得定向凝固高温合金修复材料的所需厚度。如果需要的话,热障涂层然后在步骤82中被恢复,然后该部件在步骤84中返回到燃气涡轮发动机中服务。
根据本发明形成或修复的装置可以包括基底;在基底表面上的高温合金材料包层,包括多个定向凝固合金材料层,定向凝固高温合金材料的晶粒在垂直于基底表面的厚度方向上延伸;以及包层,具有在厚度方向上布置在层之间的非等轴或非定向多晶高温合金材料。基底可以是定向凝固或等轴材料。包层和/或基底可以具有位于图1中限定的可焊性区域之外的组成。
虽然本发明的各种实施例已经被示出和描述,但是将显而易见的是这样的实施例只通过示例的方式被提供。许多变化、改变和替换可以被做出而不脱离本发明。因此,本发明意图仅由所附权利要求的精神和范围限制。

Claims (20)

1.一种方法,包括:
沉积材料层到基底表面上;和
去除所述材料层的等轴材料部分,以暴露定向凝固材料的表面。
2.根据权利要求1所述的方法,进一步包括:
沉积材料的第二层到所述定向凝固材料的表面上;和
去除所述材料第二层的等轴材料部分,以暴露定向凝固材料的第二表面;和
颠倒两层之间的沉积方向。
3.根据权利要求1所述的方法,还包括:
沉积包含高温合金材料和焊剂材料的粉末材料层到所述基底表面上;
熔融所述粉末材料层的至少一部分,以在由熔渣层覆盖的所述基底表面上形成高温合金材料层;和
去除所述熔渣和所述等轴材料部分,以暴露定向凝固高温合金材料的表面。
4.根据权利要求3所述的方法,还包括:
沉积所述粉末材料层以具有足够的厚度使得所述高温合金材料层具有大于2mm的厚度;和
去除所述高温合金材料层的顶部部分至少1mm厚度以暴露所述定向凝固的高温合金材料表面。
5.根据权利要求3所述的方法,其中所沉积的高温合金材料层具有不平行于所述基底表面的顶部表面;并且
其中去除所述高温合金材料层的等轴材料部分的步骤形成所述定向凝固合金材料的表面以平行于所述基底表面。
6.根据权利要求3所述的方法,其中所述高温合金材料位于绘制钛含量相对于铝含量的高温合金曲线图上所限定的可焊性区域之外,其中,所述可焊性区域的上边界由与钛含量轴相交于6wt.%并且与铝含量轴相交于3wt.%的线界定。
7.一种高温合金材料的包层,其通过权利要求1所述的方法沉积在基底上。
8.一种部件,包括通过权利要求2所述的方法沉积在基底上的多个高温合金材料层,并且不包括穿过多个层的厚度的等轴材料。
9.一种方法,包括:
沉积高温合金材料的颗粒到基底表面上;
使用能量束熔融所述颗粒以形成熔池;
使所述熔池冷却并在垂直于所述基底表面的方向上定向生长所述高温合金材料的晶粒;和
去除远离所述基底表面形成在定向凝固晶粒上方的等轴高温合金材料,以暴露定向凝固高温合金材料的包层表面。
10.根据权利要求9所述的方法,进一步包括:
沉积具有所述高温合金材料颗粒的焊剂材料颗粒到所述基底表面上;
熔融具有所述高温合金材料颗粒的焊剂颗粒以在所述熔池上形成熔渣层;
使所述熔池冷却并在所述熔渣下凝固;和
去除所述熔渣和所述等轴高温合金材料,以暴露定向凝固合金材料的所述包层表面。
11.根据权利要求10所述的方法,进一步包括:
研磨或机械加工凝固材料,以形成平行于所述基底表面的所述包层表面;和
重复该方法,直到在所述基底表面上产生期望厚度的定向凝固高温合金材料。
12.根据权利要求11所述的方法,还包括颠倒在至少两个沉积步骤之间的沉积方向。
13.根据权利要求10所述的方法,其中所述高温合金材料位于绘制钛含量相对于铝含量的高温合金曲线图上所限定的可焊性区域之外,其中,所述可焊性区域的上边界由与钛含量轴相交于6wt.%并且与铝含量轴相交于3wt.%的线界定。
14.一种通过权利要求9所述的方法沉积在基底上的高温合金材料的包层。
15.一种部件,包括通过权利要求11的方法沉积在基底上的多个高温合金材料层,并且不包括穿过多个层的厚度的等轴材料。
16.一种方法,包括:
去除在修复区域中高温合金基底的劣化部分;
在所述修复区域沉积高温合金包覆材料的第一层;
去除所述第一层的最上面部分,以暴露所述高温合金包覆材料的定向凝固表面;和
沉积高温合金包覆材料的第二层到所述定向凝固表面。
17.根据权利要求16所述的方法,还包括使用能量束熔融包括高温合金颗粒和焊剂颗粒的粉末层以完成每个沉积步骤。
18.根据权利要求16所述的方法,进一步包括:
通过研磨所述基底去除所述劣化部分,以形成第一大致平坦表面;和
通过研磨去除所述最上面部分以将所述定向凝固表面形成为与所述第一大致平坦表面平行的第二大致平坦表面。
19.根据权利要求16所述的方法,还包括使用与所述第一层的沉积方向颠倒的沉积方向沉积所述第二层。
20.一种通过权利要求16所述的方法修复的装置,其在所述第一层和所述第二层之间不包括等轴材料。
CN201480061202.5A 2013-11-08 2014-11-03 去除中间层材料的高温合金材料沉积 Pending CN105705277A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/075,587 US20150132601A1 (en) 2013-11-08 2013-11-08 Superalloy material deposition with interlayer material removal
US14/075,587 2013-11-08
PCT/US2014/063626 WO2015069588A1 (en) 2013-11-08 2014-11-03 Superalloy material deposition with interlayer material removal

Publications (1)

Publication Number Publication Date
CN105705277A true CN105705277A (zh) 2016-06-22

Family

ID=51871332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480061202.5A Pending CN105705277A (zh) 2013-11-08 2014-11-03 去除中间层材料的高温合金材料沉积

Country Status (5)

Country Link
US (1) US20150132601A1 (zh)
EP (1) EP3065900A1 (zh)
KR (1) KR20160085290A (zh)
CN (1) CN105705277A (zh)
WO (1) WO2015069588A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150360322A1 (en) * 2014-06-12 2015-12-17 Siemens Energy, Inc. Laser deposition of iron-based austenitic alloy with flux
US20170022614A1 (en) * 2015-07-20 2017-01-26 Goodrich Corporation Methods for repair of aircraft wheel and brake parts
US10722946B2 (en) * 2016-04-25 2020-07-28 Thomas Strangman Methods of fabricating turbine engine components
CN109963685B (zh) * 2016-11-16 2022-04-29 康明斯有限公司 用于将材料添加到铸件的系统和方法
FR3071516B1 (fr) * 2017-09-25 2022-07-29 Safran Aircraft Engines Procede de fabrication d'une piece comprenant deux superalliages differents
CN107774997B (zh) * 2017-10-23 2021-02-05 江西瑞曼增材科技有限公司 一种镍基定向高温合金激光定向增材方法
US10989137B2 (en) 2018-10-29 2021-04-27 Cartridge Limited Thermally enhanced exhaust port liner
US10921365B2 (en) * 2019-04-11 2021-02-16 Arista Networks, Inc. High-potential testing of conductive lands of a printed circuit board
CN110453218A (zh) * 2019-09-10 2019-11-15 西安煤矿机械有限公司 一种基于激光熔覆焊接的采煤机行星架的修复方法
CN110387543B (zh) * 2019-09-10 2021-06-29 西安煤矿机械有限公司 一种激光熔覆焊修复行星架外花键的方法
CN115026308B (zh) * 2022-06-10 2024-02-02 南京工业大学 冷喷涂调控激光熔覆沉积组织的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
CN1997478A (zh) * 2004-02-03 2007-07-11 西门子公司 包括有定向微结构的基本材料的构体的钎焊修补方法
CN101342628A (zh) * 2007-07-10 2009-01-14 通用电气公司 用于涡轮叶片末梢的焊补方法
CN102056701A (zh) * 2008-04-14 2011-05-11 西门子公司 根据基底的优先方向进行焊接的方法
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material
US20130140279A1 (en) * 2011-01-13 2013-06-06 Gerald J. Bruck Laser re-melt repair of superalloys using flux
US20130232749A1 (en) * 2012-03-12 2013-09-12 Gerald J. Bruck Advanced pass progression for build-up welding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626228B1 (en) * 1998-08-24 2003-09-30 General Electric Company Turbine component repair system and method of using thereof
US9352413B2 (en) 2011-01-13 2016-05-31 Siemens Energy, Inc. Deposition of superalloys using powdered flux and metal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
CN1997478A (zh) * 2004-02-03 2007-07-11 西门子公司 包括有定向微结构的基本材料的构体的钎焊修补方法
CN101342628A (zh) * 2007-07-10 2009-01-14 通用电气公司 用于涡轮叶片末梢的焊补方法
CN102056701A (zh) * 2008-04-14 2011-05-11 西门子公司 根据基底的优先方向进行焊接的方法
US20130140279A1 (en) * 2011-01-13 2013-06-06 Gerald J. Bruck Laser re-melt repair of superalloys using flux
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material
US20130232749A1 (en) * 2012-03-12 2013-09-12 Gerald J. Bruck Advanced pass progression for build-up welding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENGYING ZHANG ET AL.: "Elimination of turned dendrite in laser multilayer deposition of Rene88DT superalloy on DD3 single crystal", 《CHINESE OPTICS LETTERS》 *

Also Published As

Publication number Publication date
US20150132601A1 (en) 2015-05-14
WO2015069588A1 (en) 2015-05-14
EP3065900A1 (en) 2016-09-14
KR20160085290A (ko) 2016-07-15

Similar Documents

Publication Publication Date Title
CN105705277A (zh) 去除中间层材料的高温合金材料沉积
KR101791976B1 (ko) 초합금 구성요소의 국부 보수
US20150224607A1 (en) Superalloy solid freeform fabrication and repair with preforms of metal and flux
US9283593B2 (en) Selective laser melting / sintering using powdered flux
KR101791113B1 (ko) 분말형 용제 및 금속을 사용하는 초합금의 적층
JP4928916B2 (ja) ガスタービン高温部品の補修方法およびガスタービン高温部品
CN105408056B (zh) 利用部件支撑的填料对基底的修复
KR20150106007A (ko) 초합금 구성요소의 국부 보수
KR20150113149A (ko) 분말형 용제를 사용하는 선택적 레이저 용융 및 소결
US20130316183A1 (en) Localized repair of superalloy component
US7784668B2 (en) Repair method for propagating epitaxial crystalline structures by heating to within 0-100° f of the solidus
EP2589449A1 (en) A process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (SLM)
KR20160079873A (ko) 분말식 금속 및 분말식 플럭스의 유동화된 베드를 사용하는 적층 가공
US10190220B2 (en) Functional based repair of superalloy components
CN105431250B (zh) 通过粉末合金和焊剂材料添加的超合金部件修复

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160622