CN105703357A - 一种可实时监测的水力发电站 - Google Patents

一种可实时监测的水力发电站 Download PDF

Info

Publication number
CN105703357A
CN105703357A CN201610039625.8A CN201610039625A CN105703357A CN 105703357 A CN105703357 A CN 105703357A CN 201610039625 A CN201610039625 A CN 201610039625A CN 105703357 A CN105703357 A CN 105703357A
Authority
CN
China
Prior art keywords
wind speed
power plant
water
wind
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610039625.8A
Other languages
English (en)
Inventor
陈杨珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610039625.8A priority Critical patent/CN105703357A/zh
Publication of CN105703357A publication Critical patent/CN105703357A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Abstract

本发明提供了一种可实时监测的水力发电站,其包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,所述快速模拟装置包括结构参数监测模块、平均风速计算模块、各模拟点的脉动风速时程计算模块、风速时程计算模块和风速模拟显示模块。所述平均风速计算模块、各模拟点的脉动风速时程计算模块、风速时程计算模块依靠所述监测模块监测数值进行计算,得到的风速时程由风速模拟显示模块显示。本发明的水力发电站,其风速时程可以快速模拟,且模拟计算工作量小、效率高、精确度高。

Description

一种可实时监测的水力发电站
技术领域
本发明涉及水力发电站设计领域,具体涉及一种可实时监测的水力发电站。
背景技术
相关技术中,设置于沿海或者强风地区的水力发电站经常受到风的影响。风振时域分析可以更全面地了解水力发电站的风振响应特性,更直观地反应水力发电站的风致振动控制的有效性,从而便于维护人员对水力发电站进行恰当的维护,增强水力发电站的安全性能。在对水力发电站进行风振时域分析时,需要对水力发电站的风速时程进行模拟。
发明内容
针对上述问题,本发明提供一种可实时监测的水力发电站。
本发明的目的采用以下技术方案来实现:
一种可实时监测的水力发电站,包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,所述快速模拟装置包括:
(1)结构参数监测模块,沿水力发电站的拦水坝高度方向将拦水坝划分多个间隔相同的测试层,在拦水坝的侧壁上安装所述数据采集装置,选择测试层的边缘点作为一个风速时程的模拟点,且在每个测试层边缘布设所述风速仪和温度传感器;
(2)平均风速计算模块,其利用风速仪监测出每测试层的风速总量,横向角和竖向风速,取0.2s为采样时间间隔,进行平均风速的计算时,引入平均风速校正系数Q:
Q = 1 - | 6.38 e - 9 ( P ‾ - 0.378 P w a t ) 1 + 0.00366 T ‾ - F b F b |
每测试层在一个采用时间的平均风速的计算公式为:
W ( i ) = 1 N - 2 { [ Σ i = 1 N [ w ( i ) cos ( arcsin ( w z ( i ) w ) ) cos θ ( i ) ] - A ] 2 + [ Σ i = 1 N [ w ( i ) cos [ arcsin ( w z ( i ) w ) ] sin θ ( i ) ] - B ] 2 } 1 / 2 × Q
其中,A为风速总量w在x方向的分量值的极大值和极小值之和,B为风速总量w在y方向分量值的极大值和极小值之和,为当地平均气压,为当地平均温度,Pwat为当地平均水汽压,Fb为标准状态下的风压系数;
(3)各模拟点的脉动风速时程计算模块,包括生成所述各模拟点的脉动风速时程的脉动风速功率谱,进行脉动风速功率谱的模拟时,引入温度修正系数其中T0为设定的标准温度,T为由所述温度传感器实时监测得到的平均温度值,则
T≥T0时,所述脉动风速功率谱的优化公式为:
S υ ( g ) = λ g 1 + ( 1200 g W ( i ) ) 8 / 3 × ( 1 - | T - T 0 T | ) × 5.76 × 10 6
T<T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( &rho; ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 + | T - T 0 T | ) &times; 5.76 &times; 10 6
其中,λ为根据水力发电站结构选择的地面粗糙度系数,g为根据平均风速W(i)选取的频率截取上限值;
(4)风速时程计算模块,包括微处理器,所述微处理器利用谐波叠加法对相同位置处的平均风速和脉动风速时程进行叠加,得到各模拟点的风速时程;
(5)风速模拟显示模块,包括依次连接的隔离放大器和数字显示屏,所述隔离放大器的输入端与所述微信处理器连接。
其中,所述频率截取上限值的范围为3hZ~5hZ。
其中,所述标准温度值的设定范围为23℃~27℃。
本发明的有益效果为:
1、在水力发电站本体上安装了风速时程快速模拟装置,便于水力发电站风速时程特征的及时获取,维护人员可以更全面地了解水力发电站的风振响应特性,从而对水力发电站进行恰当的维护,增强水力发电站的安全性能;
2、采用风速仪、温度传感器和数据采集装置进行风速时程模拟数据的监测和采集,取代了传统技术人工激励和昂贵的激振设备,降低了成本,实用便捷;
3、所述模拟装置基于谐波叠加法的基础上,对平均风速和脉动风速的计算公式进行优化,减少了计算的工作量,提高了水力发电站的风速时程模拟的效率;
4、在计算平均风速时引入平均风速校正系数Q,计算脉动风速时程时引入温度修正系数K,使得水力发电站的风速时程模拟更加精确。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明的风速时程快速模拟装置各模块的连接示意图。
附图标记:
结构参数监测模块1、平均风速计算模块2、各模拟点的脉动风速时程计算模块3、风速时程计算模块4、风速模拟显示模块5。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例一
参见图1,本实施例的水力发电站包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,所述快速模拟装置包括:
(1)结构参数监测模块1,其包括风速仪、温度传感器和数据采集装置,沿水力发电站的拦水坝高度方向将拦水坝划分多个间隔相同的测试层,在拦水坝的侧壁上安装所述数据采集装置,选择测试层的边缘点作为一个风速时程的模拟点,且在每个测试层边缘布设所述风速仪和温度传感器;
(2)平均风速计算模块2,其利用风速仪监测出每测试层的风速总量,横向角和竖向风速,取0.2s为采样时间间隔,进行平均风速的计算时,引入平均风速校正系数Q:
Q = 1 - | 6.38 e - 9 ( P &OverBar; - 0.378 P w a t ) 1 + 0.00366 T &OverBar; - F b F b |
每测试层在一个采用时间的平均风速的计算公式为:
W ( i ) = 1 N - 2 { &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos ( arcsin ( w z ( i ) w ) ) cos &theta; ( i ) &rsqb; - A &rsqb; 2 + &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos &lsqb; arcsin ( w z ( i ) w ) &rsqb; sin &theta; ( i ) &rsqb; - B &rsqb; 2 } 1 / 2 &times; Q
其中,A为风速总量w在x方向的分量值的极大值和极小值之和,B为风速总量w在y方向分量值的极大值和极小值之和,为当地平均气压,为当地平均温度,Pwat为当地平均水汽压,Fb为标准状态下的风压系数;
(3)各模拟点的脉动风速时程计算模块3,包括生成所述各模拟点的脉动风速时程的脉动风速功率谱,进行脉动风速功率谱的模拟时,引入温度修正系数其中T0为设定的标准温度,T为由所述温度传感器实时监测得到的平均温度值,则
T≥T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( g ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 - | T - T 0 T | ) &times; 5.76 &times; 10 6
T<T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( &rho; ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 + | T - T 0 T | ) &times; 5.76 &times; 10 6
其中,λ为根据水力发电站结构选择的地面粗糙度系数,g为根据平均风速W(i)选取的频率截取上限值;
(4)风速时程计算模块4,包括微处理器,所述微处理器利用谐波叠加法对相同位置处的平均风速和脉动风速时程进行叠加,得到各模拟点的风速时程;
(5)风速模拟显示模块5,包括依次连接的隔离放大器和数字显示屏,所述隔离放大器的输入端与所述微信处理器连接。
本实施例在水力发电站本体上安装了风速时程快速模拟装置,便于水力发电站风速时程特征的及时获取,维护人员可以更全面地了解水力发电站的风振响应特性,从而对水力发电站进行恰当的维护,增强水力发电站的安全性能;采用风速仪、温度传感器和数据采集装置进行风速时程模拟数据的监测和采集,取代了传统技术人工激励和昂贵的激振设备,降低了成本,实用便捷;模拟装置基于谐波叠加法的基础上,对平均风速和脉动风速的计算公式进行优化,减少了计算的工作量,提高了水力发电站的风速时程模拟的效率;在计算平均风速时引入平均风速校正系数Q,计算脉动风速时程时引入温度修正系数K,使得水力发电站的风速时程模拟更加精确,其中设定标准温度T0为23℃,设定截取频率上限值为3hZ,最后得到的各模拟点的风速时程的模拟精度提高到95.8%。
实施例二
参见图1,本实施例的水力发电站包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,所述快速模拟装置包括:
(1)结构参数监测模块1,其包括风速仪、温度传感器和数据采集装置,沿水力发电站的拦水坝高度方向将拦水坝划分多个间隔相同的测试层,在拦水坝的侧壁上安装所述数据采集装置,选择测试层的边缘点作为一个风速时程的模拟点,且在每个测试层边缘布设所述风速仪和温度传感器;
(2)平均风速计算模块2,其利用风速仪监测出每测试层的风速总量,横向角和竖向风速,取0.2s为采样时间间隔,进行平均风速的计算时,引入平均风速校正系数Q:
Q = 1 - | 6.38 e - 9 ( P &OverBar; - 0.378 P w a t ) 1 + 0.00366 T &OverBar; - F b F b |
每测试层在一个采用时间的平均风速的计算公式为:
W ( i ) = 1 N - 2 { &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos ( arcsin ( w z ( i ) w ) ) cos &theta; ( i ) &rsqb; - A &rsqb; 2 + &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos &lsqb; arcsin ( w z ( i ) w ) &rsqb; sin &theta; ( i ) &rsqb; - B &rsqb; 2 } 1 / 2 &times; Q
其中,A为风速总量w在x方向的分量值的极大值和极小值之和,B为风速总量w在y方向分量值的极大值和极小值之和,为当地平均气压,为当地平均温度,Pwat为当地平均水汽压,Fb为标准状态下的风压系数;
(3)各模拟点的脉动风速时程计算模块3,包括生成所述各模拟点的脉动风速时程的脉动风速功率谱,进行脉动风速功率谱的模拟时,引入温度修正系数其中T0为设定的标准温度,T为由所述温度传感器实时监测得到的平均温度值,则
T≥T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( g ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 - | T - T 0 T | ) &times; 5.76 &times; 10 6
T<T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( &rho; ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 + | T - T 0 T | ) &times; 5.76 &times; 10 6
其中,λ为根据水力发电站结构选择的地面粗糙度系数,g为根据平均风速W(i)选取的频率截取上限值;
(4)风速时程计算模块4,包括微处理器,所述微处理器利用谐波叠加法对相同位置处的平均风速和脉动风速时程进行叠加,得到各模拟点的风速时程;
(5)风速模拟显示模块5,包括依次连接的隔离放大器和数字显示屏,所述隔离放大器的输入端与所述微信处理器连接。
本实施例在水力发电站本体上安装了风速时程快速模拟装置,便于水力发电站风速时程特征的及时获取,维护人员可以更全面地了解水力发电站的风振响应特性,从而对水力发电站进行恰当的维护,增强水力发电站的安全性能;采用风速仪、温度传感器和数据采集装置进行风速时程模拟数据的监测和采集,取代了传统技术人工激励和昂贵的激振设备,降低了成本,实用便捷;模拟装置基于谐波叠加法的基础上,对平均风速和脉动风速的计算公式进行优化,减少了计算的工作量,提高了水力发电站的风速时程模拟的效率;在计算平均风速时引入平均风速校正系数Q,计算脉动风速时程时引入温度修正系数K,使得水力发电站的风速时程模拟更加精确,其中设定标准温度T0为23℃,设定截取频率上限值为4hZ,最后得到的各模拟点的风速时程的模拟精度提高到96%。
实施例三
参见图1,本实施例的水力发电站包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,所述快速模拟装置包括:
(1)结构参数监测模块1,其包括风速仪、温度传感器和数据采集装置,沿水力发电站的拦水坝高度方向将拦水坝划分多个间隔相同的测试层,在拦水坝的侧壁上安装所述数据采集装置,选择测试层的边缘点作为一个风速时程的模拟点,且在每个测试层边缘布设所述风速仪和温度传感器;
(2)平均风速计算模块2,其利用风速仪监测出每测试层的风速总量,横向角和竖向风速,取0.2s为采样时间间隔,进行平均风速的计算时,引入平均风速校正系数Q:
Q = 1 - | 6.38 e - 9 ( P &OverBar; - 0.378 P w a t ) 1 + 0.00366 T &OverBar; - F b F b |
每测试层在一个采用时间的平均风速的计算公式为:
W ( i ) = 1 N - 2 { &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos ( arcsin ( w z ( i ) w ) ) cos &theta; ( i ) &rsqb; - A &rsqb; 2 + &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos &lsqb; arcsin ( w z ( i ) w ) &rsqb; sin &theta; ( i ) &rsqb; - B &rsqb; 2 } 1 / 2 &times; Q
其中,A为风速总量w在x方向的分量值的极大值和极小值之和,B为风速总量w在y方向分量值的极大值和极小值之和,为当地平均气压,为当地平均温度,Pwat为当地平均水汽压,Fb为标准状态下的风压系数;
(3)各模拟点的脉动风速时程计算模块3,包括生成所述各模拟点的脉动风速时程的脉动风速功率谱,进行脉动风速功率谱的模拟时,引入温度修正系数其中T0为设定的标准温度,T为由所述温度传感器实时监测得到的平均温度值,则
T≥T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( g ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 - | T - T 0 T | ) &times; 5.76 &times; 10 6
T<T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( &rho; ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 + | T - T 0 T | ) &times; 5.76 &times; 10 6
其中,λ为根据水力发电站结构选择的地面粗糙度系数,g为根据平均风速W(i)选取的频率截取上限值;
(4)风速时程计算模块4,包括微处理器,所述微处理器利用谐波叠加法对相同位置处的平均风速和脉动风速时程进行叠加,得到各模拟点的风速时程;
(5)风速模拟显示模块5,包括依次连接的隔离放大器和数字显示屏,所述隔离放大器的输入端与所述微信处理器连接。
本实施例在水力发电站本体上安装了风速时程快速模拟装置,便于水力发电站风速时程特征的及时获取,维护人员可以更全面地了解水力发电站的风振响应特性,从而对水力发电站进行恰当的维护,增强水力发电站的安全性能;采用风速仪、温度传感器和数据采集装置进行风速时程模拟数据的监测和采集,取代了传统技术人工激励和昂贵的激振设备,降低了成本,实用便捷;模拟装置基于谐波叠加法的基础上,对平均风速和脉动风速的计算公式进行优化,减少了计算的工作量,提高了水力发电站的风速时程模拟的效率;在计算平均风速时引入平均风速校正系数Q,计算脉动风速时程时引入温度修正系数K,使得水力发电站的风速时程模拟更加精确,其中设定标准温度T0为23℃,设定截取频率上限值为5hZ,最后得到的各模拟点的风速时程的模拟精度提高到94.8%。
实施例四
参见图1,本实施例的水力发电站包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,所述快速模拟装置包括:
(1)结构参数监测模块1,其包括风速仪、温度传感器和数据采集装置,沿水力发电站的拦水坝高度方向将拦水坝划分多个间隔相同的测试层,在拦水坝的侧壁上安装所述数据采集装置,选择测试层的边缘点作为一个风速时程的模拟点,且在每个测试层边缘布设所述风速仪和温度传感器;
(2)平均风速计算模块2,其利用风速仪监测出每测试层的风速总量,横向角和竖向风速,取0.2s为采样时间间隔,进行平均风速的计算时,引入平均风速校正系数Q:
Q = 1 - | 6.38 e - 9 ( P &OverBar; - 0.378 P w a t ) 1 + 0.00366 T &OverBar; - F b F b |
每测试层在一个采用时间的平均风速的计算公式为:
W ( i ) = 1 N - 2 { &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos ( arcsin ( w z ( i ) w ) ) cos &theta; ( i ) &rsqb; - A &rsqb; 2 + &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos &lsqb; arcsin ( w z ( i ) w ) &rsqb; sin &theta; ( i ) &rsqb; - B &rsqb; 2 } 1 / 2 &times; Q
其中,A为风速总量w在x方向的分量值的极大值和极小值之和,B为风速总量w在y方向分量值的极大值和极小值之和,为当地平均气压,为当地平均温度,Pwat为当地平均水汽压,Fb为标准状态下的风压系数;
(3)各模拟点的脉动风速时程计算模块3,包括生成所述各模拟点的脉动风速时程的脉动风速功率谱,进行脉动风速功率谱的模拟时,引入温度修正系数其中T0为设定的标准温度,T为由所述温度传感器实时监测得到的平均温度值,则
T≥T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( g ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 - | T - T 0 T | ) &times; 5.76 &times; 10 6
T<T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( &rho; ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 + | T - T 0 T | ) &times; 5.76 &times; 10 6
其中,λ为根据水力发电站结构选择的地面粗糙度系数,g为根据平均风速W(i)选取的频率截取上限值;
(4)风速时程计算模块4,包括微处理器,所述微处理器利用谐波叠加法对相同位置处的平均风速和脉动风速时程进行叠加,得到各模拟点的风速时程;
(5)风速模拟显示模块5,包括依次连接的隔离放大器和数字显示屏,所述隔离放大器的输入端与所述微信处理器连接。
本实施例在水力发电站本体上安装了风速时程快速模拟装置,便于水力发电站风速时程特征的及时获取,维护人员可以更全面地了解水力发电站的风振响应特性,从而对水力发电站进行恰当的维护,增强水力发电站的安全性能;采用风速仪、温度传感器和数据采集装置进行风速时程模拟数据的监测和采集,取代了传统技术人工激励和昂贵的激振设备,降低了成本,实用便捷;模拟装置基于谐波叠加法的基础上,对平均风速和脉动风速的计算公式进行优化,减少了计算的工作量,提高了水力发电站的风速时程模拟的效率;在计算平均风速时引入平均风速校正系数Q,计算脉动风速时程时引入温度修正系数K,使得水力发电站的风速时程模拟更加精确,其中设定标准温度T0为27℃,设定截取频率上限值为3hZ,最后得到的各模拟点的风速时程的模拟精度提高到95.7%。
实施例五
参见图1,本实施例的水力发电站包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,所述快速模拟装置包括:
(1)结构参数监测模块1,其包括风速仪、温度传感器和数据采集装置,沿水力发电站的拦水坝高度方向将拦水坝划分多个间隔相同的测试层,在拦水坝的侧壁上安装所述数据采集装置,选择测试层的边缘点作为一个风速时程的模拟点,且在每个测试层边缘布设所述风速仪和温度传感器;
(2)平均风速计算模块2,其利用风速仪监测出每测试层的风速总量,横向角和竖向风速,取0.2s为采样时间间隔,进行平均风速的计算时,引入平均风速校正系数Q:
Q = 1 - | 6.38 e - 9 ( P &OverBar; - 0.378 P w a t ) 1 + 0.00366 T &OverBar; - F b F b |
每测试层在一个采用时间的平均风速的计算公式为:
W ( i ) = 1 N - 2 { &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos ( arcsin ( w z ( i ) w ) ) cos &theta; ( i ) &rsqb; - A &rsqb; 2 + &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos &lsqb; arcsin ( w z ( i ) w ) &rsqb; sin &theta; ( i ) &rsqb; - B &rsqb; 2 } 1 / 2 &times; Q
其中,A为风速总量w在x方向的分量值的极大值和极小值之和,B为风速总量w在y方向分量值的极大值和极小值之和,为当地平均气压,为当地平均温度,Pwat为当地平均水汽压,Fb为标准状态下的风压系数;
(3)各模拟点的脉动风速时程计算模块3,包括生成所述各模拟点的脉动风速时程的脉动风速功率谱,进行脉动风速功率谱的模拟时,引入温度修正系数其中T0为设定的标准温度,T为由所述温度传感器实时监测得到的平均温度值,则
T≥T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( g ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 - | T - T 0 T | ) &times; 5.76 &times; 10 6
T<T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( &rho; ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 + | T - T 0 T | ) &times; 5.76 &times; 10 6
其中,λ为根据水力发电站结构选择的地面粗糙度系数,g为根据平均风速W(i)选取的频率截取上限值;
(4)风速时程计算模块4,包括微处理器,所述微处理器利用谐波叠加法对相同位置处的平均风速和脉动风速时程进行叠加,得到各模拟点的风速时程;
(5)风速模拟显示模块5,包括依次连接的隔离放大器和数字显示屏,所述隔离放大器的输入端与所述微信处理器连接。
本实施例在水力发电站本体上安装了风速时程快速模拟装置,便于水力发电站风速时程特征的及时获取,维护人员可以更全面地了解水力发电站的风振响应特性,从而对水力发电站进行恰当的维护,增强水力发电站的安全性能;采用风速仪、温度传感器和数据采集装置进行风速时程模拟数据的监测和采集,取代了传统技术人工激励和昂贵的激振设备,降低了成本,实用便捷;模拟装置基于谐波叠加法的基础上,对平均风速和脉动风速的计算公式进行优化,减少了计算的工作量,提高了水力发电站的风速时程模拟的效率;在计算平均风速时引入平均风速校正系数Q,计算脉动风速时程时引入温度修正系数K,使得水力发电站的风速时程模拟更加精确,其中设定标准温度T0为27℃,设定截取频率上限值为5hZ,最后得到的各模拟点的风速时程的模拟精度提高到96.5%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (4)

1.一种可实时监测的水力发电站,包括水力发电站本体和安装在水力发电站本体的风速时程快速模拟装置装置,其特征是,所述快速模拟装置包括:
(1)结构参数监测模块,其包括风速仪、温度传感器和数据采集装置,沿水力发电站的拦水坝高度方向将拦水坝划分多个间隔相同的测试层,在拦水坝的侧壁上安装所述数据采集装置,选择测试层的边缘点作为一个风速时程的模拟点,且在每个测试层边缘布设所述风速仪和温度传感器;
(2)平均风速计算模块,其利用风速仪监测出每测试层的风速总量,横向角和竖向风速,取0.2s为采样时间间隔,进行平均风速的计算时,引入平均风速校正系数Q:
Q = 1 - | 6.38 e - 9 ( P &OverBar; - 0.378 P w a t ) 1 + 0.00366 T &OverBar; - F b F b |
每测试层在一个采用时间的平均风速的计算公式为:
W ( i ) = 1 N - 2 { &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos ( arcsin ( w z ( i ) w ) ) cos &theta; ( i ) &rsqb; - A &rsqb; 2 + &lsqb; &Sigma; i = 1 N &lsqb; w ( i ) cos ( arcsin ( w z ( i ) w ) &rsqb; sin &theta; ( i ) &rsqb; - B &rsqb; 2 } 1 / 2 &times; Q
其中,A为风速总量w在x方向的分量值的极大值和极小值之和,B为风速总量w在y方向分量值的极大值和极小值之和,为当地平均气压,为当地平均温度,Pwat为当地平均水汽压,Fb为标准状态下的风压系数;
(3)各模拟点的脉动风速时程计算模块,包括生成所述各模拟点的脉动风速时程的脉动风速功率谱;
(4)风速时程计算模块,包括微处理器,所述微处理器利用谐波叠加法对相同位置处的平均风速和脉动风速时程进行叠加,得到各模拟点的风速时程;
(5)风速模拟显示模块,包括依次连接的隔离放大器和数字显示屏,所述隔离放大器的输入端与所述微处理器连接。
2.根据权利要求1所述的一种可实时监测的水力发电站,其特征是,进行脉动风速功率谱的模拟时,引入温度修正系数其中T0为设定的标准温度,T为由所述温度传感器实时监测得到的平均温度值,则
T≥T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( g ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 - | T - T 0 T | ) &times; 5.76 &times; 10 6
T<T0时,所述脉动风速功率谱的优化公式为:
S &upsi; ( &rho; ) = &lambda; g 1 + ( 1200 g W ( i ) ) 8 / 3 &times; ( 1 + | T - T 0 T | ) &times; 5.76 &times; 10 6
其中,λ为根据水力发电站结构选择的地面粗糙度系数,g为根据平均风速W(i)选取的频率截取上限值;
3.根据权利要求1所述的一种可实时监测的水力发电站,其特征是,所述频率截取上限值的范围为3hZ~5hZ。
4.根据权利要求2所述的一种可实时监测的水力发电站,其特征是,所述标准温度值的设定范围为23℃~27℃。
CN201610039625.8A 2016-01-20 2016-01-20 一种可实时监测的水力发电站 Pending CN105703357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610039625.8A CN105703357A (zh) 2016-01-20 2016-01-20 一种可实时监测的水力发电站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610039625.8A CN105703357A (zh) 2016-01-20 2016-01-20 一种可实时监测的水力发电站

Publications (1)

Publication Number Publication Date
CN105703357A true CN105703357A (zh) 2016-06-22

Family

ID=56227617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610039625.8A Pending CN105703357A (zh) 2016-01-20 2016-01-20 一种可实时监测的水力发电站

Country Status (1)

Country Link
CN (1) CN105703357A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105354377A (zh) * 2015-10-29 2016-02-24 中国电力科学研究院 一种确定输电杆塔的脉动风振荷载的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105354377A (zh) * 2015-10-29 2016-02-24 中国电力科学研究院 一种确定输电杆塔的脉动风振荷载的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
潘旭光: "高层建筑风致振动监测与数据分析方法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
贺拥军 等: "超大跨屋面结构风速时程的数值模拟研究", 《湖南大学学报(自然科学版)》 *

Similar Documents

Publication Publication Date Title
CN102087126B (zh) 人工降雨径流小区流量和泥沙含量的测量方法和控制系统
WO2017107693A1 (zh) 计算机存储介质、计算机程序产品、风力发电机组的偏航控制方法及装置
CN102494848B (zh) 一种监测地质封存二氧化碳泄漏的方法及装置
CN106679741A (zh) 基于涡街流量计抗干扰信号的处理方法及系统
CN105604807B (zh) 风电机组监测方法及装置
CN104408295B (zh) 一种大跨桥梁下部结构风‑浪耦合作用荷载数值模拟方法
CN104714075B (zh) 一种电网电压闪变包络参数提取方法
CN203534650U (zh) 一种科里奥利质量流量计云传输数字信号处理装置
CN104407040A (zh) 一种土壤重金属离子浓度自动检测及修复系统
CN103983338B (zh) 多极子矢量接收阵校准方法
Rabault et al. Measurements of waves in landfast ice using inertial motion units
Barber et al. Development of a wireless, non-intrusive, MEMS-based pressure and acoustic measurement system for large-scale operating wind turbine blades
CN203705435U (zh) 地面沉降模拟试验装置
CN105649244A (zh) 一种智能安全的幕墙系统
CN105699041A (zh) 一种智能型海上桥墩
CN204705726U (zh) 海洋平台综合观测系统
CN105626390A (zh) 一种智能安全的风力发电站
CN105653817A (zh) 一种具有精确识别功能的变电站
CN105703357A (zh) 一种可实时监测的水力发电站
CN105675913A (zh) 一种智能型桥墩基础桩成型机
Previsic et al. Validation of theoretical performance results using wave tank testing of heaving point absorber wave energy conversion device working against a subsea reaction plate
CN105699042A (zh) 一种具有实时监测功能的通信铁塔
CN105479491A (zh) 一种精确智能的机械手
CN105627578A (zh) 一种安全高效的节能锅炉
CN105713627A (zh) 一种安全高效的生物质干馏塔

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160622

RJ01 Rejection of invention patent application after publication