CN105700004A - Ct图像中伪影的校正中的噪声抑制 - Google Patents

Ct图像中伪影的校正中的噪声抑制 Download PDF

Info

Publication number
CN105700004A
CN105700004A CN201510908068.4A CN201510908068A CN105700004A CN 105700004 A CN105700004 A CN 105700004A CN 201510908068 A CN201510908068 A CN 201510908068A CN 105700004 A CN105700004 A CN 105700004A
Authority
CN
China
Prior art keywords
signal
picture element
grand
drift
element signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510908068.4A
Other languages
English (en)
Inventor
S·卡普勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN105700004A publication Critical patent/CN105700004A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2964Scanners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

描述了一种用于校正具有多个像素的辐射检测器(60)的所捕获的宏像素信号(U)的方法(200),所述多个像素在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号(si)。根据该方法(200),确定加权的宏像素信号(G),所述加权的宏像素信号(G)展现改善的信号稳定性但减少的剂量效率。在所捕获的宏像素信号(U)和加权的宏像素信号(U)的基础上,确定与加权的宏像素信号(G)相比较指定未加权的宏像素信号(U)的相对信号漂移(frsd)的变量。另外,在相对信号漂移(frsd)的基础上确定相对于时间被滤波的相对信号漂移(<frsd>)。最后,确定由时间滤波的相对信号漂移(<frsd>)校正的宏像素信号(M)。

Description

CT图像中伪影的校正中的噪声抑制
技术领域
本发明涉及一种用于校正具有多个像素的X射线检测器的所捕获的宏像素信号的方法,所述多个像素在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号。更进一步地,本发明涉及一种用于捕获具有多个像素的X射线检测器的宏像素信号的方法,所述多个像素在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号。附加地,本发明涉及一种用于捕获具有多个像素的X射线检测器的宏像素信号的信号捕获设备,所述多个像素在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号。本发明还涉及一种X射线检测器。最后,本发明涉及一种计算机断层摄影系统。
背景技术
参照在申请号DE102014222855.7下所提交的专利申请,其公开在此以其整体并入本专利申请。
在借助于X射线进行的医疗检查中,例如,在计算机断层扫描中,X射线检测器被用作辐射检测器。这些X射线检测器可以被体现为闪烁体检测器或具有直接转换器的检测器。以下将被理解为,辐射检测器是检测放射性辐射(特别地,尽管捕获X射线或其它硬射线(诸如例如,γ射线))的任何类型的检测器。
具有直接转换器的检测器包括使入射在其上的辐射直接转换成电信号的半导体材料。入射的X射线辐射直接生成电子空穴对形式的电荷载流子。作为被施加到半导体材料的电压(偏压)的结果,电荷载流子对通过由此生成的电场分离并且使它们到达被安装在半导体材料上的电触头或电极(见图1)。这导致生成与所吸收的能量成比例的并且由连接到下游的读出电子电路评估的电荷脉冲。例如基于CdTe或者CdZnTe的在人类医学成像领域中所利用的半导体检测器当前在普通用途中比闪烁体检测器更具优点:它们允许根据能量水平分类计数,即,所检测到的X射线量子作为它们的能量的函数可以被分为例如两类(高能和低能)或分为若干类。
在半导体直接转换辐射检测器(诸如例如,基于CdTe或CZT的检测器)的操作中,极化现象在凭借伽马和X射线辐射(特别地,高强度)的照射下出现。这本身表现在检测器的半导体材料中的内部电场的不希望的改变。该极化导致电荷载流子传送特性的改变,因此还导致检测器特点的改变。特别地,所引用的改变作为时间函数引起所测量的信号的信号特点的改变。换言之,极化促使所测量的信号强度以保持恒定的辐射剂量随时间而改变。这种现象还被称为信号漂移。在计算机断层摄影中,检测器的信号漂移引起不期望的环形伪影。检测器由多个像素构成。因为单独像素的信号漂移不同,所以检测器受到分配给单独像素的信号漂移因子的分布的影响。该分布随时间而改变或者视情况而定:在照射下,信号漂移因子的分布的宽度显著增加远远强于所述分布的平均值。
一种减少信号漂移的可能性在于利用这样的事实:信号漂移因子的分布的宽度增长更强于分布改变的平均值。在这种情况下,多个检测器被组合以形成单独像素的组,这样的组被称为宏像素。所述宏像素可以包括例如若干2×2、3×3或4×4的单独像素。为了减少信号漂移,展现严重漂移的单独像素被完全排除于信号传输之外。检测器信号的改进的漂移行为以这种方式实现。然而,这种改进是以检测器效率的相当高的退化为代价,即,降低信号强度5%-20%,因而还相应地劣化信噪比。
在申请号DE102014222855.7下所提交的申请中描述了对凭借其可以最小化剂量效率的减少的一种途径。借助所述途径,展现严重漂移的宏像素的单独像素比展现不太严重漂移的单独像素被更弱地加权。为了减少信号强度的损失,表征剂量效率的减少的函数按照单独像素的权重被最小化。即使借助这种途径,然而,仍然存在检测器效率的一定损失,其引起计算机断层摄影应用中图像噪声的增加。
因此,本发明的目的在于借助于直接转换辐射检测器改善成像质量,例如,如找到计算机断层摄影中的应用一样。
发明内容
该目的通过以下来实现:借助于用于校正如在权利要求1中所要求保护的辐射检测器的所捕获的宏像素信号的方法、借助于用于捕获如在权利要求10中所要求保护的X射线检测器的宏像素信号的方法、借助于如在权利要求11中所要求保护的信号捕获设备、借助于如在权利要求13中所要求保护的辐射检测器、以及借助于如在权利要求14中所要求保护的计算机断层摄影系统。
在根据本发明的用于校正具有在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号的多个像素的辐射检测器(例如,计算机断层摄影系统的X射线检测器)的所捕获的(优选地,未加权的)宏像素的信号的方法中,在第一实例中确定展现信号稳定性改善但剂量效率减少的加权的宏像素信号。单独宏像素信号由多个像素信号构成。在确定加权的宏像素信号期间,现在,单独像素信号不是简单地被加起来以便获得宏像素信号,而是单独像素信号被分配不同权重并且然后,加权的像素信号被加起来以形成加权的宏像素信号。这可以例如以展现很少信号漂移的像素的像素信号比展现十分显著的信号漂移的像素信号被更重地加权的这样的方式发生。这样,与所捕获的(优选地,未加权的)宏像素信号相比较,加权的宏像素信号在最不显著的信号漂移方面得以改善。
然而,因为单独像素信号的加权,所以加权的宏像素信号的信号强度被减少。另一方面,在最简单的情况下所捕获的(优选地,未加权的)宏像素信号本身简单地呈现为分配给宏像素的若干像素信号的总和。在所捕获的宏像素信号和加权的宏像素信号的基础上,现在,确定与加权的宏像素信号相比较指定未加权的宏像素信号的相对信号漂移的变量。换言之,与被配置用于低漂移的加权的宏像素信号相比较,所捕获的宏像素信号的相对漂移行为从所捕获的宏像素信号随时间的变化的观察中确定。所确定的相对漂移行为通常受到由噪声现象所导致的相对于时间的强大变化性的影响。为了抑制这种干扰噪声效应,在所确定的相对信号漂移的基础上确定相对于时间被滤波并且因此被噪声效应较少劣化的相对信号漂移。
最后,确定由时间滤波的相对信号漂移校正的宏像素信号。换句话说,因此,所捕获的宏像素信号通过求助于由适当的加权所配置的信号而关于其信号漂移被校正以展现小信号漂移,由于加权的信号的低剂量效率而更加集中地出现的较差的信噪比的问题通过滤波确定所捕获的宏像素信号相对于时间的相对漂移的变量得以解决。
在根据本发明的用于捕获具有在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号的多个像素的X射线检测器的宏像素信号的方法中,多个像素的信号在第一实例中被捕获。与被单独像素检测到的辐射剂量相对应的所述信号被组合以形成宏像素信号。在最简单的情况下,单独信号被简单地加起来以产生宏像素信号。最后,根据本发明的用于校正所捕获的宏像素信号的方法被实施。
根据本发明的用于捕获具有在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号的多个像素的X射线检测器的宏像素信号的信号捕获设备包括像素信号捕获单元,其被配置成检测多个像素的信号。该像素信号捕获单元可以被连接到例如多个像素,并且可以将由单独像素捕获的信号转发到其它单元,并且另外,组合它们以形成一个(优选地,未加权的)宏像素信号。更进一步地,根据本发明的信号捕获设备包括信号加权单元,其被配置成确定展现具有信号稳定性改善但剂量效率减少的加权的信号。因此,信号加权单元通过在加权的像素信号的组成中比展现更显著的信号漂移的像素信号更多地考虑受到小信号漂移的影响的像素信号来确定优选优化的信号,其就信号漂移而言被改进。
根据本发明的信号捕获设备还包括信号漂移确定单元,其被配置成确定与加权的宏像素信号相比较指定未加权的宏像素信号的相对信号漂移的变量。所引用的变量可以例如通过由所捕获的宏像素信号和加权的宏像素信号形成的商来确定。
附加地,根据本发明的信号捕获设备包括滤波器单元,其被配置成在相对信号漂移的基础上,确定时间滤波的相对信号漂移。因此,滤波器单元用来减少或理想地消除由加权的宏像素信号的较低剂量效率所导致的相对漂移的噪声。相对于时间的滤波可以例如借助于低通滤波器来完成。
最后,根据本发明的信号捕获设备包括信号校正单元,其被配置成确定由时间滤波的相对信号漂移校正的宏像素信号。宏像素信号的校正例如通过由时间滤波相对信号漂移划分所捕获的(优选地,未加权的)宏像素信号来实现。
根据本发明的辐射检测器包括根据本发明的信号捕获设备。
根据本发明的计算机断层摄影系统包括根据本发明的辐射检测器。
根据本发明的信号捕获设备的大多数上文引用的部件(特别地,信号加权单元、信号漂移确定单元、滤波器单元和信号校正单元)可以在信号捕获设备或对应的控制设备的处理器中全部或部分地以软件模块的形式实现。就已经存在的控制设备还能够凭借软件安装升级以便执行根据本发明的方法而言,这是有利的。因此,本发明还包括计算机程序产品,其可以直接被加载到计算机断层摄影系统的处理器中,并且具有用于当该程序产品在计算机断层摄影系统上被执行时执行根据本发明的方法的所有步骤(根据下文进一步所描述的方面包括)的程序代码装置。
本发明的其它特别有利的实施例和改进从从属权利要求中以及从下面的描述中将变得清楚。同样,根据本发明的信号捕获设备或根据本发明的计算机断层摄影系统还可以被近似地改进成方法有关的从属权利要求。
在根据本发明的用于校正辐射检测器(优选地,X射线检测器)的所捕获的宏像素信号的方法的优选实施例中,所捕获的宏像素信号是未加权的宏像素信号。换言之,借助该变型,所捕获的宏像素信号通过简单地将分配给宏像素的像素元素的单独信号加起来而形成。所捕获的未加权的宏像素信号具有完全信号强度(fullsignalstrength),因此只要涉及到剂量效率,就被优化。
在根据本发明的用于校正所捕获的宏像素信号的方法的变型中,时间滤波的相对信号漂移借助于低通滤波器凭借滤波相对于时间的相对信号漂移来确定。换句话说,所捕获的宏像素信号相对于时间与加权的宏像素信号的偏差凭借对时间的积分得以平滑,该偏差通常受到噪声效应的不利影响。
在根据本发明的用于校正所捕获的宏像素信号的方法的备选实施例中,相对信号漂移从所捕获的宏像素信号和加权的宏像素信号的商来确定。换言之,相对信号漂移从所捕获的宏像素信号和加权的宏像素信号的商随时间的变化得出。
在根据本发明的用于校正所捕获的宏像素信号的方法的另一备选变型中,相对信号漂移从由分配给宏像素的所有检测器像素的几何效率的总和归一化的所捕获的宏像素信号和就几何效率及其权重而言被归一化的加权的宏像素信号的商来确定。用公式表示如下,得出宏像素的相对信号漂移frsd
f r s d = U &CenterDot; &Sigma; i = 1 1 w i &CenterDot; e i G &CenterDot; &Sigma; i = 1 1 e i , - - - ( 1 )
其中,U是优选未加权的捕获的宏像素信号,G是加权的宏像素信号,l是每个宏像素的像素的数量,ei表示单独像素的几何效率,并且wi指定分配给加权的宏像素信号的单独信号的权重。
权重wi可以在经验值的基础上例如由有经验的用户来指定。例如,该经验值可能已经实验性地获得。
在根据本发明的用于校正所捕获的宏像素信号的方法的特别有效的实施例中,按照像素信号的权重通过将所得的宏像素信号的信号漂移和任选地还有剂量使用(或SNR)的函数考虑在内来确定分配给加权的宏像素信号的单独像素信号的权重。
特别优选地,确定所得宏像素信号的信号漂移和任选地还有剂量使用的函数在确定单独像素信号的权重期间被优化。在本实施例中,因此最小化剂量效率的减少,从而产生在根据本发明的校正之前,信号强度和信噪比已经改善的宏像素信号。
具体而言,将所得宏像素信号的信号漂移和剂量使用(或SNR)两种因素考虑在内的函数可以被表示为:
f ( w i ) = &lambda; ( &Sigma; i = 1 l d i &CenterDot; e i &CenterDot; w i &Sigma; i = 1 l e i &CenterDot; w i - t ) 2 + ( &Sigma; i = 1 l e i &CenterDot; w i 2 &Sigma; i = 1 l e i &CenterDot; w i &CenterDot; &Sigma; i = 1 l e i - 1 ) 2 , - - - ( 2 )
其中,ei指定几何效率并且di是单独像素信号的信号漂移因子。参数t表示宏像素信号的目标漂移值,并且λ设定所得宏像素信号的信号漂移和剂量使用(或SNR)之间的折衷。针对单独像素要被确定的权重由wi表示。变量1指定每个宏像素单独像素的数量。
在根据本发明的信号捕获设备的特别优选的实施例中,所述设备包括优化单元,用于通过考虑将所得宏像素信号的信号漂移和任选地还有剂量使用(或SNR)考虑在内的函数针对单独像素信号确定分配给加权宏像素信号的权重。在优化设备中,可以例如通过最小化根据等式2所描述的函数来执行优化像素信号的权重。这样,生成表示所得宏像素信号的信号漂移和剂量使用(或SNR)之间的折衷的加权的宏像素信号,该加权的宏像素信号用作用于确定展现剂量效率改善的校正的宏像素信号的基础。
在根据本发明的X射线检测器的特别实用的实施例中,宏像素包括一组4个、9个或16个单独像素。
附图说明
在示例性实施例的基础上并且参照附图,将再次对本发明更详细地进行解释。各种附图中的相似组件标以相同的附图标记。附图通常不按比例绘制。在附图中:
图1示意性示出了被配置为直接转换器的常规X射线检测器的布局,
图2是示意性图示根据示例性实施例的方法的流程图,
图3示出了图示所捕获的宏像素信号、加权的宏像素信号和校正的宏像素信号随时间的变化的图形,
图4示出了图示相对信号漂移和时间滤波的相对信号漂移随时间的变化的图形,
图5是示意性地描绘了根据本发明的示例性实施例的信号捕获设备的布局的方框图,
图6示出了根据本发明的示例性实施例的X射线检测器的布局,
图7示意性地示出了根据本发明的示例性实施例的计算机断层摄影系统的布局。
具体实施方式
图1示出了穿过作为直接转换器操作的常规半导体检测器1的横截面。这样的检测器1用于例如计算机断层摄影系统。半导体检测器1被体现为平面像素检测器。它包括作为检测器材料的单晶形式的半导体材料2。半导体材料被覆盖在具有形成背面电触点3的金属表面的一侧上。电压HV存在于背面触点3处。
单晶2的相对侧涂覆有图案化金属镀敷层(patternedmetallization),其单独子区域被体现为像素触点4并且将其全部形成像素阵列。像素触点4的尺寸和间距与半导体材料2的进一步材料参数一起确定检测器1的最大空间分辨率能力。分辨率的范围通常为10μm-500μm。单独像素触点4在每种情况下被连接以分离凭借其检测到所测量的信号s1,s2,s3的读出电子电路5。检测器还包括凭借其所测量的信号s1,s2,s3被组合以形成宏像素信号U的加法元件6。在它将单独测量的信号或像素信号加起来之前,加法元件还可以实施对相同的单独测量的信号或像素信号的加权。如已经提及的,该加权导致检测器效率的损失。
应当注意,图1中的布置1被示出为横截面,并且因此图1中的布置1总共包括9个像素触点。为了说明更清楚,每个宏像素的仅3个像素触点在附图中进行描绘,与剖视图相对应。如已经提及的,每个宏像素的4个、16个或不同数量的像素触点也很常见。
在图1中示出的检测器1的操作如下:入射到检测器1上的X射线辐射促使X射线量子和检测器1的半导体材料2之间的相互作用,在该过程中生成电子空穴对。被施加到检测器的触点的电压HV生成将所生成的电荷载流子朝向电触点(特别地,朝向像素触点4)移动的电场。检测器1的电极或像素触头4处的电荷浓度生成与X射线辐射的所吸收的能力成比例的电荷脉冲。所述电荷脉冲通过所连接的读出电子器件5读出。由读出电子器件5检测到的像素信号s1,s2,s3被转发到组合所测量的信号s1,s2,s3(实际上,所测量的信号s1-s9)以形成宏像素信号(例如,加权的宏像素信号G)的加法单元6。
图2示出了图示用于捕获和校正具有在每种情况下被组合以形成至少一个宏像素和在每种情况下捕获离散信号的多个像素的辐射检测器60(见图5)的所捕获的宏像素信号U的方法200的流程图。该方法可以应用于例如捕获并且评估计算机断层摄影系统中的取样设备中的直接转换检测器的像素信号。
在步骤2.I,在分配给宏像素的像素的若干像素信号Si的基础上首先确定宏像素信号。在实际的示例性实施例中,这通过简单地将像素信号加起来以形成未加权的宏像素信号U而发生。
在步骤2.II,确定展现信号稳定性改善但剂量效率减少的加权的宏像素信号G。这可以例如通过优化将所得宏像素信号的信号漂移和剂量使用两种因素考虑在内的函数(f(wi))(如由等式(2)给出的)并且随后借助于在优化中获得的权重wi加权单独像素信号si并且将因此加权的像素信号加起来来实现。在申请号DE102014222855.7下所申请的专利申请中对这种途径进行详细描述。如图3中所图示的,即使在检测器的输入信号保持恒定的情况下,由于未加权的宏信号U的较强的信号漂移,所以随时间而不同地形成两个宏信号U和G。在图3中示出的情况下,未加权的宏像素信号U的漂移本身通过所述信号U随时间下降来表现。
在步骤2.III,确定与加权的宏像素信号G相比较,指定未加权的宏像素信号U的相对信号漂移frsd的变量。在该示例性实施例中,根据等式1来确定相对信号漂移frsd
在步骤2.IV,在相对时间相关的信号漂移frsd(t)的基础上确定相对于时间被滤波的相对信号漂移<frsd(t)>。例如,在时刻t的时间滤波的相对信号漂移<frsd(t)>由积分得出:
< f r s d ( t ) > = &Integral; t - T 2 t + T 2 f r s d ( t * ) dt * T , - - - ( 3 )
其中,T包括足够大以平滑存在的任何噪声效应的预先指定的积分时间周期。作为相对信号漂移frsd在时间间隔T内的积分的结果,因为相对信号漂移frsd仅随时间t缓慢改变,所以在该过程中没有可能丢失与相对信号漂移frsd的动态行为有关的信息的风险的情况下,减少存在的任何噪声的影响。换言之,积分时间周期T必须足够短,才能使得在该时间周期期间,仅信号漂移变化不显著改变。技术上,相对信号漂移frsd相对于时间的滤波可以例如凭借低通滤波器来实现。
在步骤2.V,确定由时间滤波的相对信号漂移<frsd>校正的宏像素信号M。按照以下等式,该校正被实施:
M = U < f r s d > - - - ( 4 )
给定若干n个宏像素,优选地,该方法因此应用于所有的n个宏像素。
图3和图4示出了图形,图3中的图形图示了未加权的宏像素信号U和加权的宏像素信号G随时间的变化以及校正的宏像素信号M随时间的对应的变化,并且图4中的图形示出了凭借根据本发明的方法确定的相对信号漂移frsd和时间滤波的相对信号漂移<frsd>随时间的变化。相对信号漂移frsd示意性地被表示为波动锯齿形信号,其旨在象征以随机分布的方式出现的干扰源的影响。时间滤波的相对信号漂移<frsd>在图4中被表示为虚线,大致单调运行的线。在图3和图4中示出的信号的表示中,为简明起见,假设针对所有像素完全相同的时间恒定的均匀输入信号。如在图3中可以看出,由于较低的信号幅度,所以加权的宏像素信号G受到更强的噪声的影响,其通过将所述信号与随机分布的噪声信号重迭来使其本身被注意到。因为相对信号漂移frsd是取决于加权的宏像素信号G的变量,所以相对信号漂移frsd还展现由噪声效应所造成的随时间的变化性。另一方面,已知的是,未加权的宏像素信号U的实际信号漂移是仅随时间非常缓慢地变化的变量。因而,未加权的宏像素信号U的实际信号漂移通过时间滤波的相对信号漂移<frsd>来非常精确地反映。
图5示意性描绘了根据本发明的示例性实施例的信号捕获设备50的布局。信号捕获设备50作为用于捕获9个像素的信号(它们共同形成宏像素)的示例被图示。信号捕获设备50包括被配置成检测多个像素的信号s1…s9的信号捕获单元51。所捕获的信号由信号捕获单元51传送到加法单元52和加权单元53两者,该加法单元52将像素信号s1…s9加起来以形成未加权的宏像素信号U,并且该加权单元53首先加权具有权重wi的像素信号s1…s9,然后将加权的信号wi*si加起来以形成加权的宏像素信号G。
加法单元51将未加权的宏像素信号U转发到信号漂移确定单元54和信号校正单元56。同样地,信号加权单元53将加权的宏像素信号G传送到信号漂移确定单元54。信号漂移确定单元54确定与加权的宏像素信号G相比较,指定未加权的宏像素信号U的相对信号漂移frsd的变量。如在图3中可以看出,未加权的宏像素信号U展现比针对低信号漂移而被优化的加权的宏像素信号更强的信号漂移。即使当入射辐射的剂量保持恒定时,信号漂移也引起加权的宏像素信号U和加权的宏像素信号G的幅度比例的改变。给定恒定剂量的入射辐射,在这种情况下,通常由于信号漂移而导致未加权的宏像素信号的幅度的下降。在理想情况下,加权的信号完全没有信号漂移。
如在图3中示出的,然而,由于其较低的幅度和与其相关联的较差的信噪比,所以加权的宏像素信号G受到随机分布的波动的影响。因为所述相对信号漂移是取决于加权的宏像素信号G的变量(见等式1),所以由信号漂移确定单元54确定的相对信号漂移frsd也受所述波动影响,以下还被称为噪声。出于这个原因,由信号漂移确定单元54确定的相对信号漂移frsd被传送到在相对信号漂移frsd的基础上确定时间滤波的相对信号漂移<frsd>的滤波器单元55。可以例如借助于低通滤波器或低通电路实现相对信号漂移的时间滤波。
时间滤波的相对信号漂移<frsd>由滤波器单元55传送到已经提及的信号校正单元56。如已经描述的,从加法单元52接收未加权的宏像素信号U的信号校正单元56在未加权的宏像素信号U和时间滤波的相对信号漂移<frsd>的基础上确定校正的宏像素信号M。校正的宏像素信号M从未加权的宏像素信号M和时间滤波的相对信号漂移<frsd>的商得出。
出于按照像素信号的权重通过将所得宏像素信号的信号漂移和剂量使用两种因素考虑在内的函数(f(wi))确定已经分配给加权的宏像素信号的单独像素信号权重的目的,优化单元(未示出)还可以是信号捕获设备50的一部分。在这种情况下,优化单元通过最小化由等式(2)表示的函数来计算优化的权重wi,所述权重wi由信号加权单元53用于加权所捕获的信号s1…s9
图6示意性示出了根据本发明的示例性实施例的仅具有一个宏像素的辐射检测器60。例如,该辐射检测器60可以被实现为X射线检测器。不言而喻,现实世界应用中的检测器具有多个宏像素。因此,在实践中,在每种情况下,要么宏像素的每一个分配所描述的信号捕获设备50的其中一个,或者一个信号捕获设备50通过多路复用捕获多个宏像素信号。
在图6中示出的辐射检测器60包括作为检测器材料的单晶形式的半导体材料2。半导体材料被覆盖在具有形成电背面触点3的金属表面的一侧上。电压HV存在于背面触点处。
单晶2的相对侧涂覆有图案化的金属镀敷层,其单独子区域被体现为像素触点4并且将其全部形成像素阵列。像素触头的尺寸和间距与半导体材料的进一步材料参数一起确定检测器1的最大空间分辨率能力。单独像素触点4在每一种情况下被连接以分离凭借其检测到所测量的信号S1…S9的读出电子电路5。
附加地,检测器60包括凭借其根据本发明的方法组合所测量的信号S1…S9以形成校正的宏像素信号M的本发明的信号捕获设备50。然后,校正的宏像素信号M与其它校正的宏像素信号M组合以得出原始数据RD(未示出),假设检测器具有多个宏像素。
图7以大致示意图示出了根据本发明的示例性实施例的计算机断层摄影系统,该计算机断层摄影系统包括根据本发明的辐射检测器,在这种情况下,被体现为X射线检测器60。在常规方式中,计算机断层摄影系统70包括具有在其中X射线源73旋转的机架的扫描器72,后者在每种情况下照射凭借床75被引入到机架的测量室的患者,使得辐射撞击到在每种情况下与X射线源73相对设置的本发明的检测器60。应当明确指出的是,根据图7的示例性实施例仅仅是CT系统的示例,并且本发明也可以与任何CT系统设计(例如,包括环形固定X射线检测器和/或多个X射线源)一起使用。凭借根据本发明的辐射检测器采集的图像没有或至少展现不太显著的环形伪影,而且同时图像噪声被抑制。
计算机断层摄影系统70还包括控制设备80。原则上,这种类型的CT系统和相关联的控制设备是本领域技术人员已知的,因此不需要进行详细的解释。
在这种情况下,控制设备80的一个部件是在其上各种部件以软件模块的形式实现的处理器81。附加地,控制设备80包括终端90所连接到的终端接口84,操作者经由该终端90可以操作控制设备80并且因此控制计算机断层摄影系统70。另一接口85是用于连接到数据总线91的网络接口,以便由此建立到RIS或PACS的连接。测量请求命令例如可以经由该总线91被接受,然后凭借终端90选择用于要被执行的测量。
扫描仪72可以经由控制接口83由控制设备80启动,即,例如机架的旋转速度、患者床75的位移和X射线源73本身被控制。原始数据RD经由采集接口82从检测器60读出。附加地,控制设备80包括在其中存储不同测量协议MP以及其它数据的存储器单元86。
测量控制单元87是除了在处理器81上实现的之外的一个软件部件。所述测量控制单元87在一个或多个选择的测量协议MP的基础上经由控制接口83启动扫描仪72,其可能已经在适当情况下通过终端90的方式由操作者修改,以便执行测量并且采集数据。
处理器81上的另一个部件是图像数据重构单元88,借助于该图像数据重构单元88,所期望的图像数据从经由数据采集接口82获得的原始数据RD中重构。然后,例如,重构的图像数据BD可以被存储或缓存在存储器单元86中。更进一步地,该数据可以经由数据总线91立即或稍后从存储器单元86传送到诊断复查站、大容量存储单元或其它输出单元和工作站,即,它最后可以被转移到PACS。
根据本发明的信号捕获设备50的子部件优选地被安装在检测器60中。可替代地,然而,所述信号捕获设备50的部件(诸如例如,加法单元52、信号加权单元53、信号漂移确定单元54、滤波器单元55和信号校正单元56)还可以在控制设备80的处理器中全部或部分以软件模块的形式来实现或存储在相关联的存储器中或终端90上。
总而言之,应该再次指出,前述中详细地所描述的方法和设备是示例性实施例,并且只要这是由权利要求所限定的,基本原理就还可以在不离开本发明的范围的情况下由本领域技术人员以复数个不同方式变化。因此,如已经提及的,信号捕获设备50例如还可能被实现为计算机断层摄影系统70的控制设备80的一部分,而不是被集成在检测器60中或被实现为与计算机断层摄影系统70的检测器60或控制设备80相关联的处理系统中的软件。还应当指出,为了完整起见,不定冠词的“一(a)”或“一个(an)”的使用并不排除所讨论的特征还可能出现不止一次的可能性。同样,术语“单元(unit)”不排除这可以由多个部件组成的可能性,其在适当的情况下还可以空间地分布。

Claims (15)

1.一种用于校正具有多个像素的辐射检测器(60)的所捕获的宏像素信号(U)的方法(200),所述多个像素在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号(si),所述方法包括以下步骤:
-确定加权的宏像素信号(G),所述加权的宏像素信号(G)展现改善的信号稳定性但减少的剂量效率,
-确定与所述加权的宏像素信号(G)相比较的指定未加权的宏像素信号(U)的相对信号漂移(frsd)的变量,
-在所述相对信号漂移(frsd)的基础上,确定时间滤波的相对信号漂移(<frsd>),
-确定由所述时间滤波的相对信号漂移(<frsd>)校正的宏像素信号(M)。
2.根据权利要求1所述的方法(200),其中,所述所捕获的宏像素信号(U)是未加权的宏像素信号(U)。
3.根据权利要求1或2所述的方法(200),其中,借助于低通滤波器通过滤波相对于时间的所述相对信号漂移(frsd)来确定所述时间滤波的相对信号漂移(<frsd>)。
4.根据权利要求1-3中任一项所述的方法(200),其中,所述相对信号漂移(frsd)从所述所捕获的宏像素信号(U)和所述加权的宏像素信号(G)的商(U/G)得出。
5.根据权利要求4所述的方法(200),其中,所述相对信号漂移(frsd)从以下两项的商得出:关于分配给宏像素的所有像素的几何效率(ei)的总和被归一化的所述所捕获的宏像素信号(Un),以及关于所述几何效率(ei)与所述单独像素信号(si)的权重(wi)的乘积的总和被归一化的所述加权的宏像素信号(Gn)。
6.根据权利要求1-5任一项所述的方法(200),其中,按照所述像素信号(si)的所述权重(wi)通过将所述所得宏像素信号(G)的所述信号漂移和所述剂量使用两种因素考虑在内的函数(f(wi))来确定分配给所述加权的宏像素信号(G)的所述单独像素信号(si)的所述权重(wi)。
7.根据权利要求1-6中任一项所述的方法(200),其中,将所述所得宏像素信号(G)的所述信号漂移和所述剂量使用两种因素考虑在内的所述函数(f(wi))被优化。
8.根据权利要求1-7中任一项所述的方法(200),其中,将所述所得宏像素信号(G)的所述信号漂移和所述剂量使用两种因素考虑在内的函数被表示为:
f ( w i ) = &lambda; ( &Sigma; i = 1 l d i &CenterDot; e i &CenterDot; w i &Sigma; i = 1 l e i &CenterDot; w i - t ) 2 + ( &Sigma; i = 1 l e i &CenterDot; w i 2 &Sigma; i = 1 l e i &CenterDot; w i &CenterDot; &Sigma; i = 1 l e i - 1 ) 2
其中,ei是所述几何效率,di是所述信号漂移因子,并且t是所述目标漂移值,λ表示所述所得宏像素信号的信号漂移和剂量使用(或SNR)之间的所述折衷,而且1指定被组合以形成宏像素的像素的数量。
9.根据权利要求1-8中任一项所述的方法(200),其中,所述确定由所述时间滤波的相对信号漂移(<frsd>)校正的所述宏像素信号(M)包括:由所述时间滤波的信号漂移(<frsd>)来划分所述所捕获的宏像素信号(U)。
10.一种用于捕获具有多个像素(4)的辐射检测器(60)的宏像素信号(S)的方法,所述多个像素(4)在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号(si),所述方法包括以下步骤:
-捕获多个像素(4)的信号(si),
-在所述所捕获的像素信号(si)的基础上,确定宏像素信号(U),
-执行根据权利要求1-9中任一项所述的方法(200)。
11.一种用于捕获具有多个像素(4)的辐射检测器(60)的宏像素信号(S)的信号捕获设备(50),所述多个像素(4)在每种情况下被组合以形成至少一个宏像素并且在每种情况下捕获离散信号(si),所述设备包括:
-像素信号捕获单元(51),其被配置成检测多个像素(4)的信号(si),
-信号加权单元(53),其被配置成确定加权的信号(G),所述加权的信号(G)展现改善的信号稳定性但减少的剂量效率,
-信号漂移确定单元(54),其被配置成确定与所述加权的宏像素信号(G)相比较指定所述未加权的宏像素信号(U)的所述相对信号漂移(frsd)的变量,
-滤波器单元(55),其被配置成在所述相对信号漂移(frsd)的基础上,确定时间滤波的相对信号漂移(<frsd>),
-信号校正单元(56),其被配置成确定由所述时间滤波的相对信号漂移(<frsd>)校正的宏像素信号(M)。
12.根据权利要求11所述的信号捕获设备(50),还包括优化单元,所述优化单元用于按照所述像素信号(si)的所述权重(wi)通过将所得宏像素信号(G)的所述信号漂移和所述剂量使用两种因素考虑在内的函数(f(wi))来确定分配给所述加权的宏像素信号(G)的所述单独像素信号(si)的所述权重(wi)。
13.一种X射线检测器(60),包括根据权利要求11或12所述的信号捕获设备(50)。
14.一种计算机断层摄影系统(50),包括根据权利要求13所述的辐射检测器(60)。
15.一种计算机程序产品,所述计算机程序产品能够直接被加载到计算机断层摄影系统(70)的存储器中并且具有用于执行根据权利要求1-10中任一项所述的方法的所有步骤的程序代码段。
CN201510908068.4A 2014-12-10 2015-12-09 Ct图像中伪影的校正中的噪声抑制 Pending CN105700004A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225399.3A DE102014225399B4 (de) 2014-12-10 2014-12-10 Rauschunterdrückung bei der Korrektur von Artefakten von CT-Bildern
DE102014225399.3 2014-12-10

Publications (1)

Publication Number Publication Date
CN105700004A true CN105700004A (zh) 2016-06-22

Family

ID=56082421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510908068.4A Pending CN105700004A (zh) 2014-12-10 2015-12-09 Ct图像中伪影的校正中的噪声抑制

Country Status (3)

Country Link
US (1) US9720108B2 (zh)
CN (1) CN105700004A (zh)
DE (1) DE102014225399B4 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183371A (zh) * 2017-09-22 2020-05-19 皇家飞利浦有限公司 处理数字正电子发射断层摄影的探测器像素性能变化

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10339164B2 (en) * 2016-09-22 2019-07-02 Rockwell Automation Technologies, Inc. Data exchange in a collaborative environment
EP3629065A1 (de) 2018-09-28 2020-04-01 Siemens Healthcare GmbH Verfahren zur korrektur von detektorelementmesswerten, röntgendetektor und medizinisches gerät

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517544A (en) * 1991-02-20 1996-05-14 Elscint Ltd. Afterglow artifact reduction
CN1461949A (zh) * 2002-05-31 2003-12-17 西门子公司 为计算机断层造影设备的探测器信道确定校正系数的方法
CN1913829A (zh) * 2004-04-23 2007-02-14 株式会社日立医药 X射线ct装置
US20120020541A1 (en) * 2009-05-12 2012-01-26 Canon Kabushiki Kaisha Radiographic apparatus and control method for the same
DE102011006154A1 (de) * 2011-03-25 2012-08-09 Siemens Aktiengesellschaft Verfahren zur Korrektur von Detektordaten eines Röntgendetektors und Röntgenaufnahmesystem
US20130156285A1 (en) * 2011-12-15 2013-06-20 Canon Kabushiki Kaisha Image processing apparatus, image processing method and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007033462A1 (de) * 2007-07-18 2009-01-22 Siemens Ag Quantendetektormodul, Quantendetektor, Verfahren zur Ermittlung von Quantenabsorptionsereignissen, Computerprogrammprodukt und Strahlungserfassungseinrichtung
DE102011077859B4 (de) 2011-06-21 2014-01-23 Siemens Aktiengesellschaft Quantenzählender Strahlungsdetektor
JP6482934B2 (ja) * 2014-06-03 2019-03-13 キヤノンメディカルシステムズ株式会社 画像処理装置、放射線検出装置および画像処理方法
DE102014222855B4 (de) 2014-11-10 2019-02-21 Siemens Healthcare Gmbh Optimierte Signalerfassung von quantenzählenden Detektoren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517544A (en) * 1991-02-20 1996-05-14 Elscint Ltd. Afterglow artifact reduction
CN1461949A (zh) * 2002-05-31 2003-12-17 西门子公司 为计算机断层造影设备的探测器信道确定校正系数的方法
CN1913829A (zh) * 2004-04-23 2007-02-14 株式会社日立医药 X射线ct装置
US20120020541A1 (en) * 2009-05-12 2012-01-26 Canon Kabushiki Kaisha Radiographic apparatus and control method for the same
DE102011006154A1 (de) * 2011-03-25 2012-08-09 Siemens Aktiengesellschaft Verfahren zur Korrektur von Detektordaten eines Röntgendetektors und Röntgenaufnahmesystem
US20130156285A1 (en) * 2011-12-15 2013-06-20 Canon Kabushiki Kaisha Image processing apparatus, image processing method and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183371A (zh) * 2017-09-22 2020-05-19 皇家飞利浦有限公司 处理数字正电子发射断层摄影的探测器像素性能变化
CN111183371B (zh) * 2017-09-22 2024-02-13 皇家飞利浦有限公司 处理数字正电子发射断层摄影的探测器像素性能变化

Also Published As

Publication number Publication date
US20160171662A1 (en) 2016-06-16
US9720108B2 (en) 2017-08-01
DE102014225399B4 (de) 2017-08-17
DE102014225399A1 (de) 2016-06-16

Similar Documents

Publication Publication Date Title
US11002865B2 (en) Detection values determination system
US8913711B2 (en) Photon counting type X-ray computed tomography apparatus and method for correcting scattered radiation
US7391845B2 (en) Semiconductor radiation detector with guard ring, and imaging system with this detector
US10064585B2 (en) Photon detecting element, photon detecting device, and radiation analyzing device
KR102294774B1 (ko) X-선 이미징 시스템 사용 및 교정
CN109917445B (zh) X射线成像的散射估计和/或校正
US20080260094A1 (en) Method and Apparatus for Spectral Computed Tomography
US20130301799A1 (en) X-ray imaging apparatus and control method therefor
JP6214226B2 (ja) 画像処理装置、断層撮影装置、画像処理方法およびプログラム
JP6301138B2 (ja) X線コンピュータ断層撮影装置およびフォトンカウンティングプログラム
WO2006020874A2 (en) Flat-panel detector with avalanche gain
JP2011252855A (ja) 核医学イメージング装置
JP6677962B2 (ja) X線コンピュータ断層撮像装置
CN105581804B (zh) 通过量子计数检测器来优化信号检测
JP2011193306A (ja) 放射線画像撮影装置および放射線画像撮影システム
US8755585B2 (en) X-ray computed tomography apparatus
KR20160047314A (ko) 방사선 검출기 및 방사선 검출기 구동 방법
Esposito et al. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging
CN105700004A (zh) Ct图像中伪影的校正中的噪声抑制
EP2047478B1 (en) Gain/lag artifact correction algorithm and software
TWI661812B (zh) 造影系統與造影方法
Atharifard et al. Per-pixel energy calibration of photon counting detectors
US10969503B2 (en) Sensitivity correction method and photon counting detector
JP2002034961A (ja) 放射線撮影装置及び放射線撮影方法
Starman et al. A forward bias method for lag correction of an a‐Si flat panel detector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160622