CN105693909B - 基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用 - Google Patents

基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用 Download PDF

Info

Publication number
CN105693909B
CN105693909B CN201610228706.2A CN201610228706A CN105693909B CN 105693909 B CN105693909 B CN 105693909B CN 201610228706 A CN201610228706 A CN 201610228706A CN 105693909 B CN105693909 B CN 105693909B
Authority
CN
China
Prior art keywords
molecularly imprinted
graphene oxide
expendable material
imprinted microspheres
prepared based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610228706.2A
Other languages
English (en)
Other versions
CN105693909A (zh
Inventor
钟世安
李雨晴
陈琪
李慧
孙燕华
朱小红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201610228706.2A priority Critical patent/CN105693909B/zh
Publication of CN105693909A publication Critical patent/CN105693909A/zh
Application granted granted Critical
Publication of CN105693909B publication Critical patent/CN105693909B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用,该方法以氧化石墨烯纳米片作为稳定粒子,以双氯芬酸为目标分子,通过皮克林乳液聚合制备了聚合物微球,再进一步用溶剂将氧化石墨烯去除,即得表面分子印迹微球。由于制备的微球表面印迹位点得到充分暴露,故能实现对目标分子快速高效吸附,可广泛应用于溶液体系中双氯芬酸的高效选择性去除;且表面分子印迹微球的制备方法步骤简单、安全环保,有利于工业生产。

Description

基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及 应用
技术领域
本发明涉及一种基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用,特别涉及一种以氧化石墨烯纳米片为牺牲材料、以双氯芬酸作为目标分子,通过皮克林乳液制备表面分子印迹微球的方法;属于功能高分子制备领域。
背景技术
随着医药行业的蓬勃发展,药品及个人护理用品的使用量不断增加。药物在水中的不完全降解,使它在天然水体中不断积累,从而危害到环境和人体安全。双氯芬酸(Diclofenac,DFC),作为一种衍生于苯乙酸类的非甾体抗炎药,因具有明显的抗炎、阵痛和解热作用被广泛使用。目前,DFC的全球年消耗量为940吨,但在污水处理厂中的去除率为40%以下。近年来,该药物在水环境中被频繁检测到,其在地下水中的浓度约为0.594μg/L,在地表水中的浓度高达28.44μg/L。此外,DFC在不同生物体内引起的不良反应也被报道,例如1μg/L的DFC可引起印第安兀鹫肾衰竭或者改变虹鳟鱼的鱼鳃,以及导致鱼类的组织损伤。
通过分子印迹技术制备出来的分子印迹聚合物(Moleculaer ImprintingPolymers,MIPs),能够对模板分子(目标分子)展现出强的选择性和高的结合容量。目前,分子印迹技术大多倾向于开发表面印迹聚合物,牺牲硅胶骨架法就是其中被广泛使用的制备方法之一。该法通过用氢氟酸(HF)洗去牺牲材料——硅胶,来暴露大量特异性选择位点,可获得较高的吸附容量,表达出优异的吸附性能。整个制备过程工艺简单,原料利用率很高(90%以上),制得的MIPs颗粒均一规整。但处理过程中用到的HF极其危险、有害,对化学工作者的人身安全造成严重危害。
此外,用传统的硅胶作为稳定粒子,通常需要对其表面进行双键修饰,这个过程不仅耗时,需要用到大量有害溶剂(如甲苯),而且疏水性修饰可能因实验条件不同,得到的产物性能也不同。
发明内容
针对现有的制备表面分子印迹微球的方法存在的缺陷,本发明的第一个目的在于提供一种工艺步骤简化、安全环保的制备表面分子印迹微球的方法,该方法可提高表面分子印迹微球的特异性吸附位点,提高其吸附性能。
本发明的另一个目的是在于提供所述表面分子印迹微球应用,以双氯芬酸为模板分子制备的表面分子印迹微球对双氯芬酸具有特异性吸附,吸附快速高效,且安全、具有普适性。
为了实现上述技术目的,本发明提供了一种基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,该方法包括以下步骤:
(1)将氧化石墨烯纳米片分散至水中后,调节体系pH值至酸性,得到水相;
(2)将模板分子和功能聚合单体溶于有机溶剂中,进行预聚,得到预聚体,在所得预聚体中加入交联剂、引发剂和相转移剂,得到油相;
(3)将所述水相和油相充分混匀,得到水包油型乳液;
(4)加热引发聚合,得到聚合物微球;
(5)所述聚合物微球通过超声辅助溶剂剥落氧化石墨烯纳米片;
(6)经(5)处理后的聚合物微球通过溶剂洗脱模板分子,即得表面分子印迹微球。
优选的方案,水相中氧化石墨烯的浓度为0.1~5mg/mL,水相pH=2~6。
优选的方案,模板分子为双氯芬酸。
优选的方案,功能聚合单体为2-乙烯基吡啶、4-乙烯基吡啶、丙烯酰胺中的至少一种。
优选的方案,油相中有机溶剂为乙腈、氯仿、甲苯、四氢呋喃中的至少一种。
优选的方案,交联剂为二乙烯基苯。
优选的方案,引发为偶氮二异丁腈。
优选的方案,相转移剂为十六烷。
较优选的方案,模板分子与功能聚合单体、交联剂的摩尔比为1:(4~25):(20~40)。
较优选的方案,相转移剂体积占油相体积的20%~60%。
优选的方案,预聚时间为5~7h。
优选的方案,水相和油相的混匀过程为:先磁力搅拌5~30min,再超声分散2~20min,最后震荡摇晃2~20min。
优选的方案,聚合温度为50~80℃,时间为12~24h。
优选的方案,剥落氧化石墨烯纳米片采用的溶剂为氨水、二甲基酰胺、乙醇、甲醇、乙腈、四氢呋喃、二甲基亚砜、N-甲基吡咯烷酮中的至少一种。
优选的方案,洗脱模板分子采用的溶剂由甲醇和乙酸按体积比9:1~5:5组成。
优选的方案,剥落氧化石墨烯纳米片在室温条件下进行。
优选的方案,氧化石墨烯纳米片通过超声分散在水中,超声分散的时间一般为30~120min。
本发明采用的氧化石墨烯纳米片为常规的市售产品。
本发明还提供了所述的制备方法制得的表面分子印迹微球的应用,将其应用于特异性吸附溶液体系中的双氯芬酸。
相对现有技术,本发明的技术方案带来的有益技术效果:
本发明的技术方案选用氧化石墨烯纳米片作为皮克林乳液的稳定粒子,氧化石墨烯纳米片表面含有大量的亲水亲油基团,为两亲性的物质,不需要经过任何化学修饰,也不需要加入表面活性剂,即可获得非常稳定的乳液(乳液能在室温下至少能稳定存在2h以上),制备乳液的步骤简单化。克服了传统的硅胶作为稳定粒子时,存在如下一系列缺陷,如一般需要对其表面进行双键修饰,工艺步骤繁琐,且需要用到大量有害溶剂(如甲苯)等,而疏水性修饰可能因实验条件不同,得到的产物性能也不同,产物不稳定。
本发明的技术方案选用氧化石墨烯纳米片作为皮克林乳液的稳定粒子,其洗脱容易,采用常规的极性有机溶剂或者氨水等即能实现,解决了传统的硅胶牺牲法制备表面印迹材料中需要用到HF腐蚀脱除硅胶存在的安全隐患。
本发明的技术方案通过脱除氧化石墨烯纳米片能进一步暴露表面分子印迹微球的特异性选择位点,降低非特异性吸附,使分子印迹微球对目标分子的吸附更高效快速。以双氯芬酸为目标分子制备的表面分子印迹微球特别适用于双氯芬酸污染物的高效吸附分离,也可延伸到其他药物小分子领域。
附图说明
【图1】是实施例1除去氧化石墨烯后聚合物微球扫描电镜图;
【图2】是实施例1制备的双氯芬酸印迹微球的动态吸附图;
【图3】是实施例1制备的双氯芬酸印迹微球的静态吸附图;
【图4】是实施例1制备的双氯芬酸印迹微球的选择性吸附图。
具体实施方式
以下实施例旨在进一步说明本发明内容,而不是限制本发明权利要求的保护范围。
实施例1
称取5mg氧化石墨烯纳米片,分散在6mL蒸馏水中,超声90min,得到均一的氧化石墨烯水溶液,调pH=2。将1mmol模板分子双氯芬酸和25mmol功能单体2-乙烯基吡啶溶解到200μL甲苯中,超声5min后,预聚6h。随后,在油相中依次加入40mmol二乙烯基苯,20mg偶氮二异丁腈和50%十六烷。混合水油两相,磁力搅拌20min,超声20min,手摇20min,得到均一、稳定的皮克林乳液。升温至70℃,聚合18h后,将产物用甲醇和水洗净。用稀释的氨水和四氢呋喃超声剥落氧化石墨烯至完全,用甲醇:乙酸体积比等于8:2的洗脱液洗脱模板分子,得到有特异性吸附位点的分子印迹聚合物(MIP)。非分子印迹聚合物(NIP)不加入模板分子,其他步骤相同。
(1)吸附动力学试验
称取10mgMIP或NIP置于20mL螺口瓶中,加入浓度为100mg/L的双氯芬酸乙腈溶液,从振荡开始计时,分别在0.5、1、2、5、10、15、30、60、120min时,取上清液测紫外,得到动态吸附曲线。
(2)静态吸附试验
称取10mgMIP或NIP置于20mL螺口瓶中,加入浓度为40、60、80、100、200、400、600mg/L的双氯芬酸乙腈溶液,振荡30min,取上清液测紫外,得到静态吸附曲线。
(3)特异性吸附试验
称取10mgMIP或NIP置于20mL螺口瓶中,分别加入浓度为100mg/L双氯芬酸乙腈溶液或100mg/L卡马西平乙腈溶液,振荡30min,取上清液测紫外,得到特异性吸附图。
图1表明了聚合物微球的中空形貌,其直径为40μm左右,厚度为1μm左右。
图2表明了为聚合物微球的动态吸附曲线,MIP和NIP在30s内均实现快速吸附,2min后吸附速度降低,5min后达到吸附平衡。传统的分子印迹聚合物需要数小时才能达到吸附平衡,而该表面分子印迹微球显示出了明显优于传统材料的优势,大大提高了吸附效率。
图3表明了聚合物微球的静态吸附曲线,MIP和NIP更加符合Langmuir单层吸附模型,其R值分别为0.9995和0.9984。MIP和NIP的最大吸附容量分别为41.67mg/g和16.23mg/g,表明该聚合物微球具有显著的特异性。
图4表明了聚合物微球的选择性吸附曲线,MIP和NIP对卡马西平均显示出了较低的吸附容量。
实施例2
称取6mg氧化石墨烯纳米片,分散在6mL蒸馏水中,超声90min,得到均一的氧化石墨烯水溶液,调pH=3。将1mmol模板分子双氯芬酸和20mmol功能单体4-乙烯基吡啶溶解到200μL甲苯中,超声5min后,预聚6h。随后,在油相中依次加入40mmol二乙烯基苯,20mg偶氮二异丁腈和40%十六烷。混合水油两相,磁力搅拌25min,超声15min,手摇10min,得到均一、稳定的皮克林乳液。升温至60℃,聚合24h后,将产物用甲醇和水洗净。用二甲基酰胺和四氢呋喃超声剥落氧化石墨烯至完全,用甲醇:乙酸体积比等于8:2的洗脱液洗脱模板分子,得到有特异性吸附位点的分子印迹聚合物(MIP)。非分子印迹聚合物(NIP)不加入模板分子,其他步骤相同。吸附试验同实施例1,吸附结果表明该分子印迹聚合物对目标分子双氯芬酸具有显著的特异性吸附,且吸附效率高。
实施例3
称取7mg氧化石墨烯纳米片,分散在6mL蒸馏水中,超声120min,得到均一的氧化石墨烯水溶液,调pH=4。将1mmol模板分子双氯芬酸和25mmol功能单体丙烯酰胺溶解到200μL氯仿中,超声5min后,预聚6h。随后,在油相中依次加入35mmol二乙烯基苯,20mg偶氮二异丁腈和50%十六烷。混合水油两相,磁力搅拌30min,超声20min,手摇20min,得到均一、稳定的皮克林乳液。升温至80℃,聚合12h后,将产物用甲醇和水洗净。用二甲基酰胺超声剥落氧化石墨烯至完全,用甲醇:乙酸体积比等于7:3的洗脱液洗脱模板分子,得到有特异性吸附位点的分子印迹聚合物(MIP)。非分子印迹聚合物(NIP)不加入模板分子,其他步骤相同。吸附试验同实施例1,吸附结果表明该分子印迹聚合物对目标分子双氯芬酸具有显著的特异性吸附,且吸附效率高。
以上所述,仅为本发明较佳的具体实施方案,但本发明保护范围并不局限于此,根据本发明的技术方案及其发明构思加以等同交换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:包括以下步骤:
(1)将氧化石墨烯纳米片分散至水中后,调节体系pH值至酸性,得到水相;
(2)将模板分子和功能单体溶于有机溶剂中,进行预聚,得到预聚体,在所得预聚体中加入交联剂、引发剂和相转移剂,得到油相;
(3)将所述水相和油相充分混匀,得到水包油型乳液;
(4)加热引发聚合,得到聚合物微球;
(5)所述聚合物微球通过超声辅助溶剂剥落氧化石墨烯纳米片;
(6)经(5)处理后的聚合物微球通过溶剂洗脱模板分子,即得表面分子印迹微球。
2.根据权利要求1所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:所述的水相中氧化石墨烯的浓度为0.1~5mg/mL,水相pH=2~6。
3.根据权利要求1所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:
所述的模板分子为双氯芬酸;
所述的功能单体为2-乙烯基吡啶、4-乙烯基吡啶、丙烯酰胺中的至少一种;
所述的油相中有机溶剂为乙腈、氯仿、甲苯、四氢呋喃中的至少一种;
所述的交联剂为二乙烯基苯;
所述的引发剂为偶氮二异丁腈;
所述的相转移剂为十六烷。
4.根据权利要求3所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:模板分子与功能聚合单体、交联剂的摩尔比为1:(4~25):(20~40)。
5.根据权利要求3所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:所述的相转移剂体积占油相体积的20%~60%。
6.根据权利要求1、3~5任一项所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:所述的预聚时间为5~7h。
7.根据权利要求1所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:所述的水相和油相的混匀过程为:先磁力搅拌5~30min,再超声分散2~20min,最后震荡摇晃2~20min。
8.根据权利要求1所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:所述的聚合温度为50~80℃,时间为12~24h。
9.根据权利要求1所述的基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法,其特征在于:
剥落氧化石墨烯纳米片采用的溶剂为氨水、二甲基酰胺、乙醇、甲醇、乙腈、四氢呋喃、二甲基亚砜、N-甲基吡咯烷酮中的至少一种;
洗脱模板分子采用的溶剂由甲醇和乙酸按体积比9:1~5:5组成。
10.权利要求1~5任一项所述的制备方法制得的表面分子印迹微球的应用,其特征在于:应用于特异性吸附溶液体系中的双氯芬酸。
CN201610228706.2A 2016-04-13 2016-04-13 基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用 Expired - Fee Related CN105693909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610228706.2A CN105693909B (zh) 2016-04-13 2016-04-13 基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610228706.2A CN105693909B (zh) 2016-04-13 2016-04-13 基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用

Publications (2)

Publication Number Publication Date
CN105693909A CN105693909A (zh) 2016-06-22
CN105693909B true CN105693909B (zh) 2017-12-26

Family

ID=56219958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610228706.2A Expired - Fee Related CN105693909B (zh) 2016-04-13 2016-04-13 基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用

Country Status (1)

Country Link
CN (1) CN105693909B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110684143B (zh) * 2019-09-30 2021-10-15 广东省石油与精细化工研究院 一种盐酸克伦特罗分子印迹聚合物微球的制备方法
CN111909311B (zh) * 2020-07-06 2023-05-30 国家粮食和物资储备局科学研究院 一种玉米赤霉烯酮功能化石墨烯表面分子印迹材料及其制备方法
WO2022007704A1 (zh) * 2020-07-06 2022-01-13 国家粮食和物资储备局科学研究院 一种玉米赤霉烯酮功能化石墨烯表面分子印迹材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977247A (zh) * 2012-12-12 2013-03-20 天津工业大学 磁性功能化氧化石墨烯基分子印迹杂化材料的制备方法
CN103204966A (zh) * 2013-04-11 2013-07-17 江苏大学 乳液聚合制备磁性/中空双壳层印迹吸附剂的方法
WO2014090313A1 (en) * 2012-12-13 2014-06-19 Universitaet Ulm Nanoparticle with a molecularly imprinted coating
CN104165912A (zh) * 2013-06-26 2014-11-26 江南大学 氧化石墨烯表面分子印迹溶胶-凝胶聚合物的制备及其应用
CN105080512A (zh) * 2015-08-25 2015-11-25 江苏大学 一种氧化石墨烯基镉离子印迹聚合物的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977247A (zh) * 2012-12-12 2013-03-20 天津工业大学 磁性功能化氧化石墨烯基分子印迹杂化材料的制备方法
WO2014090313A1 (en) * 2012-12-13 2014-06-19 Universitaet Ulm Nanoparticle with a molecularly imprinted coating
CN103204966A (zh) * 2013-04-11 2013-07-17 江苏大学 乳液聚合制备磁性/中空双壳层印迹吸附剂的方法
CN104165912A (zh) * 2013-06-26 2014-11-26 江南大学 氧化石墨烯表面分子印迹溶胶-凝胶聚合物的制备及其应用
CN105080512A (zh) * 2015-08-25 2015-11-25 江苏大学 一种氧化石墨烯基镉离子印迹聚合物的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres;Chaomeng Dai等;《Environmental Pollution》;20110630;第159卷(第6期);第1660-1666页 *
Selective trace analysis of diclofenac in surface and wastewater samples using solid-phase extraction with a new molecularly imprinted polymer;Z.Sun等;《ANALYTICA CHIMICA ACTA》;20080520;第620卷(第1期);第73-81页 *
分子印迹功能单体选择方法研究进展;迟大民等;《化工时刊》;20091231;第23卷(第12期);第55-57页 *

Also Published As

Publication number Publication date
CN105693909A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
Song et al. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations
Zhao et al. Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix
Lamaoui et al. Study of solvent effect on the synthesis of magnetic molecularly imprinted polymers based on ultrasound probe: Application for sulfonamide detection
Bai et al. Synthesis of narrow or monodisperse poly (divinylbenzene) microspheres by distillation− precipitation polymerization
Yang et al. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene
Jiang et al. Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation (PICA)
Downey et al. Poly (divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization
CN105693909B (zh) 基于氧化石墨烯牺牲材料制备表面分子印迹微球的方法及应用
Liu et al. Novel covalently cross-linked attapulgite/poly (acrylic acid-co-acrylamide) hybrid hydrogels by inverse suspension polymerization: synthesis optimization and evaluation as adsorbents for toxic heavy metals
Zhang et al. Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater
Keçili et al. Imprinted materials: From green chemistry to sustainable engineering
Fan et al. A novel free-standing flexible molecularly imprinted membrane for selective separation of synephrine in methanol–water media
Zhou et al. Green preparation and selective permeation of d-Tryptophan imprinted composite membrane for racemic tryptophan
Wu et al. Recent advances in green reagents for molecularly imprinted polymers
De Marco et al. An environmental study on starch aerogel for drug delivery applications: effect of plant scale-up
Wang et al. Reversible switch between bulk MgCO3· 3H2O and Mg (OH) 2 micro/nanorods induces continuous selective preconcentration of anionic dyes
Liu et al. Uptake of methylene blue on divinylbenzene cross-linked chitosan/maleic anhydride polymer by adsorption process
Yoon et al. Molecularly imprinted polymers for selective separation of acetaminophen and aspirin by using supercritical fluid technology
Çelebican et al. Modeling and optimization of formic acid adsorption by multiwall carbon nanotube using response surface methodology
Raza et al. Fabrication of SiO2 modified biobased hydrolyzed hollow polymer particles and their applications as a removal of methyl orange dye and bisphenol-A
Zhang et al. Smart superabsorbent alginate/carboxymethyl chitosan composite hydrogel beads as efficient biosorbents for methylene blue dye removal
Ying et al. Molecular imprinted electrospun chromogenic membrane for l-tyrosine specific recognition and visualized detection
Zeng et al. Convenient synthesis of micron-sized macroporous polymers with dents on their surfaces and excellent adsorption performance for λ-cyhalothrin
Byun et al. Synthesis and characterization of high selective molecularly imprinted polymers for bisphenol A and 2, 4-dichlorophenoxyacetic acid by using supercritical fluid technology
Zhang et al. A polythiophene/UiO-66 composite coating for extraction of volatile organic compounds migrated from ion-exchange resins prior to their determination by gas chromatography

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171226