CN105693259B - 一种刚玉质尖晶石固溶体耐火材料制备工艺 - Google Patents

一种刚玉质尖晶石固溶体耐火材料制备工艺 Download PDF

Info

Publication number
CN105693259B
CN105693259B CN201610070854.6A CN201610070854A CN105693259B CN 105693259 B CN105693259 B CN 105693259B CN 201610070854 A CN201610070854 A CN 201610070854A CN 105693259 B CN105693259 B CN 105693259B
Authority
CN
China
Prior art keywords
corundum
aluminium
powder
long
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610070854.6A
Other languages
English (en)
Other versions
CN105693259A (zh
Inventor
李勇
马佳佳
薛文东
陈俊红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201610070854.6A priority Critical patent/CN105693259B/zh
Publication of CN105693259A publication Critical patent/CN105693259A/zh
Application granted granted Critical
Publication of CN105693259B publication Critical patent/CN105693259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)

Abstract

一种刚玉质尖晶石固溶体耐火材料制备工艺,属于无机非金属材料领域。本发明将以质量分数为60‑85%刚玉颗粒和细粉、10‑20%的镁砂细粉和5‑20%的金属铝粉为原料,并加入原料质量分数3‑5%的无机结合剂。在氮气气氛中烧结,基质中金属铝粉原位反应生成氮化铝,生成的氮化铝与氧化铝或新生成的尖晶石固溶形成阿隆或镁阿隆增强相。材料内部结构为富铝尖晶石固溶体和少量的阿隆或者镁阿隆增强相的结合结构,晶格常数较小,晶粒细小且致密,气孔较少,颗粒分布均匀。该耐火材料有较高的强度和熔点,优良的抗渣性能和抗热震稳定性,使用寿命长。该制备工艺操作简单,无需复杂的设备,且原料简单易得,生产和使用过程中对环境污染小,易于工业化推广。

Description

一种刚玉质尖晶石固溶体耐火材料制备工艺
技术领域
本发明属于无机非金属材料领域,涉及炼钢钢包、炉外精炼和连铸功能材料用耐火材料的制备方法,具体一种刚玉质尖晶石固溶体耐火材料制备工艺。
镁铝尖晶石的化学式为MgAl2O4熔点为2135℃,只是MgO-Al2O3二元体系其中一个化合物,MgO-Al2O3二元体系所形成的有限固溶体都称之为尖晶石固溶体,可知其化学组成在一个较大范围的固溶体区域内,在高温下方镁石在尖晶石中的溶解度可达10wt%,刚玉在尖晶石中的溶解度更高。
尖晶石质耐火材料耐高温,抗高温蠕变,抗炉渣侵蚀性好,热震稳定性好,耐磨损,抗腐蚀性气体及气氛波动,具有一系列优良的综合性能。作为一种高级耐火材料,方镁石-尖晶石砖广泛应用于炼钢钢包、炉外精炼、连铸用功能耐火材料和水泥回转窑的过渡带或烧成带和玻璃窑蓄热室等。理论组成附近的镁铝尖晶石质耐火材料的耐侵蚀性更好,并且尖晶石固溶体中氧化铝含量的增加使得尖晶石的晶粒发育缓慢,颗粒分布均匀,气孔率更低。氧化铝和尖晶石的线膨胀系数相差不大,抗剥落性能好。因此,刚玉质尖晶石固溶体耐火材料比方镁石-尖晶石复合耐火材料更加适用于炼钢钢包和炉外精炼。
耐火材料正在由氧化物复合材料向着氧化物-非氧化物复合和氧化物-非氧化物-金属复合的方向发展,先后出现了一系列综合性能较好的新型耐火材料,其中阿隆和镁阿隆就在其中,镁阿隆是针对阿隆材料在1640℃下不稳定的特性,加入氧化镁或者尖晶石热力学稳定剂后形成的新相。它们都具有更好的机械性能、抗高温性能、热震稳定性、抗侵蚀性能和抗剥落性。结合上述阿隆和镁阿隆的优良性能,我们想到如果将它们用于镁铝尖晶石中作为增强相应该会给镁铝尖晶石带来更加优良的性能。
随着金属塑性相工艺的提出和发展,硅粉和铝粉是目前使用最广泛的金属塑性添加剂。在本工艺中,铝作为过渡塑性相引入,在烧结过程中,基质中铝粉在660℃时变成液态铝先与氮气反应生成氮化铝,新生成的氮化铝和氧化铝、氧化镁或者氧化铝氧化镁新生成的尖晶石反应,生成了阿隆和镁阿隆增强相,它们的生成填充了铝液化和气化留下的气孔,增加了基质与基质,基质与大颗粒之间的联系并且起到弥散增韧的效果。并且铝粉的液化使得铝粉作为一种助烧剂,使得液相烧结在低温下可以实现,加速了反应进程。如果生产直接结合尖晶石质砖,需要使用纯度较高的原料,高压成型,高温烧成(1900-1800℃),最好1800℃以上。而本工艺1700℃时已经能完全形成刚玉质尖晶石固溶体了。最后未反应的铝粉在高温的使用过程中以液相的形式存在于材料中吸收温度变化及钢水冲刷产生的应力,进一步提高了材料的抗热震性。
发明内容:针对现有技术不足,本发明提供了炼钢钢包、炉外精炼和连铸功能材料用耐火材料的制备方法,具体一种刚玉质尖晶石固溶体耐火材料制备工艺。
与纯镁铝尖晶石耐火材料相比,刚玉质尖晶石固溶体耐火材料内部是富铝的尖晶石固溶体基体与阿隆、镁阿隆增强相的结合,内部结构更加致密,常温耐压强度有较大提高,高温性能更好,应用范围更广泛,并且反应温度更低,反应更容易进行。
一种刚玉质尖晶石固溶体耐火材料制备工艺,其特征在于:所述的材料采用刚玉颗粒、镁砂细粉和金属铝粉作为原料氮化而成;具体制备工艺是取质量分数为60-85%刚玉颗粒和细粉、10-20%的镁砂细粉和5-20%的金属铝粉为原料,另外加入原料质量3-5%的结合剂。将原料混合后进行混炼,并在100-160MPa下压制成型。将压制成型后的试样放入烧结炉中,在1600-1900℃进行氮化8-24h后自然冷却;
在烧结过程中金属铝粉氮化,在基质中原位生成氮化铝,生成的氮化铝与氧化铝或新生成的尖晶石固溶形成阿隆或者镁阿隆增强相。所制备的材料内部结构为富铝尖晶石固溶体和少量的阿隆、镁阿隆增强相的结合结构。
其中刚玉为电熔刚玉或烧结刚玉中的至少一种,所含Al2O3纯度≥99.4%,颗粒级配分别有5-≥3mm,3-≥1mm、1->0.088mm和≤0.088mm,分别对应其质量分数:10-30%、20-30%、10-30%和30-50%。
镁砂为烧结镁砂或电熔镁砂中的至少一种,所含MgO纯度≥97.3%,以≤0.088mm的细粉存在于基质中(基质即富铝尖晶石固溶体和少量的阿隆、镁阿隆增强相的结合体)。
铝粉纯度≥99.3%,以≤0.088mm的细粉存在于基质中。
结合剂是三聚磷酸钠和六偏磷酸钠中的一种或两种。
本发明的基本构思是以刚玉为颗粒,氧化镁为细粉,添加金属铝粉为原料,在氮气气氛中烧结氮化,原位反应生成氮化铝,从而制备出以富铝的尖晶石固溶体为基体结合阿隆、镁阿隆增强相的材料。本发明创新之处在于设计原料使生成刚玉质镁铝尖晶石固溶体而非刚玉尖晶石复合耐火材料,晶粒更加细小均匀而致密,使物理性能和高温性能更加优良;并且在耐火材料中使用金属塑性相工艺,通过添加金属铝粉,在基质中原位生成增强相,使烧成之后的耐火材料具有更高的强度,更好抗渣性能,抗热震稳定性和抗剥落性,使用寿命更长,质量更好。
本发明以刚玉、镁砂和铝粉为原料,压制成砖坯,在氮气气氛中氮化,原位生成阿隆和镁阿隆结合相,制备出刚玉质尖晶石固溶体和阿隆、镁阿隆相的复合材料。本发明以刚玉、镁砂和铝粉为原料,压制成砖坯,在氮气气氛中氮化,原位生成阿隆和镁阿隆结合相,制备出刚玉质尖晶石固溶体和阿隆、镁阿隆的复合材料。该方法操作工艺简单,无需复杂的设备,且原料简单易得,生产过程对环境污染小,易于工业化推广。
本发明所制备的刚玉质尖晶石固溶体耐火材料,其性能为:所制备的材料气孔率10-18%,体积密度2.55-3.18g/cm3,常温耐压强度100-240MPa,是一种强度较大的砖,其高温性能也较好,适宜作为高炉钢包和炉外精炼用耐火材料。
具体实施工艺:
1选取纯度为99.4%以上电熔或者烧结刚玉。分别选取颗粒级配为:5-3mm、3-1mm、1-0.088mm和≤0.088mm,分别对应其质量分数:10-30%、20-30%、10-30%和30-50%。
2按质量分数取60-85%刚玉颗粒和细粉、10-20%的镁砂细粉和5-20%的金属铝粉为原料,加入3-5%三聚磷酸钠或者六偏磷酸钠作为结合剂。将原料混合后进行混炼,并在100-160MPa下压制成型。将压制成型后的试样放入烧结炉中,在1600-1900℃进行氮化8-24h后自然冷却即可获得一种刚玉质尖晶石固溶体耐火材料。
实例1
1选取纯度为99.4%以上电熔或者烧结刚玉。分别选取颗粒级配为:5-3mm、3-1mm、1-0.088mm和≤0.088mm,分别对应其质量分数:10-30%、20-30%、10-30%和30-50%。
2按质量分数取80%刚玉颗粒和细粉、13%的镁砂细粉和7%的金属铝粉为原料,加入3-5%三聚磷酸钠或者六偏磷酸钠作为结合剂。将原料混合后进行混炼,并在150MPa下压制成型。将压制成型后的试样放入烧结炉中,在1700℃进行氮化10h后自然冷却即可获得一种刚玉质尖晶石固溶体耐火材料。
实例2
1选取纯度为99.4%以上电熔或者烧结刚玉。分别选取颗粒级配为:5-3mm、3-1mm、1-0.088mm和≤0.088mm,分别对应其质量分数:10-30%、20-30%、10-30%和30-50%。
2按质量分数取75%刚玉颗粒和细粉、15%的镁砂细粉和10%的金属铝粉为原料,加入3-5%三聚磷酸钠或者六偏磷酸钠作为结合剂。将原料混合后进行混炼,并在150MPa下压制成型。将压制成型后的试样放入烧结炉中,在1800℃进行氮化20h后自然冷却即可获得一种刚玉质尖晶石固溶体耐火材料。
实例3:
1选取纯度为99.4%以上电熔或者烧结刚玉。分别选取颗粒级配为:5-3mm、3-1mm、1-0.088mm和≤0.088mm,分别对应其质量分数:10-30%、20-30%、10-30%和30-50%。
2按质量分数取70%刚玉颗粒和细粉、18%的镁砂细粉和12%的金属铝粉为原料,加入3-5%三聚磷酸钠或者六偏磷酸钠作为结合剂。将原料混合后进行混炼,并在150MPa下压制成型。将压制成型后的试样放入烧结炉中,在1600℃进行氮化24h后自然冷却即可获得一种刚玉质尖晶石固溶体耐火材料。

Claims (1)

1.一种刚玉质尖晶石固溶体耐火材料制备工艺,其特征在于:所述的材料采用刚玉颗粒、镁砂细粉和金属铝粉作为原料氮化而制备;具体制备工艺是取质量分数取60-85%刚玉颗粒、10-20%的镁砂细粉和5-20%的金属铝粉为原料,加入3-5%的结合剂;将原料混合后进行混炼,并在100-160MPa下压制成型;将压制成型后的试样放入烧结炉中,在1600-1900℃进行氮化8-24h后自然冷却;在烧结过程中金属铝粉氮化,在基质中原位生成氮化铝,生成的氮化铝与氧化铝或新生成的尖晶石固溶形成阿隆或者镁阿隆增强相;所制备的材料内部结构为富铝尖晶石固溶体和少量的阿隆、镁阿隆增强相的结合结构;
刚玉颗粒为电熔刚玉或烧结刚玉中的至少一种,所含Al2O3质量百分比≥99.4%,颗粒级配分别有:5-≥3mm,3-≥1mm、1->0.088mm和≤0.088mm,分别对应其质量分数:10-30%、20-30%、10-30%和30-50%;
镁砂为烧结镁砂或电熔镁砂中的至少一种,所含MgO质量百分比≥97.3%,以≤0.088mm的细粉存在于基质中,与刚玉颗粒反应生成富铝的尖晶石固溶体;
铝粉中Al质量百分数≥99.3%,以≤0.088mm的细粉存在于基质中;
结合剂是三聚磷酸钠和六偏磷酸钠中的一种或两种。
CN201610070854.6A 2016-02-02 2016-02-02 一种刚玉质尖晶石固溶体耐火材料制备工艺 Active CN105693259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610070854.6A CN105693259B (zh) 2016-02-02 2016-02-02 一种刚玉质尖晶石固溶体耐火材料制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610070854.6A CN105693259B (zh) 2016-02-02 2016-02-02 一种刚玉质尖晶石固溶体耐火材料制备工艺

Publications (2)

Publication Number Publication Date
CN105693259A CN105693259A (zh) 2016-06-22
CN105693259B true CN105693259B (zh) 2019-03-26

Family

ID=56230030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610070854.6A Active CN105693259B (zh) 2016-02-02 2016-02-02 一种刚玉质尖晶石固溶体耐火材料制备工艺

Country Status (1)

Country Link
CN (1) CN105693259B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106588024A (zh) * 2017-01-05 2017-04-26 北京科技大学 一种Al7O3N5结合刚玉质复合耐火材料的制备方法
CN107311669B (zh) * 2017-06-13 2020-01-24 武汉科技大学 一种方镁石-尖晶石质耐火砖及其制备方法
CN107522477A (zh) * 2017-08-24 2017-12-29 浙江科屹耐火材料有限公司 一种复合强化核壳结构耐火砖及其制备工艺
CN108484139B (zh) * 2018-06-29 2021-05-04 中钢集团洛阳耐火材料研究院有限公司 一种镁铬耐火材料的制备方法
CN109608174A (zh) * 2019-01-09 2019-04-12 武汉科技大学 可水合氧化铝结合刚玉-尖晶石浇注料及其制备方法
CN114478030A (zh) * 2021-12-14 2022-05-13 洛阳利尔功能材料有限公司 一种rh精炼炉用多形貌共存的镁阿隆耐火材料制备方法
CN116693276B (zh) * 2023-05-17 2024-05-28 北京科技大学 一种TiN-MgAlON-Al2O3复合耐火材料、制备方法及应用
CN116903353B (zh) * 2023-09-14 2023-12-29 北京利尔高温材料股份有限公司 一种长寿命的钢包包底砖及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880267A (zh) * 2005-06-14 2006-12-20 郑州大学 微孔MgAlON复合刚玉材料制备方法
CN1919762A (zh) * 2006-09-20 2007-02-28 郑州大学 透明镁铝尖晶石纤维及其制备方法
CN101786882A (zh) * 2009-01-22 2010-07-28 郑州大学 MgAlON纳米晶复合刚玉材料
CN103833383A (zh) * 2012-11-26 2014-06-04 东北大学 一种闭孔结构的刚玉-镁铝尖晶石质耐火骨料及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880267A (zh) * 2005-06-14 2006-12-20 郑州大学 微孔MgAlON复合刚玉材料制备方法
CN1919762A (zh) * 2006-09-20 2007-02-28 郑州大学 透明镁铝尖晶石纤维及其制备方法
CN101786882A (zh) * 2009-01-22 2010-07-28 郑州大学 MgAlON纳米晶复合刚玉材料
CN103833383A (zh) * 2012-11-26 2014-06-04 东北大学 一种闭孔结构的刚玉-镁铝尖晶石质耐火骨料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"MgAlON及MgAlON结合MgO材料烧结性能研究";程竹 等;《耐火材料》;20101231;第44卷(第6期);第437-441页

Also Published As

Publication number Publication date
CN105693259A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105693259B (zh) 一种刚玉质尖晶石固溶体耐火材料制备工艺
Ren et al. From magnesite directly to lightweight closed-pore MgO ceramics: the role of Si and Si/SiC
Peng et al. Advanced lightweight periclase-magnesium aluminate spinel refractories with high mechanical properties and high corrosion resistance
CN1296324C (zh) 改良型矾土基中小型钢包浇注料及配制方法
CN102757241A (zh) 一种炮泥及其用途
Ludwig et al. Recycled magnesia-carbon aggregate as the component of new type of MgO-C refractories
Sako et al. Microstructural evolution of magnesia-based castables containing microsilica
Li et al. Effects of alumina bubble addition on the properties of mullite castables
Zhang et al. Microstructure and properties of hydratable alumina bonded bauxite–andalusite based castables
Wan et al. Effect of aggregate on aggregate/spinel matrix bonding interface and mechanical performance of lightweight spinel-bonded refractory
JP5943032B2 (ja) 軽量断熱アルミナ・マグネシア質耐火物の製造方法
Jingjie et al. Effects of Cr2O3 addition on property improvement of magnesia-spinel refractories used in RH snorkel
Wang et al. Matrix microstructure optimization of alumina-spinel castables and its effect on high temperature properties
CN112456974A (zh) 一种协同处置水泥窑用镁铝尖晶石砖及其制备方法与应用
Yu et al. Fracture behavior and thermal shock resistance of alumina-spinel castables-Effect of added fused zirconia-alumina
Shan et al. Influences of novel Si2BC3N antioxidant on the structure and properties of Al2O3-SiC-C castables: in air and coke bedded atmosphere
Yan et al. Effect of microporous aggregates and spinel powder on fracture behavior of magnesia-based refractories
CN101671046A (zh) 一种高纯镁铝尖晶石的生产方法
CN114538921A (zh) 一种玻璃相结合的大尺寸氧化锆致密烧结制品
Yang et al. Microstructure and enhanced slag resistance of Al2O3–SiC–C refractory castables with addition of ammonium metatungstate
Hu et al. Role of ZrO2 in sintering and mechanical properties of CaO containing magnesia from cryptocrystalline magnesite
Ewais et al. M-CZ composites from Egyptian magnesite as a clinker to RCK refractory lining
Li et al. Restructuring-diffusion mechanism of calcium alumino-titanate in CaAl12O19–MgAl2O4–Al2O3 castables
Wang et al. Effects of different additives on properties of magnesium aluminate Spinel–Periclase castable
CN112898036A (zh) 一种高性能莫来石浇注料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant