CN105688272B - 一种聚合物prgd/聚乳酸/hap-peg的复合定向大孔支架及其制备方法 - Google Patents

一种聚合物prgd/聚乳酸/hap-peg的复合定向大孔支架及其制备方法 Download PDF

Info

Publication number
CN105688272B
CN105688272B CN201610074610.5A CN201610074610A CN105688272B CN 105688272 B CN105688272 B CN 105688272B CN 201610074610 A CN201610074610 A CN 201610074610A CN 105688272 B CN105688272 B CN 105688272B
Authority
CN
China
Prior art keywords
hap
peg
polylactic acid
rgd
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610074610.5A
Other languages
English (en)
Other versions
CN105688272A (zh
Inventor
王友法
李梦群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610074610.5A priority Critical patent/CN105688272B/zh
Publication of CN105688272A publication Critical patent/CN105688272A/zh
Application granted granted Critical
Publication of CN105688272B publication Critical patent/CN105688272B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于高分子材料技术领域及生物医学工程技术领域,具体涉及一种聚合物PRGD/聚乳酸/HAP‑PEG的复合定向大孔支架及其制备方法。所述定向大孔支架的各原料组分包括聚合物PRGD、聚乳酸和HAP‑PEG,所述聚合物PRGD与聚乳酸的质量比为0~1:1;所述聚合物PRGD和聚乳酸的总质量与HAP‑PEG的质量比为1:0~0.5。本发明制备得到的聚合物PRGD/聚乳酸/HAP‑PEG的复合定向大孔支架的孔径大、孔隙率高,而且具有良好的细胞粘附性、生物相容性和优异的力学性能。

Description

一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架及其 制备方法
技术领域
本发明属于高分子材料技术领域及生物医学工程技术领域,具体涉及一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架及其制备方法。
背景技术
组织工程是一个跨学科的领域,通过发展生物替代品,修复、维护或改善组织功能而适用于工程和生命科学。一种理想的支架在组织工程中起到重要的作用,它具有如下特征:无毒性,良好的生物相容性,合适的机械性能,生物降解率和组织再生率相匹配,生物降解产物不应该对周围组织和器官产生消极的影响。另外支架应该具有较高的孔隙率和高度连通的大孔结构,为细胞接种、生长和增殖,以及细胞的营养交换和新陈代谢提供足够的空间。因为许多自然组织如骨、肌腱、关节、韧带、软骨、神经脊髓等都是一种定向的结构,这和组织的生理和机械性能密切相关,所以仿生支架的形态结构也需要具备定向结构,制备定向大孔仿生支架成为组织工程的一个重要的研究目标。
发明内容
本发明的目的在于提供一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架及其制备方法。所述定向大孔支架的孔径大、孔隙率高,而且具有良好的细胞粘附性、生物相容性和优异的力学性能。
为实现上述发明目的,本发明采用的技术方案为:
一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架,其原料组分包括聚合物PRGD、聚乳酸和HAP-PEG,所述聚合物PRGD与聚乳酸的质量比为0~1:1;所述聚合物PRGD和聚乳酸的总质量与HAP-PEG的质量比为1:0~0.5。
上述方案中,所述聚合物PRGD通过如下方法制备得到:
(1)以聚乳酸(PDLLA)、马来酸酐(MA)为原料,过氧化二苯甲酰(BPO)为引发剂,溶于适量的二氯甲烷中,超声混合均匀,真空干燥至恒重,在氮气保护下升温至90℃高温熔融反应10个小时,THF-无水乙醇共沉淀法制得产物A;
(2)将产物A和适量己二胺分别溶解在适量的四氢呋喃(THF)中,搅拌条件下,将产物A滴加到己二胺的四氢呋喃溶液中,低温下8~10℃反应10~30min,升温至28~30℃反应30~60min,将反应液滴入到过量蒸馏水总收集表面膜,真空干燥至恒重,得到产物B;
(3)将产物B溶于适量四氢呋喃中,冰浴控制溶液的温度<5℃,将1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐/1-羟基苯并三唑的混合液溶于N-N二甲基甲酰胺中,在搅拌状态下加入到产物B的四氢呋喃溶液中,活化反应30min后调节pH至7~8,随后加入溶于N-N二甲基甲酰胺的RGD多肽溶液,反应5~10h,将反应液滴入到过量蒸馏水总收集表面膜,真空干燥至恒重,得到产物C,即为聚合物PRGD。
上述方案中,步骤(1)所述聚乳酸、马来酸酐和过氧化二苯甲酰的质量比为1:0.1:0.004~0.005;步骤(3)所述产物B与RGD多肽的质量比为1g:10~20mg。
上述方案中,所述聚乳酸为左旋聚乳酸L-PLA、右旋聚乳酸D-PLA和外消旋聚乳酸DL-PLA中的一种或多种。
上述方案中,所述HAP-PEG通过如下方法制备得到:采用冷冻凝胶法,n-HAP与PEG4000的质量比为1:0.4,将PEG-4000在蒸馏水中磁力搅拌30min~60min后静置去除溶液中的气泡,将n-HAP在蒸馏水中超声分散30min~60min,在搅拌下滴入PEG-4000溶液中,继续搅拌5h~8h,放入-80℃冰箱中冷冻24h,然后冷冻干燥即得HAP-PEG。
上述方案中,所述n-HAP的粒径为纳米级。
上述聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架的制备方法,包括如下步骤:
(1)将聚合物PRGD和聚乳酸溶于1,4-二氧六环中,在40℃~80℃下加热搅拌后得到澄清溶液,加入HAP-PEG,充分搅拌均匀后超声分散10min~30min,得到混合溶液;
(2)将混合溶液倒入模具中,加热到40℃~80℃,然后迅速放入过冷温度下诱导固液相分离,固液相分离后,再将模具置于0℃以下进一步使溶剂固化;
(3)取出模具冷冻干燥3~5天,真空干燥2~5天至恒重,得到定向多孔复合支架。
上述方案中,所述诱导固液相分离的操作步骤为:保持模具底部的温度为0℃至-100℃,模具顶部的温度为25℃~30℃,维持固液相分离的时间为3h~24h。
上述方案中,所述聚合物PRGD和聚乳酸的总质量与1,4-二氧六环的体积的比为0.03g/ml~0.07g/ml。
上述方案中,所述模具的底部采用金属材质,其他部分采用塑料材质。
本发明中,聚乳酸具有良好的生物相容性和可降解吸收性,但由于其降解产物偏酸性,易引起非感染性炎症,且细胞亲和性差,缺乏细胞识别信号。RGD多肽是一个与整合素受体结合促进细胞黏附的最小细胞可识别的氨基酸序列。将RGD多肽接枝到聚乳酸分子链上,赋予材料生物活性,有效的促进细胞的黏附、增殖、分化和迁移。n-HAP具有较好的生物相容性、力学稳定性和亲水性,同时可以中和聚乳酸降解产生的酸性产物,由于n-HAP比较容易团聚,将PEG对n-HAP表面进行改性,促进聚乳酸与n-HAP的界面相容性。
本发明的有益效果如下:本发明将RGD接枝聚乳酸(PRGD)/聚乳酸/HAP-PEG进行复配,发挥各组分的协调作用,制备得到的定向大孔支架的孔径大、孔隙率高,而且具有良好的细胞粘附性、生物相容性和优异的力学性能。
附图说明
图1为本发明的实施例中的聚乳酸(PDLLA)、产物A(PDLLA+MA)、产物B(PDLLA+MA+HMDA)的红外图。
图2为本发明的实施例中的n-HAP、PEG和HAP-PEG的XRD图。
图3为本发明的实施例l的固化温度为-80℃时聚乳酸浓度为5%的定向大孔支架的横向(图3(a))和纵向(图3(b))扫描电镜图。
图4为本发明的实施例2的固化温度为0℃时,聚合物PRGD/聚乳酸的质量比为0.2:1,且其总质量与HAP-PEG的质量比为1:0.5,复合定向大孔支架的横向(图4(a))和纵向(图4(b))扫描电镜图。
图5为本发明的实施例3的固化温度为0℃时,聚合物PRGD/聚乳酸的质量比为1:1,且其总质量与HAP-PEG的质量比为1:0.1,复合定向大孔支架的横向(图5a)和纵向(图5b)扫描电镜图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
以下实施例中,所述聚合物PRGD通过如下方法制备得到:
(1)取2g聚乳酸(PDLLA)、0.2g马来酸酐(MA)为原料和0.008g过氧化二苯甲酰(BPO),溶于适量的二氯甲烷中,超声混合均匀,真空干燥至恒重,在氮气保护下升温至90℃高温熔融反应10个小时,THF-无水乙醇共沉淀法制得产物A,红外图见图1;
(2)将1g产物A和0.0128g己二胺分别溶解在适量的四氢呋喃(THF)中,搅拌条件下,将产物A溶液滴加到己二胺的四氢呋喃溶液中,低温下8~10℃反应10min,升温至28~30℃反应30min,将反应液滴入到过量蒸馏水总收集表面膜,真空干燥至恒重,得到产物B,红外图见图1;
(3)将1g产物B溶于适量四氢呋喃中,冰浴控制溶液的温度<5℃,取0.15g1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和0.15g1-羟基苯并三唑的混合液溶于N-N二甲基甲酰胺中,在搅拌状态下加入到产物B的四氢呋喃溶液中,活化反应30min后调节pH至7~8,随后加入溶于N-N二甲基甲酰胺的15mgRGD多肽溶液,反应5h,将反应液滴入到过量蒸馏水总收集表面膜,真空干燥至恒重,得到产物C,即为聚合物PRGD。
上述聚乳酸为左旋聚乳酸L-PLA、右旋聚乳酸D-PLA和外消旋聚乳酸DL-PLA中的一种或多种。
以下实施例中,所述HAP-PEG通过如下方法制备得到:采用冷冻凝胶法,n-HAP与PEG4000的质量比为1:0.4,将PEG-4000在蒸馏水中磁力搅拌30min后静置去除溶液中的气泡,将n-HAP在蒸馏水中超声分散30min,在搅拌下滴入PEG-4000溶液中,继续搅拌5h,放入-80℃冰箱中冷冻24h,然后冷冻干燥即得HAP-PEG,所述HAP的粒径为纳米级。
实施例1
一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架,通过如下方法制备得到:
(1)称取0.5g聚乳酸溶于10ml1,4-二氧六环中,在40℃下磁力搅拌2h得到澄清溶液,冷却至室温;
(2)将聚乳酸溶液倒入聚四氟乙烯模具中,加热到40℃,将模具底部之外的部分用保温隔热层泡沫充分包裹,然后迅速放入-80℃冰表面诱导固液相分离,保持模具底部的温度为-80℃,模具顶部的温度为25℃,保持温度3h;
(3)取出模具冷冻干燥3天,真空干燥2天至恒重,得到聚乳酸定向大孔支架,放入4℃冰箱保存。
本实施例制备得到的聚乳酸定向大孔支架的横向扫描电镜图见图3(a),纵向扫描电镜图见图3(b)。本实施例制备得到的聚乳酸定向大孔支架的孔隙率是65%,平均孔径为168μm。
实施例2
一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架,通过如下方法制备得到:
(1)将0.066g聚合物PRGD和0.264g聚乳酸溶于10ml 1,4-二氧六环中,在60℃下加热搅拌2h得到澄清溶液,加入0.15g HAP-PEG,充分搅拌均匀后超声分散30min,得到混合溶液;
(2)将混合溶液倒入聚四氟乙烯模具中,加热到60℃,将模具底部之外的部分用保温隔热层泡沫充分包裹,然后迅速放入0℃冰表面诱导固液相分离,保持模具底部的温度为0℃,模具顶部的温度为25℃,保持温度24h,随后放入-20℃冰箱,固化2h;
(3)取出模具冷冻干燥3天,真空干燥2天至恒重,得到定向多孔复合支架。
本实施例制备得到的聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架的横向扫描电镜图见图4(a),纵向扫描电镜图见图4(b)。本实施例制备得到的聚乳酸定向大孔支架的孔隙率是90%,平均孔径为319μm。
实施例3
一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架,通过如下方法制备得到:
(1)将0.25g聚合物PRGD和0.25g聚乳酸溶于10ml 1,4-二氧六环中,在40℃下加热搅拌2h得到澄清溶液,加入0.1g HAP-PEG,充分搅拌均匀后超声分散30min,得到混合溶液;
(2)将混合溶液倒入聚四氟乙烯模具中,加热到40℃,将模具底部之外的部分用保温隔热层泡沫充分包裹,然后迅速放入0℃冰表面诱导固液相分离,保持模具底部的温度为0℃,模具顶部的温度为25℃,保持温度20h,随后放入-20℃冰箱,固化2h;
(3)取出模具冷冻干燥3天,真空干燥2天至恒重,得到定向多孔复合支架。
本实施例制备得到的聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架的横向扫描电镜图见图5(a),纵向扫描电镜图见图5(b)。本实施例制备得到的聚乳酸定向大孔支架的孔隙率是89%,平均孔径为325μm。
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (8)

1.一种聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架的制备方法,其特征在于,包括如下步骤:
(1)将聚合物PRGD和聚乳酸溶于1,4-二氧六环中,在40℃~80℃下加热搅拌后得到澄清溶液,加入HAP-PEG,充分搅拌均匀后超声分散10min~30min,得到混合溶液;所述聚合物PRGD与聚乳酸的质量比>0且≤1;所述HAP-PEG的加入量与聚合物PRGD和聚乳酸的总质量的质量比>0且≤0.5;
(2)将混合溶液倒入模具中,加热到40℃~80℃,然后迅速放在过冷温度下诱导固液相分离,待固液相分离后,再将模具置于0℃以下进一步使溶剂固化;所述诱导固液相分离的操作步骤为:保持模具底部的温度为0℃至-100℃,模具顶部的温度为25℃~30℃,维持固液相分离的时间为3h~24h;
(3)取出模具冷冻干燥3~5天,真空干燥2~5天至恒重,得到定向多孔复合支架。
2.根据权利要求1所述的制备方法,其特征在于,所述聚合物PRGD和聚乳酸的总质量与1,4-二氧六环的体积的比为0.03g/ml~0.07 g/ml。
3.根据权利要求1所述的制备方法,其特征在于,所述模具的底部采用金属材质,其他部分采用塑料材质。
4.根据权利要求1所述的制备方法,其特征在于,所述聚合物PRGD通过如下方法制备得到:
(1)以聚乳酸(PDLLA)、马来酸酐(MA)为原料,过氧化二苯甲酰(BPO)为引发剂,溶于适量的二氯甲烷中,超声混合均匀,真空干燥至恒重,在氮气保护下升温至90℃高温熔融反应10个小时,THF-无水乙醇共沉淀法制得产物A;
(2)将产物A和适量己二胺分别溶解在适量的四氢呋喃(THF)中,搅拌条件下,将产物A滴加到己二胺的四氢呋喃溶液中,低温下8~10℃反应10~30min,升温至28~30℃反应30~60min,将反应液滴入到过量蒸馏水总收集表面膜,真空干燥至恒重,得到产物B;
(3)将产物B溶于适量四氢呋喃中,冰浴控制溶液的温度<5℃,将1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐/1-羟基苯并三唑的混合液溶于N-N二甲基甲酰胺中,在搅拌状态下加入到产物B的四氢呋喃溶液中,活化反应30min后调节pH至7~8,随后加入溶于N-N二甲基甲酰胺的10~20mg RGD多肽溶液,反应5~10h,将反应液滴入到过量蒸馏水总收集表面膜,真空干燥至恒重,得到产物C,即为聚合物PRGD。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)所述聚乳酸、马来酸酐和过氧化二苯甲酰的质量比为1:0.1:0.004~0.005;步骤(3)所述产物B与RGD多肽的质量比为1g:10~20mg。
6.根据权利要求1所述的制备方法,其特征在于,所述HAP-PEG通过如下方法制备得到:采用冷冻凝胶法,n-HAP与PEG-4000的质量比为1:0.4,将PEG-4000在蒸馏水中磁力搅拌30min~60min后静置去除溶液中的气泡,将n-HAP在蒸馏水中超声分散30min~60min,在搅拌下滴入PEG-4000溶液中,继续搅拌5h~8h,放入-80℃冰箱中冷冻24h,然后冷冻干燥即得HAP-PEG。
7.根据权利要求6所述的聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架的制备方法,其特征在于,所述n-HAP的粒径为纳米级。
8.权利要求1~7任一所述制备方法制备所得聚合物PRGD/聚乳酸/HAP-PEG的复合定向大孔支架。
CN201610074610.5A 2016-02-02 2016-02-02 一种聚合物prgd/聚乳酸/hap-peg的复合定向大孔支架及其制备方法 Expired - Fee Related CN105688272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610074610.5A CN105688272B (zh) 2016-02-02 2016-02-02 一种聚合物prgd/聚乳酸/hap-peg的复合定向大孔支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610074610.5A CN105688272B (zh) 2016-02-02 2016-02-02 一种聚合物prgd/聚乳酸/hap-peg的复合定向大孔支架及其制备方法

Publications (2)

Publication Number Publication Date
CN105688272A CN105688272A (zh) 2016-06-22
CN105688272B true CN105688272B (zh) 2019-05-24

Family

ID=56230247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610074610.5A Expired - Fee Related CN105688272B (zh) 2016-02-02 2016-02-02 一种聚合物prgd/聚乳酸/hap-peg的复合定向大孔支架及其制备方法

Country Status (1)

Country Link
CN (1) CN105688272B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659939B (zh) * 2017-06-23 2019-05-21 高雄醫學大學 具有主動緩釋放效應之陶瓷材料,其製造方法及包含此陶瓷材料之系統
CN110478530B (zh) * 2019-08-13 2021-11-02 天津博硕倍生物科技有限公司 一种可吸收聚乳酸支架的制备工艺
CN110665068A (zh) * 2019-09-17 2020-01-10 东南大学 一种含定向通孔结构的聚乳酸多孔骨修复材料及其制备方法
CN111671981A (zh) * 2020-06-24 2020-09-18 杭州锐健马斯汀医疗器材有限公司 一种界面螺钉鞘用可吸收复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1919360A (zh) * 2006-09-14 2007-02-28 同济大学 一种聚乳酸基/纳米羟基磷灰石复合生物材料及其制备方法
CN1939543A (zh) * 2006-09-14 2007-04-04 同济大学 聚乳酸基/纳米羟基磷灰石复合支架材料及其制备方法
EP2039377A1 (en) * 2006-06-29 2009-03-25 Wuhan University Of Technology Rgd polypeptide grafted poly (glycolic acid-l-lysine-l-lactic acid) / -tricalcium phosphate composite material and preparation method thereof
CN104327293A (zh) * 2014-11-21 2015-02-04 武汉理工大学 基于聚合物prgd的复合膜材料及其制备方法
CN104910410A (zh) * 2015-06-05 2015-09-16 武汉理工大学 Rgd多肽接枝聚(马来酸酐-己二胺-dl-乳酸)/改性羟基磷灰石多孔复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102850574B (zh) * 2012-09-26 2013-12-25 华东理工大学 一种基于定向结晶技术制备有序结构聚合物多孔材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039377A1 (en) * 2006-06-29 2009-03-25 Wuhan University Of Technology Rgd polypeptide grafted poly (glycolic acid-l-lysine-l-lactic acid) / -tricalcium phosphate composite material and preparation method thereof
CN1919360A (zh) * 2006-09-14 2007-02-28 同济大学 一种聚乳酸基/纳米羟基磷灰石复合生物材料及其制备方法
CN1939543A (zh) * 2006-09-14 2007-04-04 同济大学 聚乳酸基/纳米羟基磷灰石复合支架材料及其制备方法
CN104327293A (zh) * 2014-11-21 2015-02-04 武汉理工大学 基于聚合物prgd的复合膜材料及其制备方法
CN104910410A (zh) * 2015-06-05 2015-09-16 武汉理工大学 Rgd多肽接枝聚(马来酸酐-己二胺-dl-乳酸)/改性羟基磷灰石多孔复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PRGD/pdlla/n-HAP scaffolds for peripheral nerve regeneration;Wang You-fa et al.;《功能材料2010年论文集》;20101231;第382-385页
热致相分离制备HA/PLGA复合骨组织工程支架的研究;陈楚等;《2006年上海市医用生物材料研讨会》;20061231;第25页
聚乙二醇对不同粒度羟基磷灰石的表面修饰;邓迟等;《硅酸盐学报》;20070630;第35卷(第6期);第683-686页

Also Published As

Publication number Publication date
CN105688272A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105688272B (zh) 一种聚合物prgd/聚乳酸/hap-peg的复合定向大孔支架及其制备方法
Davidenko et al. Biomimetic collagen scaffolds with anisotropic pore architecture
Gomes et al. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties
ES2291189T3 (es) Procedimiento para la preparacion de armazones polimericos, porosos, biodegradables y biocompatibles para ingenieria tisular.
CN107502061B (zh) 表面降解型3d打印生物墨水及3d打印方法
Kang et al. Fabrication of porous gelatin scaffolds for tissue engineering
US6103255A (en) Porous polymer scaffolds for tissue engineering
CN106668948B (zh) 一种基于低温快速成型的组织工程支架及制备方法
Pezeshki Modaress et al. Fabrication of a porous wall and higher interconnectivity scaffold comprising gelatin/chitosan via combination of salt-leaching and lyophilization methods
Zeng et al. Surface biofunctionalization of three-dimensional porous poly (lactic acid) scaffold using chitosan/OGP coating for bone tissue engineering
Wang et al. A Novel Poly (amido amine)‐Dendrimer‐Based Hydrogel as a Mimic for the Extracellular Matrix
Bonartsev et al. 3D-scaffolds from poly (3-hydroxybutyrate) poly (ethylene glycol) copolymer for tissue engineering
Ren et al. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming
WO2000062829A1 (en) Porous polymer scaffolds for tissue engineering
CN1939543A (zh) 聚乳酸基/纳米羟基磷灰石复合支架材料及其制备方法
Yuan et al. Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method
CN101496908A (zh) 一种具有多级微纳结构的珍珠粉人工骨支架材料及其生产工艺
CN101549176A (zh) 释氧型多孔无机/有机复合支架材料
Zhang et al. Tailor-made poly (l-lactide)/poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching
IL139715A (en) Method for preparing biocompatible scaffold
CN107789674B (zh) 具有多孔微球结构的复合生物膜材料的制备方法及其产品和应用
CN103974727A (zh) 多孔组织支架
Li et al. Porous 3‐D scaffolds from regenerated Antheraea pernyi silk fibroin
Wang et al. Effect of heat-transfer capability on micropore structure of freeze-drying alginate scaffold
CN100534537C (zh) 微孔双连续结构的多孔支架材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190524

Termination date: 20210202

CF01 Termination of patent right due to non-payment of annual fee