CN105684993B - GABAergic神经元条件性敲除基因PGC-1α小鼠的制备 - Google Patents

GABAergic神经元条件性敲除基因PGC-1α小鼠的制备 Download PDF

Info

Publication number
CN105684993B
CN105684993B CN201610066628.0A CN201610066628A CN105684993B CN 105684993 B CN105684993 B CN 105684993B CN 201610066628 A CN201610066628 A CN 201610066628A CN 105684993 B CN105684993 B CN 105684993B
Authority
CN
China
Prior art keywords
pgc
mouse
flox
cre
egfp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610066628.0A
Other languages
English (en)
Other versions
CN105684993A (zh
Inventor
王佳
张维宁
钱进军
王玉聪
王春燕
张颖
吴丹萍
方秋珏
王玉
王艳泓
胡天媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610066628.0A priority Critical patent/CN105684993B/zh
Publication of CN105684993A publication Critical patent/CN105684993A/zh
Application granted granted Critical
Publication of CN105684993B publication Critical patent/CN105684993B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0318Animal model for neurodegenerative disease, e.g. non- Alzheimer's
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种GABAergic神经元条件性敲除基因PGC‑1α小鼠模型及其构建方法,属于动物模型及其应用领域;本发明首先获得PGC‑1αflox/flox小鼠;然后利用PGC‑1αflox/+与C57BL/6J交配得到PGC‑1αflox/+,再将他们与Dlx5/6 Cre‑IRES‑EGFP小鼠交配获得全敲Dlx5/6 Cre‑IRES‑EGFP;PGC‑1αflox/flox和半敲Dlx5/6 Cre‑IRES‑EGFP;PGC‑1αflox/+小鼠;结果成功制备在GABAergic中间神经元条件性敲除PGC‑1α的基因敲除鼠,为神经发育及神经退行性疾病的机制研究提供一个可信的动物模型。

Description

GABAergic神经元条件性敲除基因PGC-1α小鼠的制备
技术领域
本发明涉及一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型及其构建方法,属于动物模型及其应用领域。
背景技术
过氧化物酶体增殖物激活受体γ辅激活因子-1α(peroxisom proliferator-activated receptor-γ coactivator-1, PGC-1α)作为转录辅激活因子在调控线粒体的合成及线粒体内与氧代谢有关的基因表达方面起着关键的作用。转录辅激活因子PGC-1α招募其他特异的转录因子,诱导组蛋白脱乙酰化,影响染色体结构改变并启动转录的发生(Lin J, WH., Tarr PT, Zhang CY, et al. Transcriptional co-activator PGC-1alpha drives the formation of slow-twitch muscle fibres. Nature, 2002, 418:797-801.)。
在周围组织,PGC-1α以其能够诱导线粒体生物合成及抗氧化酶基因的转录而被定义为代谢调节靶点。在中枢神经系统,PGC-1α主要存在于啮齿动物出生后神经发育早期的GABAergic中间神经元(Lucas EK, Dougherty SE, McMeekin LJ, et al. PGC-1 αprovides a transcriptional framework for synchronous neurotransmitter releasefrom parvalbumin-positive interneurons. J Neurosci, 2014. 34(43): 14375-14387.),PGC-1α对于神经精神疾病的病理学机制的研究非常重要,研究发现舞蹈症病人的肌肉和脑组织中PGC-1α蛋白表达下调,大量帕金森氏综合症及舞蹈症患者死后的尸检结果亦证明PGC-1α蛋白表达异常,2014年,Fint课题组通过DNA测序比对了5303例中国抑郁症女性患者及5337例对照者,发现了编码线粒体能量代谢的重要基因PGC-1α的上游靶位SIRT1显著不同,该结果2015年6月在Nature上发表(Ledford H. First robust genetic linksto depression emerge. Nature, 2015. 523: 268-269.)。荧光共聚焦结果也已经证明在整个脑组织PGC-1α的蛋白表达与钙离子连接蛋白GABA特异性标志物小清蛋白共存(LucasEK, Dougherty SE, McMeekin LJ, et al. Developmental alterations in motorcoordination and medium spiny neuron markers in mice lacking PGC-1α. Plosone, 2012.),小清蛋白对于诱导神经元发育存活及增加抗氧化酶的活性非常重要,PGC-1α作为转录辅激活因子,招募其他的转录因子形成转录复合物,调控抗氧化酶的形成,小清蛋白的基因转录,神经递质的释放及下游物质代谢相关靶位基因的转录、促进神经元的生长、发育及增加神经突触的可塑性。
PGC-1α-/-基因敲除鼠的子代基因型符合孟德尔遗传定律,故PGC-1α基因并非胚胎发育必不可少的基因,然而,仅有一半子代在出生后存活并进入成年。与PGC-1α+/+及PGC-1α+/-基因型相比,PGC-1α-/-基因鼠出生后2个月体重降低10%-15%(Lin JD, Wu P, Tarr PT,et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity inPGC-1α null mice. Cell, 2004. 119: 121-135.)成活率下降,体重减少这些不利因素将妨碍利用PGC-1α基因敲除鼠研究该基因与神经精神疾病机制的关系。条件性基因敲除(Conditional konckout)技术可以有效克服常规基因敲除导致的胚胎期死亡,所以PGC-1α条件性敲除小鼠为研究PGC-1α在特定细胞、组织和器官中的功能提供了前提条件。本实验室引进PGC-1αflox/+条件性基因敲除小鼠,雌雄各2只,当前的研究就PGC-1αflox/+x小鼠鉴定、繁殖、保种以及在GABAergic中间神经元敲除PGC-1α基因小鼠的制备进行探讨。
发明内容
本发明克服了现有技术中在GABAergic中间神经元敲除PGC-1α基因小鼠制备的空缺,为神经发育及神经退行性疾病的机制研究提供一个可信的动物模型及该小鼠模型的构建方法。
本发明提供Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/flox基因敲除小鼠的制备、鉴定、繁殖和保种方法。
本发明提供一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型。
本发明还提供一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型的构建方法。
本发明还提供GABAergic神经元条件性敲除基因PGC-1α小鼠模型在研究神经发育及神经退行性疾病中的应用。
为达到上述目的,本发明采取如下技术手段:
本发明选择了Dlx5a/Dlx6a作为GABAergic中间神经元发育中的启动子,利用Cre/Loxp系统成功构建了PGC-1α条件性基因敲除小鼠,通过Dlx5/6启动子驱动Cre重组酶在GABAergic中间神经元特异性表达,选择性敲除GABAergic中间神经元中的PGC-1α基因,进而研究PGC-1α与神经精神疾病的关系。
本发明所述的一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型的构建方法,具体包括如下步骤:
(1)选用PGC-1αflox/+条件性基因敲除小鼠与PGC-1αflox/+条件性基因敲除小鼠交配,保种获得纯合子PGC-1αflox/flox小鼠和杂合子PGC-1αflox/+小鼠;
(2)将繁育获得的纯合子PGC-1αflox/flox小鼠和杂合子PGC-1αflox/+小鼠分别与SPF级
C57BL/6J小鼠交配,迅速扩大种群,得到杂合子PGC-1αflox/+小鼠;
(3)选用Dlx5/6 Cre-IRES-EGFP小鼠与SPF级C57BL/6J小鼠交配,获得Dlx5/6 Cre -IRES-EGFP转基因小鼠;
(4)将获得的PGC-1αflox/+小鼠、PGC-1αflox/flox小鼠分别与获得的Dlx5/6 Cre-IRES-EGFP转基因小鼠交配,获得GABAergic神经元条件性敲除基因PGC-1α小鼠模型,即全敲Dlx5/6Cre-IRES-EGFP;PGC-1αflox/flox小鼠和半敲Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/+小鼠。
其中,所述步骤(1)、(2)、(3)包括进一步对所得到的小鼠利用特异性引物通过PCR方法进行基因型的鉴定。
所述步骤(1)和步骤(2)中进行基因型鉴定的引物均为:
引物8041:5’-TCCAGT AGGCAGAGATTTATGAC-3’和,
引物8491:5'-TGTCTGGTTTGACAATCTGCTAGGTC-3’。
所述步骤(3)中进行基因型鉴定为通过双重PCR筛选鉴定,所述进行基因型鉴定的引物为:
引物8041::5’-TCCAGT AGGCAGAGATTTATGAC-3’和
引物8491:5'-TGTCTGGTTTGACAATCTGCTAGGTC-3’;
引物oIMR1084:5'- GCG GTC TGG CAG TAA AAA CTA TC-3'和
引物oIMR1085:5'- GTG AAA CAG CAT TGC TGT CAC TT-3'。
其中,所述的Dlx5/6 Cre-IRES-EGFP小鼠在GABAegic中间神经元中表达Cre重组酶;Dlx5/6 Cre-IRES-EGFP小鼠转入了0.5kb包含id6/id5增强子、Beta-珠蛋白增强子和增强绿色荧光融合蛋白EGFP片段。
本发明的有益效果:
(1)小鼠只有在表达Cre重组酶的GABAergic的中间神经元才能敲除基因PGC-1α,
基因型为Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/flox,在没有Cre表达的其他组织细胞中该基因型仍然为PGC-1αflox/flox,因此本发明实现了GABAergic的中间神经元特异性敲除PGC-1α,避免了PGC-1α全敲除造成的存活率下降、体重减低等缺点。
(2)PGC-1α的基因敲除鼠将为神经发育及神经退行性疾病的机制研究提供一个可信的动物模型,与PGC-1α+/+及PGC-1α+/-基因型相比,PGC-1α-/-鼠出生后2个月体重降低10%-15%,这些不利因素将限制研究该基因与神经精神疾病的关系;然而,本发明的条件性基因敲除技术可以有效克服上述缺点。本发明选择了Dlx5a/Dlx6a作为GABAergic中间神经元发育中的启动子,利用Cre/Loxp系统成功构建了PGC-1α条件性基因敲除小鼠,通过Dlx5/6启动子驱动Cre重组酶在GABAergic中间神经元特异性表达,选择性敲除GABAergic中间神经元中的PGC-1α基因,进而研究PGC-1α与神经精神疾病的关系。因此,PGC-1α条件性基因敲除小鼠将具有广阔的应用前景。
(3)条件性基因敲除小鼠的交配比较繁琐,不同交配方式获得组织细胞特异性基因敲除小鼠所需的时间,耗费的精力不同,由于从美国引进的条件性敲除小鼠为杂合子,本发明为了快速获得足够数量的在GABAergic中间神经元中敲除PGC-1α基因的小鼠,一方面利用PGC-1αflox/+与PGC-1αflox/+交配保种获得纯合子PGC-1αflox/flox,另一方面利用PGC-1αflox/+与C57BL/6J交配来迅速扩大种群,得到更多的杂合子PGC-1αflox/+,当获得较多数量的PGC-1αflox/+及PGC-1αflox/flox后,通过与Dlx5/6 Cre-IRES-EGFP小鼠交配获得大量的全敲Dlx5/6Cre-IRES-EGFP;PGC-1αflox/flox和半敲Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/+小鼠,这种交配方式的优点是即可以迅速扩大种群,节省时间精力,又可以获取杂合子敲除小鼠,从而可以检测杂合子敲除小鼠是否有表型。如果杂合子没有表型,可以通过杂合子半敲小鼠Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/+之间的杂交得到更多的纯合子全敲小鼠Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/flox,如果杂合子有表型,则最好用杂合子半敲小鼠作为对照,可以研究杂合子小鼠的表型究竟是Cre引起还是该基因本身的生理功能,从而更加准确的证明该基因的功能以及基因剂量与基因功能的关系。
附图说明
图1:引进PGC-1αflox/+小鼠PCR基因鉴定结果,图中泳道1、2、5、6为鉴定的四只效果的结果,泳道3、4、7、8为对照组小鼠结果,M为DNA分子标记Marker;
图2:PGC-1αflox/+小鼠的扩增、保种示意图;
图3:繁育扩增获得PGC-1αflox/flox及PGC-1αflox/+小鼠PCR基因鉴定结果,图中泳道1、2、3、4、6为PGC-1αflox/+、PGC-1αflox/flox小鼠分别与C57BL/6J小鼠交配所得子代小鼠基因型鉴定结果,泳道5和7为对照、不加模板的扩增结果,M为DNA分子标记Marker;
图4:繁育扩增获得Dlx5/6 Cre-IRES-EGFP转基因小鼠荧光显微镜鉴定;
图5:繁育扩增获得Dlx5/6 Cre-IRES-EGFP转基因小鼠PCR基因鉴定结果,图中泳道1-5为所鉴定小鼠的结果,M为DNA分子标记Marker;;
图6: Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/flox,Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/+小鼠的繁殖示意图;
图7:Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/flox,Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/+小鼠的基因鉴定结果,图中泳道1-6为所鉴定小鼠的结果,最右边泳道为DNA分子标记Marker。
具体实施方式
为更好的理解本发明,下面通过具体实施例和附图进一步进行说明。
实施例1:条件性基因敲除小鼠的引进及饲养
1.1 实验动物
PGC-1αflox/+条件性基因敲除小鼠,品系名称B6.129-Ppargc1αtm2Brsp/JNju,购于美国Jackson Lab,雌雄各2只。Dlx5/6 Cre-IRES-EGFP由东南大学赵春杰教授惠赠,雌雄各2只,该小鼠在GABAegic中间神经元中表达Cre重组酶;Dlx5/6 Cre-IRES-EGFP转基因小鼠转入了0.5kb包含id6/id5增强子、Beta-珠蛋白增强子和增强绿色荧光融合蛋白EGFP(Enhanced greenfluorescent fusion protein)片段。SPF级C57BL/6J小鼠购于江苏大学实验动物中心[许可证编号:SCxk(苏)2015-0001] 。
αflox/+小鼠的饲养
PGC-1αflox/+小鼠的饲养按照SPF动物饲养标准执行,经隔离观察未见异常后进入饲养区,严格按照SPF动物管理相关规定进行实验操作。
实施例2:PGC-1αflox/+小鼠鉴定、种群扩增及保种
2.1 PGC-1α条件性敲除小鼠基因组DNA的提取
将购于美国Jackson Lab的雌雄小鼠进行交配,子代采取剪取脚趾编号方法(剪取出生后5-6天的子鼠的脚趾),从后肢到前肢,从右到左依次编号。剪取的脚趾组织用于提取基因组DNA。基因组DNA提取大致步骤如下:(1)取小鼠脚趾(按1-10的顺序)放入1.5 mL EP管中,适当离心30 s使其沉于管底。(2)加入30 μL裂解液(0.5% 20% Tween-20, 1M KCL 50mM,1M MgCl215 mM, 1M Tris-HCl 2.5 mM, pH8.0,用前加200 μg/mL蛋白酶K 3μL),(3)55℃消化3-5 h, 12,000 rpm离心2min, 95 ℃,15 min,灭活蛋白酶K,12,000 rpm离心2min,所获得的上清中DNA用于PCR模板,-20 ℃保存,用于基因型鉴定。
α条件性敲除小鼠基因型鉴定
PGC-1α条件性敲除小鼠基因型中,3-5号外显子两端含有2个loxp序列,采用引物进行小鼠基因型鉴定;引物序列根据已公开的小鼠PGC-1α基因序列为模板,根据美国Jackson Lab所提供信息,引物序列具体设计如下:
引物8041:5’-TCCAGT AGGCAGAGATTTATGAC-3’和
引物8491:5'-TGTCTGGTTTGACAATCTGCTAGGTC-3’。
PCR反应条件为:95 ℃ 5 min;94 ℃ 30 s,58 ℃ 35 s,72 ℃ 45 s 35个循环;72 ℃ 3 min;16 ℃保存。PCR产物行2%琼脂糖凝胶电泳。电泳完成后用Bio Rad凝胶电泳成像仪照相。
以SPF级C57BL/6J小鼠为对照组,以常规PCR方法对4只小鼠进行鉴定,扩增结果显示有360bp和400bp两条带的为杂合子PGC-1αflox/+小鼠,仅有400bp一个条带的为纯合子PGC-1αflox/flox小鼠,仅有360bp的为对照组野生型小鼠。
PCR鉴定照片见图1,显示扩增出360bp和400bp两条带的为杂合子PGC-1αflox/+小鼠(泳道1、2、5、6),而扩增出一条360bp条带的为野生型小鼠(对照组,泳道3、4、7、8)。
αflox/+小鼠扩增与保种
①引进的PGC-1αflox/+小鼠与PGC-1αflox/+交配后得到的后代包括PGC-1αflox/+杂合子、PGC-1αflox/flox纯合子及野生型PGC-1α+/+小鼠(如图2A);
②PGC-1αflox/+小鼠与C57BL/6J小鼠交配后得到的后代包括PGC-1αflox/+杂合子及野生型PGC-1α+/+小鼠,用于扩增及保种(如图2B)。
2.4 PGC-1αflox/+小鼠扩增子代的鉴定
引进的PGC-1αflox/+小鼠与PGC-1αflox/+小鼠交配成功,保种,并获得PGC-1αflox/flox、PGC-1αflox/+及野生型小鼠;繁育获得的PGC-1αflox/+及PGC-1αflox/flox小鼠分别与C57BL/6J小鼠交配,获得更多的PGC-1αflox/+小鼠,后代的基因型符合孟德尔遗传定律。对其后代进行鉴定,鉴定结果如图3所示,PCR扩增仅得到一条400bp的条带的为纯合子PGC-1αflox/flox小鼠(泳道4),仅得到一条360bp的条带的为野生型PGC-1α+/+小鼠(泳道2、3、6),扩增得到360bp和400bp两条条带的为杂合子PGC-1αflox/+小鼠(泳道1),其中泳道5和7为对照,不加模板,加引物,其他均相同条件下的扩增结果,目的是排除假阳性的出现。
实施例3:Dlx5/6 Cre-IRES-EGFP小鼠基因型鉴定及扩增
Dlx5/6 Cre-IRES-EGFP小鼠转入了0.5kb包含了id6/id5增强子、Beta-珠蛋白增强子和增强绿色荧光融合蛋白EGFP(Enhanced green fluorescent fusion protein)片段。Dlx5/6 Cre-IRES-EGFP小鼠与C57BL/6J小鼠交配后得到的后代理论上包括Dlx5/6 Cre-IRES-EGFP转基因小鼠和野生型小鼠。
对于GABAergic中间神经元特异性表达Cre重组酶的转基因小鼠由于转入了EGFP,在子鼠出生后1-2天,把幼鼠放置荧光显微镜上,通过蓝光激发,可以透过头盖骨看到小鼠颅内是否转入Cre重组酶(转入则能看到绿色的荧光蛋白),如图4所示,图4中可见,图A、B、C三幅图中均有绿色荧光出现,表示这些小鼠已转入Cre重组酶。
扩增鉴定Cre 引物为oIMR1084和oIMR1085,根据Cre基因序列为模板设计。PCR扩增能得到一条100bp的条带的为Dlx5/6 Cre-IRES-EGFP转基因小鼠,如图5所示,图中,泳道1-5表示所鉴定的小鼠结果,图中可见,泳道2、3、5鉴定为Dlx5/6 Cre-IRES-EGFP转基因小鼠;M为DNA分子标记Marker。
引物oIMR1084和oIMR1085的序列分别为:
oIMR1084:5'- GCG GTC TGG CAG TAA AAA CTA TC-3'和
oIMR1085:5'- GTG AAA CAG CAT TGC TGT CAC TT-3'。
以常规PCR扩增的方法进行鉴定,PCR反应条件为:94 ℃ 3min;94℃30 s,51.7 ℃1 min,72 ℃ 1 min s 35个循环;72 ℃ 2 min;10 ℃保存。PCR产物行2%琼脂糖凝胶电泳。电泳完成后用Bio Rad凝胶电泳成像仪照相。
实施例4:GABAergic中间神经元条件性敲除PGC-1α纯合子小鼠的交配策略及鉴定方法
实施例2鉴定得到的PGC-1αflox/flox和PGC-1αflox/+小鼠与实施例3鉴定得到的在GABAergic中间神经元特异性表达Cre重组酶的小鼠Dlx5/6 Cre-IRES-EGFP交配后,Cre重组酶可以特异性识别PGC-1α基因3-5号外显子的两个loxp序列,条件性敲除两个loxp序列中间的PGC-1α基因3-5号外显子。PGC-1αflox/flox和PGC-1αflox/+小鼠分别与Dlx5/6 Cre-IRES-EGFP交配后,出生后代通过双重PCR筛选鉴定:
PGC-1α条件性敲除小鼠基因型,采用引物8041,8491进行小鼠基因型鉴定,引物8041和8491的序列分别为:5’-TCCAGT AGGCAGAGATTTATGAC-3’和5'-TGTCTGGTTTGACAATCTGCTAGGTC-3’。扩增鉴定Cre 引物为oIMR1084和oIMR1085。引物oIMR1084和oIMR1085的序列分别为:5'- GCG GTC TGG CAG TAA AAA CTA TC-3'和5'- GTGAAA CAG CAT TGC TGT CAC TT-3'。PCR结果显示Cre阳性(PCR扩增能得到一条100bp的条带),目的蛋白扩增出400 bp的小鼠记为Dlx5/6 Cre-IRES-EGFP、PGC-1αflox/flox;Cre阳性(PCR扩增能得到一条100bp的条带),目的蛋白扩增出360和400 bp两条条带的小鼠记为和Dlx5/6Cre-IRES-EGFP、PGC-1αflox/+;鉴定结果如图7所示,图中可见,泳道1、2、4表示得到的是目的小鼠,为纯合子敲除小鼠,Cre阳性;泳道3、5表示得到的是杂合子小鼠,半敲除小鼠,Cre阳性;泳道6表示得到的是杂合子小鼠,Cre阴性。
SEQUENCE LISTING
<110> 江苏大学
<120> GABAergic神经元条件性敲除基因PGC-1α小鼠模型及其构建方法
<130> GABAergic神经元条件性敲除基因PGC-1α小鼠模型及其构建方法
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 23
<212> DNA
<213> 人工序列
<400> 1
tccagtaggc agagatttat gac 23
<210> 2
<211> 26
<212> DNA
<213> 人工序列
<400> 2
tgtctggttt gacaatctgc taggtc 26
<210> 3
<211> 23
<212> DNA
<213> 人工序列
<400> 3
gcggtctggc agtaaaaact atc 23
<210> 4
<211> 23
<212> DNA
<213> 人工序列
<400> 4
gtgaaacagc attgctgtca ctt 23

Claims (6)

1.一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型的构建方法,其特征在于,包括如下步骤:
(1)选用PGC-1αflox/+条件性基因敲除小鼠与PGC-1αflox/+条件性基因敲除小鼠交配,保种获得纯合子PGC-1αflox/flox小鼠和杂合子PGC-1αflox/+小鼠;
(2)将繁育获得的纯合子PGC-1αflox/flox小鼠和杂合子PGC-1αflox/+小鼠分别与SPF级
C57BL/6J小鼠交配,迅速扩大种群,得到杂合子PGC-1αflox/+小鼠;
(3)选用Dlx5/6 Cre-IRES-EGFP小鼠与SPF级C57BL/6J小鼠交配,获得Dlx5/6 Cre-IRES-EGFP转基因小鼠;
(4)将获得的PGC-1αflox/+小鼠、PGC-1αflox/flox小鼠分别与获得的Dlx5/6 Cre-IRES-EGFP转基因小鼠交配,获得GABAergic神经元条件性敲除基因PGC-1α小鼠模型,即全敲Dlx5/6 Cre -IRES-EGFP;PGC-1αflox/flox小鼠和半敲Dlx5/6 Cre-IRES-EGFP;PGC-1αflox/+小鼠。
2.根据权利要求1所述的一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型的构建方法,其特征在于,所述步骤(1)、(2)、(3)包括进一步对所得到的小鼠利用特异性引物通过PCR方法进行基因型的鉴定。
3.根据权利要求2所述的一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型的构建方法,其特征在于,所述步骤(1)和步骤(2)中进行基因型鉴定的引物均为:
引物8041:5’-TCCAGT AGGCAGAGATTTATGAC-3’ 和,
引物8491:5'-TGTCTGGTTTGACAATCTGCTAGGTC-3’。
4. 根据权利要求3所述的一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型的构建方法,其特征在于,所述步骤(3)中进行基因型鉴定为通过双重PCR筛选鉴定,所述进行基因型鉴定的引物为:
引物8041::5’-TCCAGT AGGCAGAGATTTATGAC-3’和
引物8491:5'-TGTCTGGTTTGACAATCTGCTAGGTC-3’;
引物oIMR1084:5'- GCG GTC TGG CAG TAA AAA CTA TC-3'和
引物oIMR1085:5'- GTG AAA CAG CAT TGC TGT CAC TT-3'。
5. 根据权利要求1所述的一种GABAergic神经元条件性敲除基因PGC-1α小鼠模型的构建方法,其特征在于,所述Dlx5/6 Cre-IRES-EGFP小鼠在GABAegic中间神经元中表达Cre重组酶;Dlx5/6 Cre-IRES-EGFP小鼠转入了0.5kb包含id6/id5增强子、Beta-珠蛋白增强子和增强绿色荧光融合蛋白EGFP片段。
6.根据权利要求1所述方法构建的GABAergic神经元条件性敲除基因PGC-1α小鼠模型在研究神经发育及神经退行性疾病中的应用。
CN201610066628.0A 2016-02-01 2016-02-01 GABAergic神经元条件性敲除基因PGC-1α小鼠的制备 Expired - Fee Related CN105684993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610066628.0A CN105684993B (zh) 2016-02-01 2016-02-01 GABAergic神经元条件性敲除基因PGC-1α小鼠的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610066628.0A CN105684993B (zh) 2016-02-01 2016-02-01 GABAergic神经元条件性敲除基因PGC-1α小鼠的制备

Publications (2)

Publication Number Publication Date
CN105684993A CN105684993A (zh) 2016-06-22
CN105684993B true CN105684993B (zh) 2018-06-01

Family

ID=56229046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610066628.0A Expired - Fee Related CN105684993B (zh) 2016-02-01 2016-02-01 GABAergic神经元条件性敲除基因PGC-1α小鼠的制备

Country Status (1)

Country Link
CN (1) CN105684993B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107114311A (zh) * 2017-04-26 2017-09-01 西北工业大学 Macf1基因在成骨细胞中条件性敲除的小鼠模型的构建及应用
CN107828728A (zh) * 2017-10-26 2018-03-23 中山大学 一种制备中脑多巴胺神经元的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1708585A (zh) * 2002-10-25 2005-12-14 帕拉迪姆医疗有限公司 Gpr54敲除哺乳动物以及利用它们的筛选方法
CN103492575A (zh) * 2011-01-18 2014-01-01 安姆根有限公司 NaV1.7敲除小鼠及其用途
CN103614415A (zh) * 2013-11-27 2014-03-05 苏州同善生物科技有限公司 一种基于crispr基因敲除技术建立肥胖症大鼠动物模型的方法
CN104404036A (zh) * 2014-11-03 2015-03-11 赛业(苏州)生物科技有限公司 基于CRISPR/Cas9技术的条件性基因敲除方法
CN104846015A (zh) * 2015-05-27 2015-08-19 深圳先进技术研究院 特异性兴奋伏隔核中的gaba能神经元的组合物及其在改善精神分裂症异样行为中的应用
CN105121631A (zh) * 2013-02-20 2015-12-02 瑞泽恩制药公司 大鼠的遗传修饰

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703125B2 (en) * 2008-12-19 2014-04-22 H. Lundbeck A/S Modulation of the Vps10p-domain receptor family for the treatment of mental and behavioural disorders

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1708585A (zh) * 2002-10-25 2005-12-14 帕拉迪姆医疗有限公司 Gpr54敲除哺乳动物以及利用它们的筛选方法
CN103492575A (zh) * 2011-01-18 2014-01-01 安姆根有限公司 NaV1.7敲除小鼠及其用途
CN105121631A (zh) * 2013-02-20 2015-12-02 瑞泽恩制药公司 大鼠的遗传修饰
CN103614415A (zh) * 2013-11-27 2014-03-05 苏州同善生物科技有限公司 一种基于crispr基因敲除技术建立肥胖症大鼠动物模型的方法
CN104404036A (zh) * 2014-11-03 2015-03-11 赛业(苏州)生物科技有限公司 基于CRISPR/Cas9技术的条件性基因敲除方法
CN104846015A (zh) * 2015-05-27 2015-08-19 深圳先进技术研究院 特异性兴奋伏隔核中的gaba能神经元的组合物及其在改善精神分裂症异样行为中的应用

Also Published As

Publication number Publication date
CN105684993A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
Knauss et al. Regulatory mechanisms of long noncoding RNAs in vertebrate central nervous system development and function
Curley et al. Parent‐of‐origin and trans‐generational germline influences on behavioral development: The interacting roles of mothers, fathers, and grandparents
US20150166615A1 (en) Method and uses for Bombyx mori silk fibroin heavy chain mutation sequence and mutant
US11685931B2 (en) Application of a fragment of an isolated nucleotide sequence in construction of non-mineralized intermuscular bone of Danio rerio
Duchon et al. The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome
CA3007066A1 (en) Methods for gender determination of avian embryos in unhatched eggs and means thereof
CN110541002A (zh) 一种利用CRISPR/Cas9技术构建斑马鱼asap1b基因敲除突变体的方法
CN105684993B (zh) GABAergic神经元条件性敲除基因PGC-1α小鼠的制备
WO2024103631A1 (zh) Notch2nlc基因ggc重复扩增突变转基因小鼠及其构建方法和应用
Suryamohan et al. Redeployment of a conserved gene regulatory network during Aedes aegypti development
CN113957074B (zh) 一种小脑共济失调疾病模型的构建方法及应用
CN103725676B (zh) 家蚕w染色体适合转基因定点插入的靶序列及其位点和应用
Chandler et al. Identification of an ancient Bmp4 mesoderm enhancer located 46 kb from the promoter
Ohnishi et al. A spontaneous and novel Pax3 mutant mouse that models Waardenburg syndrome and neural tube defects
CN110592122B (zh) 斑马鱼naalad2基因启动子及其应用
JP2003204796A (ja) 非ヒト遺伝子改変動物およびその利用
Zhang et al. The regulation of retina specific expression of rhodopsin gene in vertebrates
CN102860282A (zh) 一种造血系统特异性表达Cre重组酶的转基因小鼠的制备方法
WO1999062333A9 (en) Bacteriophage-based transgenic fish for mutation detection
Bodea et al. LINE-1 retrotransposons contribute to mouse PV interneuron development
Krishnan Nested tandem duplications of the gene Melanoma antigen recognized by T-cells (Mlana) underlie the sexual dimorphism locus in domestic pigeons
JP4219617B2 (ja) グリーン蛍光タンパク質遺伝子により形質転換されたトランスジェニック動物
EP1235915B1 (en) Transgenic mammals into which a period 1 promoter that confers rhythmical expression has been introduced
He The role of Tc-foxQ2 in the central brain development in Tribolium castaneum
CN106399371B (zh) 一种构建基因替代小鼠研究野生型和突变体非肌性肌球蛋白重链ii功能的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180601

Termination date: 20200201

CF01 Termination of patent right due to non-payment of annual fee