CN105676692B - Generating unit excitation intelligence control system - Google Patents
Generating unit excitation intelligence control system Download PDFInfo
- Publication number
- CN105676692B CN105676692B CN201610026667.8A CN201610026667A CN105676692B CN 105676692 B CN105676692 B CN 105676692B CN 201610026667 A CN201610026667 A CN 201610026667A CN 105676692 B CN105676692 B CN 105676692B
- Authority
- CN
- China
- Prior art keywords
- pid
- intelligent
- voltage deviation
- control
- preset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005284 excitation Effects 0.000 title claims abstract description 74
- 230000008859 change Effects 0.000 claims abstract description 49
- 230000000694 effects Effects 0.000 claims abstract description 36
- 238000004364 calculation method Methods 0.000 claims abstract description 32
- 238000012545 processing Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 76
- 230000008569 process Effects 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000011897 real-time detection Methods 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 6
- 238000012512 characterization method Methods 0.000 claims description 3
- 238000004836 empirical method Methods 0.000 claims description 3
- 230000003321 amplification Effects 0.000 abstract description 5
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 23
- 230000004044 response Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明涉及发电机组励磁智能控制系统,该系统包括电压侦测单元,数据处理单元,PID计算单元,功率放大单元,智能指令表,所述智能指令表用于确定PID计算单元的PID参数,所述智能指令表中存储有多组指令,每组指令由预设电压偏差量和预设电压偏差变化率及其对应的PID参数组成;智能控制单元,用于接收电压偏差量e和电压偏差变化率ec信息,并判断电压偏差量e和电压偏差变化率ec与智能指令表中的预设电压偏差量和预设电压偏差变化率的差值率是否均低于预设差值率,若是,则将指令中的PID参数输入PID计算单元,若否,则选择上述两个差值率之和最低的指令,并指令中的PID参数输入PID计算单元。该系统具有更好的励磁控制效果。
The present invention relates to an intelligent control system for generator set excitation. The system includes a voltage detection unit, a data processing unit, a PID calculation unit, a power amplification unit, and an intelligent command table. The intelligent command table is used to determine the PID parameters of the PID calculation unit. There are multiple groups of instructions stored in the smart instruction table, and each group of instructions is composed of a preset voltage deviation, a preset voltage deviation change rate and its corresponding PID parameters; an intelligent control unit is used to receive the voltage deviation e and the voltage deviation change rate ec information, and judge whether the difference rate between the voltage deviation amount e and the voltage deviation change rate ec and the preset voltage deviation amount and the preset voltage deviation change rate in the intelligent instruction table are lower than the preset difference rate, if so, Then input the PID parameter in the command into the PID calculation unit, if not, select the command with the lowest sum of the above two difference rates, and input the PID parameter in the command into the PID calculation unit. The system has a better excitation control effect.
Description
技术领域technical field
本发明涉及发电机组的励磁智能控制系统,具体地,涉及柴油、汽油等发电机组的励磁智能控制系统。The invention relates to an excitation intelligent control system of a generator set, in particular to an excitation intelligent control system of a diesel generator set, a gasoline generator set, etc.
背景技术Background technique
坚强智能电网的建设离不开“坚强”和“智能”,“坚强”和“智能”是现代电网的两个基本发展要求。“坚强”是基础,“智能”是工具。坚强智能电网就是要在安全稳定运行的基础上实现高效智能的电力供应。自动化是智能电网发展水平的直观体现,依靠高效的信息、采集传输和集成系统控制应用,实现电网自动运行控制与管理水平提升。The construction of a strong and smart grid is inseparable from "strong" and "smart", which are two basic development requirements of a modern power grid. "Strength" is the foundation, and "intelligence" is the tool. A strong smart grid is to achieve efficient and intelligent power supply on the basis of safe and stable operation. Automation is an intuitive reflection of the development level of the smart grid. Relying on efficient information, collection and transmission, and integrated system control applications, the level of automatic operation control and management of the grid can be improved.
在电力工业发展迅速,电力系统规模不断扩大的背景下,发电系统运行对于可靠性、安全性和经济性的要求也越来越高。励磁控制系统是发电系统中的重要控制部件,在电力系统正常运行或事故中起着至关重要的作用。同步发电机励磁系统的控制任务从维持机端电压恒定和分配机组无功出力扩展到了改善电力系统动态和静态稳定性,性能优良的励磁控制系统不仅可以保障发电机可靠、稳定运行,还可以有效的提高系统的技术指标,为电网输送高质量的电能。在众多改善同步发电机稳定运行的措施中,运用现代智能控制理论,提高励磁系统的控制性能是公认的经济而有效的手段之一。因此,其性能的好坏直接影响同步发电机组乃至整个电力系统。With the rapid development of the electric power industry and the continuous expansion of the scale of the power system, the requirements for the reliability, safety and economy of the power generation system are getting higher and higher. The excitation control system is an important control component in the power generation system, and plays a vital role in the normal operation or accident of the power system. The control task of the excitation system of a synchronous generator extends from maintaining a constant terminal voltage and distributing the reactive output of the unit to improving the dynamic and static stability of the power system. The excitation control system with excellent performance can not only ensure the reliable and stable operation of the generator, but also effectively Improve the technical indicators of the system and deliver high-quality electric energy to the grid. Among many measures to improve the stable operation of synchronous generators, using modern intelligent control theory to improve the control performance of the excitation system is recognized as one of the economical and effective means. Therefore, its performance directly affects the synchronous generating set and even the whole power system.
为了提高同步发电机组控制的质量,国内外不少学者提出了励磁的最优控制、变结构控In order to improve the control quality of synchronous generator sets, many scholars at home and abroad have proposed the optimal control of excitation, variable structure control and so on.
制、应用微分几何控制理论的非线性控制。上述控制方式都是建立在传统的数学控制理论基础上的,它们的控制效果都和采用的被控对象数学模型的精确程度有很大关系。电力系统本质上是一个非线性的大系统,很难获得精确的数学模型。Control, nonlinear control using differential geometric control theory. The above-mentioned control methods are all based on the traditional mathematical control theory, and their control effects have a great relationship with the accuracy of the controlled object mathematical model. The power system is essentially a large nonlinear system, and it is difficult to obtain an accurate mathematical model.
发明内容Contents of the invention
为了解决上述技术问题,本发明一方面提供了一种发电机组励磁智能控制系统,所述励磁智能控制系统用于控制发电机励磁线圈的电流,该系统包括:In order to solve the above-mentioned technical problems, the present invention provides an intelligent excitation control system for a generator set on the one hand, the intelligent excitation control system is used to control the current of the excitation coil of the generator, and the system includes:
电压侦测单元,用于实时检测发电机定子端电压;A voltage detection unit for real-time detection of generator stator terminal voltage;
数据处理单元,用于处理发电机定子端电压,根据预设电压,计算得到电压偏差量e和电压偏差变化率ec;The data processing unit is used to process the stator terminal voltage of the generator, and calculate the voltage deviation e and the voltage deviation change rate ec according to the preset voltage;
PID计算单元,所述PID计算单元采用增量式PID控制算法,根据电压偏差和智能控制单元输入的PID参数输出控制信号;A PID calculation unit, the PID calculation unit adopts an incremental PID control algorithm, and outputs a control signal according to the voltage deviation and the PID parameters input by the intelligent control unit;
功率放大单元,所述功率放大单元用于将控制信号放大从而实现控制发电机励磁线圈的电流;A power amplifying unit, the power amplifying unit is used to amplify the control signal so as to control the current of the excitation coil of the generator;
智能指令表,所述智能指令表用于确定PID计算单元的PID参数,所述智能指令表中存储有多组指令,每组指令由预设电压偏差量和预设电压偏差变化率及其对应的PID参数组成;An intelligent instruction table, the intelligent instruction table is used to determine the PID parameters of the PID calculation unit, and there are many sets of instructions stored in the intelligent instruction table, each set of instructions consists of a preset voltage deviation, a preset voltage deviation change rate and its corresponding Composition of PID parameters;
智能控制单元,用于接收电压偏差量e和电压偏差变化率ec信息,并判断电压偏差量e和电压偏差变化率ec与智能指令表中的预设电压偏差量和预设电压偏差变化率的差值率是否均低于预设差值率,若是,则将指令中的PID参数输入PID计算单元,若否,则选择上述两个差值率之和最低的指令,并指令中的PID参数输入PID计算单元。The intelligent control unit is used to receive the information of the voltage deviation e and the voltage deviation change rate ec, and determine the relationship between the voltage deviation e, the voltage deviation change rate ec and the preset voltage deviation and the preset voltage deviation change rate in the intelligent command table Whether the difference rate is lower than the preset difference rate, if so, input the PID parameter in the command into the PID calculation unit, if not, select the command with the lowest sum of the above two difference rates, and input the PID parameter in the command Enter the PID calculation unit.
所述预设差值率为1%-30%。The preset difference rate is 1%-30%.
所述多组PID参数通过不同的整定方法整定得到,所述的整定方法为ZN经验法、ZN临界比例度法、ISTE最优整定法、特征面积法、继电自整定法、cohen-coon法、GPM法、SPMA法、最小二乘法模型辨识法、基于加权误差平方积分指标法、最大切线法、近似计算法。The multiple sets of PID parameters are obtained through different tuning methods, and the tuning methods are ZN empirical method, ZN critical proportionality method, ISTE optimal tuning method, characteristic area method, relay self-tuning method, cohen-coon method , GPM method, SPMA method, least square method model identification method, weighted error square integral index method, maximum tangent method, approximate calculation method.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD; Select m groups of closest PID parameters K P , K I , K D;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
在m个KI中的最大数值和最小数值之间等间距取n个KI数值;Take n K I values at equal intervals between the maximum value and the minimum value among the m K I values ;
在m个KD中的最大数值和最小数值之间等间距取n个KD数值;Take n K D values at equal intervals between the maximum value and the minimum value among the m K D values ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD;Select m groups of closest PID parameters K P , K I , K D ;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
利用m个坐标(KP,KI)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KI;Use m coordinates (K P , KI ) to fit a polynomial function of degree m- 1 , and use this polynomial function and n K P values to obtain n K I ;
利用m个坐标(KP,KD)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KD;Use m coordinates (K P , K D ) to get m-1 degree polynomial function, and use this polynomial function and n K P values to get n K D ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
所述励磁智能控制系统还包括智能指令表生成单元,所述智能指令表生成单元包括记录模块和分析存储模块,所述记录模块用于接收数据处理单元的电压偏差量e和电压偏差变化率ec和智能控制单元对应输出的PID参数,所述分析存储模块用于分析在一预设周期内的智能控制单元对应输出的PID参数的控制效果值,若控制效果值达到预设数值,则将该预设周期内的数组PID参数以及对应的电压偏差量e和电压偏差变化率ec储存于智能指令表中,并将数组整定PID参数视为一PID控制组,若控制效果值未达到预设数值,则无存储动作。The excitation intelligent control system also includes an intelligent instruction table generation unit, the intelligent instruction table generation unit includes a recording module and an analysis storage module, and the recording module is used to receive the voltage deviation e and the voltage deviation change rate ec of the data processing unit The PID parameter corresponding to the output of the intelligent control unit, the analysis storage module is used to analyze the control effect value of the PID parameter corresponding to the output of the intelligent control unit within a preset period, if the control effect value reaches the preset value, then the The array PID parameters and the corresponding voltage deviation e and voltage deviation change rate ec in the preset period are stored in the intelligent command table, and the array tuning PID parameters are regarded as a PID control group. If the control effect value does not reach the preset value , there is no storage action.
所述的预设数值通过延迟时间TD、上升时间Tr、调节时间Ts、超调量σ中的一种或几种表征。The preset value is represented by one or more of delay time T D , rise time T r , adjustment time T s , and overshoot σ.
所述励磁智能控制方法还包括智能指令表整理模块:The excitation intelligent control method also includes an intelligent instruction table finishing module:
所述智能指令表整理模块,用于判断未成组的PID控制参数与智能指令表中的PID控制组的PID参数是否完全相同,若是,则在智能指令表中删除该未成组的PID控制参数,若否,则在智能指令表中保留该未成组的PID控制参数。Described intelligent command list finishing module, is used for judging whether the PID control parameter that does not form a group and the PID parameter of the PID control group in the intelligent command list are identical, if so, then deletes the PID control parameter that does not form a group in the intelligent command list, If not, keep the ungrouped PID control parameters in the smart instruction table.
发电机组励磁智能控制方法,所述励磁智能控制方法用于控制发电机励磁线圈的电流,该方法包括以下步骤:Generator set excitation intelligent control method, the excitation intelligent control method is used to control the current of the generator excitation coil, the method includes the following steps:
a.实时检测发电机定子端电压;a. Real-time detection of generator stator terminal voltage;
b.处理发电机定子端电压,根据预设电压,计算得到电压偏差量e和电压偏差变化率ec;b. Process the stator terminal voltage of the generator, and calculate the voltage deviation e and the voltage deviation change rate ec according to the preset voltage;
c.接收电压偏差量e和电压偏差变化率ec信息,并判断电压偏差量e和电压偏差变化率ec与智能指令表中的预设电压偏差量和预设电压偏差变化率的差值率是否均低于预设差值率,若是,则该指令中的PID参数为整定PID参数,若否,则选择上述两个差值率之和最低的指令,则该指令中的PID参数为整定PID参数,所述智能指令表用于确定PID计算单元的PID参数,所述智能指令表中存储有多组指令,每组指令由预设电压偏差量和预设电压偏差变化率及其对应的PID参数组成;c. Receive the information of the voltage deviation e and the voltage deviation change rate ec, and judge whether the difference rate between the voltage deviation e, the voltage deviation change rate ec and the preset voltage deviation amount and the preset voltage deviation change rate in the intelligent command table are lower than the preset difference rate, if yes, the PID parameter in the command is the set PID parameter, if not, choose the command with the lowest sum of the above two difference rates, then the PID parameter in the command is the set PID parameter Parameters, the intelligent instruction table is used to determine the PID parameters of the PID calculation unit, there are multiple sets of instructions stored in the intelligent instruction table, each set of instructions consists of a preset voltage deviation and a preset voltage deviation change rate and its corresponding PID parameter composition;
d. 采用增量式PID控制算法,根据电压偏差量e和整定PID参数输出控制信号;d. Adopt incremental PID control algorithm, output control signal according to voltage deviation e and setting PID parameters;
e.将控制信号放大从而实现控制发电机励磁线圈的电流。e. The control signal is amplified to control the current of the excitation coil of the generator.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD; Select m groups of closest PID parameters K P , K I , K D;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
在m个KI中的最大数值和最小数值之间等间距取n个KI数值;Take n K I values at equal intervals between the maximum value and the minimum value among the m K I values ;
在m个KD中的最大数值和最小数值之间等间距取n个KD数值;Take n K D values at equal intervals between the maximum value and the minimum value among the m K D values ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD;Select m groups of closest PID parameters K P , K I , K D ;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
利用m个坐标(KP,KI)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KI;Use m coordinates (K P , KI ) to fit a polynomial function of degree m- 1 , and use this polynomial function and n K P values to obtain n K I ;
利用m个坐标(KP,KD)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KD;Use m coordinates (K P , K D ) to get m-1 degree polynomial function, and use this polynomial function and n K P values to get n K D ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
所述励磁智能控制方法还包括智能指令表生成步骤:The excitation intelligent control method also includes an intelligent instruction table generation step:
接收数据处理单元的电压偏差量e和电压偏差变化率ec和整定PID参数,Receive the voltage deviation e and the voltage deviation change rate ec of the data processing unit and set the PID parameters,
分析在一预设周期内的数个整定PID参数的控制效果值,若控制效果值达到预设数值,则将该预设周期内的数组整定PID参数以及对应的电压偏差量e和电压偏差变化率ec储存于智能指令表中,并将数组整定PID参数视为一PID控制组,若控制效果值未达到预设数值,则无存储动作。Analyze the control effect value of several tuning PID parameters within a preset period, if the control effect value reaches the preset value, set the PID parameters of the array within the preset period and the corresponding voltage deviation e and voltage deviation change The rate ec is stored in the intelligent command table, and the PID parameters set by the array are regarded as a PID control group. If the control effect value does not reach the preset value, there will be no storage action.
所述励磁智能控制方法还包括智能指令表整理步骤:The excitation intelligent control method also includes the step of organizing the intelligent instruction table:
判断未成组的PID控制参数与智能指令表中的PID控制组的PID参数是否完全相同,若是,则在智能指令表中删除该未成组的PID控制参数,若否,则在智能指令表中保留该未成组的PID控制参数。Determine whether the ungrouped PID control parameters are exactly the same as the PID parameters of the PID control group in the smart command table, if so, delete the ungrouped PID control parameters in the smart command table, if not, keep them in the smart command table The ungrouped PID control parameters.
所述的预设数值通过延迟时间TD、上升时间Tr、调节时间Ts、超调量σ中的一种或几种表征。The preset value is represented by one or more of delay time T D , rise time T r , adjustment time T s , and overshoot σ.
本发明通过预设的智能指令表,能够更快的实现PID参数的整定,同时,采用了不同方法整定得到了数组PID参数,并依据数组PID参数重新生成新的多组PID参数,参考了不同环境的PID参数,使得整定的PID参数能够更加有效地实现励磁的控制,在实现智能化的同时,效率更高。The present invention can realize the setting of PID parameters faster through the preset intelligent instruction table. The PID parameters of the environment enable the set PID parameters to more effectively realize the excitation control, and achieve higher efficiency while realizing intelligence.
参考以下详细说明更易于理解本申请的上述以及其他特征、方面和优点。These and other features, aspects and advantages of the present application will be better understood with reference to the following detailed description.
附图说明Description of drawings
图1为典型的励磁系统。Figure 1 shows a typical excitation system.
图2为本发明的励磁智能控制系统的结构框图示意图。Fig. 2 is a schematic structural block diagram of the excitation intelligent control system of the present invention.
图3为本发明的智能指令表的智能更新结构框图示意图。Fig. 3 is a schematic block diagram of the intelligent update structure of the intelligent instruction table of the present invention.
图4为延迟时间TD、上升时间Tr、调节时间Ts、超调量σ计算方法示意图。Fig. 4 is a schematic diagram of a calculation method for delay time T D , rise time T r , adjustment time T s , and overshoot σ.
电压侦测单元 1Voltage detection unit 1
PID计算单元2PID calculation unit 2
功率放大单元3Power amplifier unit 3
智能指令表4Smart Command Table 4
智能指令表生成单元5Intelligent instruction table generation unit 5
记录模块51Recording Module 51
分析存储模块52Analysis storage module 52
智能指令表整理模块6Smart instruction list sorting module 6
数据处理单元7Data Processing Unit 7
智能控制单元8。Intelligent control unit8.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the following will clearly and completely describe the technical solutions of the embodiments of the present invention in conjunction with the drawings of the embodiments of the present invention. Apparently, the described embodiments are some, not all, embodiments of the present invention. Based on the described embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative effort fall within the protection scope of the present invention.
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。Unless otherwise defined, the technical terms or scientific terms used herein shall have the usual meanings understood by those skilled in the art to which the present invention belongs. "First", "second" and similar words used in the patent application specification and claims of the present invention do not indicate any order, quantity or importance, but are only used to distinguish different components. Likewise, words like "a" or "one" do not denote a limitation in quantity, but indicate that there is at least one.
本发明典型的励磁系统之一主要包括电压侦测单元,用于实时检测发电机定子端电压;数据处理单元,用于处理发电机定子端电压,根据预设电压,计算得到电压偏差量e和电压偏差变化率ec;PID计算单元,所述PID计算单元采用增量式PID控制算法,根据电压偏差和智能控制单元输入的PID参数输出控制信号;功率放大单元,所述功率放大单元用于将控制信号放大从而实现控制发电机励磁线圈的电流,从而形成控制循环。One of the typical excitation systems of the present invention mainly includes a voltage detection unit for real-time detection of the generator stator terminal voltage; a data processing unit for processing the generator stator terminal voltage, and calculates the voltage deviation e and Voltage deviation change rate ec; PID calculation unit, the PID calculation unit adopts incremental PID control algorithm, output control signal according to the PID parameters input by voltage deviation and intelligent control unit; power amplification unit, the power amplification unit is used to The control signal is amplified to control the current of the excitation coil of the generator, thereby forming a control loop.
此外,本发明典型的励磁系统之一主要部件有:励磁机、电压调节器、功率单元,典型的励磁系统结构如图1:In addition, one of the main components of a typical excitation system of the present invention includes: an exciter, a voltage regulator, and a power unit. A typical excitation system structure is shown in Figure 1:
发电机机端电压Ut经量测环节后与给定的参考电压Uref可作比较,其偏差e。进入电压调节器进行放大后,输出电压UR作为励磁机励磁电压,控制励磁机的输出电压Ef,为了励磁系统的稳定运行及改善其动态品质,引入励磁系统负反馈环节,及励磁系统稳定器,一般为一个软反馈环节,又称速度反馈。Us为励磁附加控制信号,这里是电力系统稳定器PSS的输出控制信号。The generator terminal voltage U t can be compared with the given reference voltage U ref after the measurement link, and its deviation e. After entering the voltage regulator for amplification, the output voltage UR is used as the excitation voltage of the exciter to control the output voltage Ef of the exciter. In order to stabilize the operation of the excitation system and improve its dynamic quality, a negative feedback link of the excitation system and an excitation system stabilizer are introduced. , generally a soft feedback link, also known as speed feedback. U s is the excitation additional control signal, here is the output control signal of the power system stabilizer PSS.
量测环节表示为一个时间常数为TR的惯性环节,TR般取值很小,常予以忽略。电压调节器通常可以用一个超前滞后环节串联一个惯性放大环节来表示。超前滞后环节反映了调节器的相位特性,其中TB、TC取值很小,一般简化系统时可以忽略。惯性放大环节放大倍数为KA,时间常数为TA。可控硅励磁调节器中KA标么值可达几百,时间常数TA约为几十毫秒。励磁机传递函数为计及饱和作用的惯性环节,对他励交流励磁KL=l。对于静止励磁系统,则无励磁机环节。The measurement link is expressed as an inertial link with a time constant of T R , and the value of T R is usually very small, so it is often ignored. A voltage regulator can usually be represented by a lead-lag link connected in series with an inertial amplifier link. The lead-lag link reflects the phase characteristics of the regulator, and the values of T B and T C are very small, which can be ignored when simplifying the system. The magnification factor of the inertial amplification link is K A , and the time constant is T A . In the silicon controlled rectifier excitation regulator, the standard value of K A can reach hundreds, and the time constant T A is about tens of milliseconds. The transfer function of the exciter is the inertial link taking into account the saturation effect, and K L = l for the separately excited AC excitation. For the static excitation system, there is no exciter link.
PID计算器是根据目标值r(t)和系统实际输出值y(t)形成的偏差值e(t)来实现对被控对象的控制。其控制规律可表示:The PID calculator realizes the control of the controlled object according to the deviation value e(t) formed by the target value r(t) and the actual output value y(t) of the system. Its control law can be expressed as:
式中Kp为比例系数,TI为积分时间常数, TD为微分时间常数。三者对系统控制性能的影响:In the formula, Kp is the proportional coefficient, T I is the integral time constant, and T D is the differential time constant. The influence of the three on the control performance of the system:
比例系数Kp:Proportionality factor K p :
比例控制是PID控制中最主要的部分,它能线性反映偏差e(t)。加大Kp,可减小稳态误差,提高系统的控制精度,同时使系统变得灵敏、响应速度变得更快,一旦Kp过大,将会出现较大的超调,并产生振荡,降低系统的动态性能。Proportional control is the most important part of PID control, it can reflect the deviation e(t) linearly. Increasing Kp can reduce the steady-state error, improve the control precision of the system, and make the system more sensitive and respond faster. Once Kp is too large, there will be a large overshoot and oscillation , reducing the dynamic performance of the system.
积分时间常数TI:Integral time constant T I :
积分控制一般是用来消除或减小系统稳态误差的,其作用的强度是取决于TI。由公式可知, TI越大则积分项起到的作用越弱,因此,加大TI可以减小系统的超调与振荡,使系统更加稳定,但这样不利于消除系统稳态误差。减小TI,则积分作用加强,有利于消除稳态误差,但一旦TI过小,会使系统的动态性能变差。Integral control is generally used to eliminate or reduce the steady-state error of the system, and its strength depends on TI . It can be seen from the formula that the larger TI is, the weaker the effect of the integral term is. Therefore, increasing TI can reduce the overshoot and oscillation of the system and make the system more stable, but this is not conducive to eliminating the steady-state error of the system. Decreasing TI will strengthen the integral effect, which is beneficial to eliminate the steady-state error, but once TI is too small, the dynamic performance of the system will deteriorate.
微分时间常数TD Differential time constant T D
微分控制可预测出偏差的变化趋势。加大TD,则系统响应变快,而且超调量会相应减小,但这会使得系统抗干扰能力下降。Differential control can predict the variation trend of the deviation. If T D is increased, the system response will become faster, and the overshoot will be reduced accordingly, but this will reduce the anti-interference ability of the system.
数字PID控制器是伴随着计算机技术的发展而应运而生的,它是在原有模拟系统的基础上发展而来,在计算机上实现PID控制须对原有连续系统的数学模型进行离散化。即:Digital PID controller emerges at the historic moment with the development of computer technology, it is developed on the basis of the original analog system, the realization of PID control on the computer must discretize the mathematical model of the original continuous system. which is:
式中T为采样周期,k为采样序列,k=0,1,2,3,…。为了书写方便,将e(kT)简化为e(k)。计算可得离散PID表达式:Where T is the sampling period, k is the sampling sequence, k=0,1,2,3,.... For the convenience of writing, e(kT) is simplified as e(k). Calculate the discrete PID expression:
即:which is:
推导得增量式PID控制算法:Derived incremental PID control algorithm:
。 .
如图2所示,发电机组励磁智能控制系统,所述励磁智能控制系统用于控制发电机励磁线圈的电流,该系统包括:As shown in Figure 2, the generator set excitation intelligent control system, the excitation intelligent control system is used to control the current of the generator excitation coil, the system includes:
电压侦测单元,用于实时检测发电机定子端电压;A voltage detection unit for real-time detection of generator stator terminal voltage;
数据处理单元,用于处理发电机定子端电压,根据预设电压,计算得到电压偏差量e和电压偏差变化率ec;The data processing unit is used to process the stator terminal voltage of the generator, and calculate the voltage deviation e and the voltage deviation change rate ec according to the preset voltage;
PID计算单元,所述PID计算单元采用增量式PID控制算法,根据电压偏差和智能控制单元输入的PID参数输出控制信号;A PID calculation unit, the PID calculation unit adopts an incremental PID control algorithm, and outputs a control signal according to the voltage deviation and the PID parameters input by the intelligent control unit;
功率放大单元,所述功率放大单元用于将控制信号放大从而实现控制发电机励磁线圈的电流;A power amplifying unit, the power amplifying unit is used to amplify the control signal so as to control the current of the excitation coil of the generator;
智能指令表,所述智能指令表用于确定PID计算单元的PID参数,所述智能指令表中存储有多组指令,每组指令由预设电压偏差量和预设电压偏差变化率及其对应的PID参数组成;An intelligent instruction table, the intelligent instruction table is used to determine the PID parameters of the PID calculation unit, and there are many sets of instructions stored in the intelligent instruction table, each set of instructions consists of a preset voltage deviation, a preset voltage deviation change rate and its corresponding Composition of PID parameters;
智能控制单元,用于接收电压偏差量e和电压偏差变化率ec信息,并判断电压偏差量e和电压偏差变化率ec与智能指令表中的预设电压偏差量和预设电压偏差变化率的差值率是否均低于预设差值率,若是,则将指令中的PID参数输入PID计算单元,若否,则选择上述两个差值率之和最低的指令,并指令中的PID参数输入PID计算单元。The intelligent control unit is used to receive the information of the voltage deviation e and the voltage deviation change rate ec, and determine the relationship between the voltage deviation e, the voltage deviation change rate ec and the preset voltage deviation and the preset voltage deviation change rate in the intelligent command table Whether the difference rate is lower than the preset difference rate, if so, input the PID parameter in the command into the PID calculation unit, if not, select the command with the lowest sum of the above two difference rates, and input the PID parameter in the command Enter the PID calculation unit.
本发明所述的预设差值率=|(电压偏差量-预设电压偏差量)/ 预设电压偏差量*100%|;或预设差值率=|(电压偏差变化率-预设电压偏差变化率)/ 预设电压偏差变化率*100%|。预设差值率均为正数。The preset difference rate=|(voltage deviation-preset voltage deviation)/preset voltage deviation*100%| in the present invention; or the preset difference rate=|(voltage deviation change rate-preset Voltage deviation change rate)/preset voltage deviation change rate*100%|. The default difference rates are all positive numbers.
所述预设差值率为1%-30%。通过预设差值率的调整,可以有效降低智能指令表中的指令的数量,随着计算机速度的提高,预设差值率可以降低。The preset difference rate is 1%-30%. By adjusting the preset difference rate, the number of instructions in the intelligent command table can be effectively reduced, and as the speed of the computer increases, the preset difference rate can be reduced.
通过设置一定的预设差值率以及采用e和ec来调整PID参数, PID计算过程中PID参数可自整定。同时本发明的PID参数自整定方法简单,容易实现,没有复杂的逻辑运算。同时,该方法更容易实现PID参数的智能学习,实现了励磁系统的智能控制。By setting a certain preset difference rate and using e and ec to adjust the PID parameters, the PID parameters can be self-tuned during the PID calculation process. At the same time, the PID parameter self-tuning method of the present invention is simple, easy to realize, and has no complicated logic operation. At the same time, this method is easier to realize the intelligent learning of PID parameters, and realizes the intelligent control of the excitation system.
所述多组PID参数通过不同的整定方法整定得到,所述的整定方法为ZN经验法、ZN临界比例度法、ISTE最优整定法、特征面积法、继电自整定法、cohen-coon法、GPM法、SPMA法、最小二乘法模型辨识法、基于加权误差平方积分指标法、最大切线法、近似计算法。The multiple sets of PID parameters are obtained through different tuning methods, and the tuning methods are ZN empirical method, ZN critical proportionality method, ISTE optimal tuning method, characteristic area method, relay self-tuning method, cohen-coon method , GPM method, SPMA method, least square method model identification method, weighted error square integral index method, maximum tangent method, approximate calculation method.
上述方法均是本领域的常用方法,这些整定方法均具有不错的整定效果,但是在不同的领域和环境中,部分整定方法可能会更接近理想值。正是基于这种原因,本发明采用了多个整定参数,用于发电机的PID计算单元中。The above methods are common methods in this field, and these tuning methods all have good tuning effects, but in different fields and environments, some tuning methods may be closer to the ideal value. It is for this reason that the present invention adopts multiple tuning parameters for use in the PID calculation unit of the generator.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD; Select m groups of closest PID parameters K P , K I , K D;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
在m个KI中的最大数值和最小数值之间等间距取n个KI数值;Take n K I values at equal intervals between the maximum value and the minimum value among the m K I values ;
在m个KD中的最大数值和最小数值之间等间距取n个KD数值;Take n K D values at equal intervals between the maximum value and the minimum value among the m K D values ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
例如,通过最大切线法、特征面积法和近似计算法分别整定本发明的发电机励磁系统参数,得到三组PID参数:For example, the parameters of the generator excitation system of the present invention are adjusted respectively by the maximum tangent method, the characteristic area method and the approximate calculation method to obtain three groups of PID parameters:
10、20、50;10, 20, 50;
14、24、40;14, 24, 40;
12、25、45;12, 25, 45;
按照0.8的间距,得到6个数值10、10.8、11.6、12.4、13.2、14;According to the interval of 0.8, get 6 values 10, 10.8, 11.6, 12.4, 13.2, 14;
按照1的间距,得到6个数值20、21、22、23、24、25;According to the interval of 1, get 6 values 20, 21, 22, 23, 24, 25;
按照2的间距,得到6个数值40、42、44、46、48、50;According to the interval of 2, get 6 values 40, 42, 44, 46, 48, 50;
重新组合得到6组PID参数:Recombine to get 6 sets of PID parameters:
10、20、40;10, 20, 40;
10.8、21、42;10.8, 21, 42;
11.6、22、44;11.6, 22, 44;
12.4、23、46;12.4, 23, 46;
13.2、24、48;13.2, 24, 48;
14、25、50。14, 25, 50.
当然,上述数据也可以随机组合。Of course, the above data can also be randomly combined.
将可能出现的e和ec数值列出,例如,e取-3,0,3,ec取-6,0,6。List the possible values of e and ec, for example, e takes -3, 0, 3, ec takes -6, 0, 6.
则将e与ec的组合全部列出,并随机与前述的9组PID参数配对。Then list all the combinations of e and ec, and randomly pair them with the aforementioned 9 groups of PID parameters.
此外,为了获得更好的整定效果,也可以随机选择例如1024组甚至更多e与ec的组合与PID参数组合成智能指令表。In addition, in order to obtain a better setting effect, for example, 1024 groups or even more combinations of e and ec can be randomly selected and combined with PID parameters to form an intelligent instruction table.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD;Select m groups of closest PID parameters K P , K I , K D ;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
利用m个坐标(KP,KI)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KI;Use m coordinates (K P , KI ) to fit a polynomial function of degree m- 1 , and use this polynomial function and n K P values to obtain n K I ;
利用m个坐标(KP,KD)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KD;Use m coordinates (K P , K D ) to get m-1 degree polynomial function, and use this polynomial function and n K P values to get n K D ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
本发明中,形如 f(x)=anxn+an-1xn-1+…+a1x+a0的函数,叫做多项式函数。利用多项式函数,可以有效地获得更多的PID参数KP、KI、KD。In the present invention, a function of the form f(x)=a n x n +a n-1 x n-1 +...+a 1 x+a 0 is called a polynomial function. Using polynomial functions, more PID parameters K P , KI , K D can be obtained effectively.
如图3所示,所述励磁智能控制系统还包括智能指令表生成单元,所述智能指令表生成单元包括记录模块和分析存储模块,所述记录模块用于接收数据处理单元的电压偏差量e和电压偏差变化率ec和智能控制单元对应输出的PID参数,所述分析存储模块用于分析在一预设周期内的智能控制单元对应输出的PID参数的控制效果值,若控制效果值达到预设数值,则将该预设周期内的数组PID参数以及对应的电压偏差量e和电压偏差变化率ec储存于智能指令表中,并将数组整定PID参数视为一PID控制组,若控制效果值未达到预设数值,则无存储动作。As shown in Figure 3, the excitation intelligent control system also includes an intelligent instruction table generation unit, the intelligent instruction table generation unit includes a recording module and an analysis storage module, and the recording module is used to receive the voltage deviation e of the data processing unit and the PID parameter output corresponding to the voltage deviation change rate ec and the intelligent control unit, the analysis storage module is used to analyze the control effect value of the PID parameter corresponding to the output of the intelligent control unit within a preset period, if the control effect value reaches the preset value If the value is set, the array PID parameters and the corresponding voltage deviation e and voltage deviation change rate ec in the preset period are stored in the intelligent command table, and the array setting PID parameters are regarded as a PID control group. If the control effect If the value does not reach the preset value, there will be no storage action.
所述的预设数值通过延迟时间TD、上升时间Tr、调节时间Ts、超调量σ中的一种或几种表征。The preset value is represented by one or more of delay time T D , rise time T r , adjustment time T s , and overshoot σ.
本发明的延迟时间TD、上升时间Tr、调节时间Ts、超调量σ的通过如图4表示的方式计算得到,横坐标为时间,纵坐标为电压或电流。The delay time T D , rise time T r , adjustment time T s , and overshoot σ of the present invention are calculated as shown in Fig. 4, where the abscissa is time and the ordinate is voltage or current.
延迟时间TD从励磁系统输入阶跃信号到系统开始呈现响应的时间。Delay time T D is the time from when the excitation system inputs a step signal to when the system begins to respond.
上升时间Tr响应值从稳态值的10%上升到90%所需的时间。Rise time T r The time required for the response value to rise from 10% to 90% of the steady state value.
峰值时间Tp响应值超过稳态值达到第一峰值所需的时间。Time to Peak T p The time required for the response value to exceed the steady state value to reach the first peak.
调节时间Ts响应值达到稳态值士5%误差范围内所需的时间。Adjustment time T s The time required for the response value to reach the steady-state value ± 5% error range.
超调量σ%在响应过程中,系统超调量的定义为与峰值时间Tp对应的系统峰值响应输出量(h(Tp)和稳态值(h(∞))之差,表示如下:Overshoot σ% In the response process, the system overshoot is defined as the difference between the system peak response output (h(T p ) and the steady-state value (h(∞)) corresponding to the peak time T p , expressed as follows :
。 .
表征方法可以采用延迟时间TD、上升时间Tr、调节时间Ts、超调量σ中的一种或几种赋予一定的权重,并求和得到一数值,例如,延迟时间TD、上升时间Tr、调节时间Ts、超调量σ可单独作为表征,也可以将延迟时间TD、上升时间Tr、调节时间Ts,赋予相同或不同的权重,并计算得到一时间数值,分析一段时间内控制参数的控制效果值,计算得到控制效果值,与预设数值比较,若控制效果值达到预设数值,即低于或者等于预设值,则将该段时间内的数个指令组合储存。也可以以调节时间Ts、超调量σ来表征控制效果,设置一时间标准Ts和标准超调量σm,计算Ts/Ts与σ/σm的和,得到控制效果值,与预设数值比较,若控制效果值达到预设数值,即低于或者等于预设值,则将该段时间内的数个指令组合储存。也可以将Ts/Ts与σ/σm分别设置不同的权重,如,Ts/Ts的权重为30%,σ/σm的权重为70%,计算得到控制效果值。一般来说,前述的一段时间如图2所示,可以采用时间0-16。The characterization method can use one or more of the delay time T D , rise time T r , adjustment time T s , and overshoot σ to give a certain weight, and sum to get a value, for example, delay time T D , rise time The time T r , adjustment time T s , and overshoot σ can be used as characterizations alone, or the delay time T D , rise time T r , and adjustment time T s can be given the same or different weights, and a time value can be calculated. Analyze the control effect value of the control parameters within a period of time, calculate the control effect value, and compare it with the preset value. If the control effect value reaches the preset value, that is, it is lower than or equal to the preset value, then several Command combination storage. The control effect can also be characterized by the adjustment time T s and the overshoot σ, set a time standard T s and the standard overshoot σ m , calculate the sum of T s /T s and σ/σ m , and obtain the control effect value, Compared with the preset value, if the control effect value reaches the preset value, that is, is lower than or equal to the preset value, several instructions within the period are combined and stored. It is also possible to set different weights for T s /T s and σ/σ m respectively, for example, the weight of T s /T s is 30%, and the weight of σ/σ m is 70%, and the control effect value is calculated. Generally speaking, the aforementioned period of time is shown in FIG. 2 , and time 0-16 can be used.
所述励磁智能控制方法还包括智能指令表整理模块:The excitation intelligent control method also includes an intelligent instruction table finishing module:
所述智能指令表整理模块,用于判断未成组的PID控制参数与智能指令表中的PID控制组的PID参数是否完全相同,若是,则在智能指令表中删除该未成组的PID控制参数,若否,则在智能指令表中保留该未成组的PID控制参数。Described intelligent command list finishing module, is used for judging whether the PID control parameter that does not form a group and the PID parameter of the PID control group in the intelligent command list are identical, if so, then deletes the PID control parameter that does not form a group in the intelligent command list, If not, keep the ungrouped PID control parameters in the smart instruction table.
通过智能指令表整理模块,可以将多余的指令删除,从而控制智能指令表的数量,降低指令发出的延迟。Through the intelligent instruction table sorting module, redundant instructions can be deleted, thereby controlling the number of intelligent instruction tables and reducing the delay in issuing instructions.
例如,有智能指令表含有1024组指令,在励磁系统稳态时,施加负向15%的电压脉冲干扰信号,分别有第109,100,880,132,555,34,870,546,90,345,432,589,901,1000,232,478,641,478组智能指令表被输出,智能指令表生成单元记录上述指令组,并分析上述指令组的控制效果,以超调量σ未超过10%为标准,该控制效果值为8%,则该组指令控制效果满足要求,将上述地109,100,880,132,555,34,870,546,90,345,432,589,901,1000,232,478,641,478作为一个控制指令组,按照该顺序储存入智能指令表中。For example, there is an intelligent instruction table containing 1024 groups of instructions. In the steady state of the excitation system, a negative 15% voltage pulse interference signal is applied. 345, 432, 589, 901, 1000, 232, 478, 641, 478 groups of intelligent instruction tables are output, the intelligent instruction table generation unit records the above instruction groups, and analyzes the control effect of the above instruction groups, and the overshoot σ does not exceed 10% is the standard, and the control effect value is 8%, then the control effect of this group of instructions meets the requirements. , 1000, 232, 478, 641, 478 are used as a control instruction group, which are stored in the intelligent instruction table in this order.
而在智能指令表整理模块中,如果880,132,555是因为指令符合预设的要求,e与ec没有改变而储存如智能指令表中,则在智能指令表整理模块中与刚储存如智能指令表中的控制指令组的880,132,555数据完全相同,所以在智能指令表整理模块中,如果880,132,555数据没有形成指令组,则多余的880,132,555数据将被删除。此外,形成指令组的指令在智能指令表整理模块中不会被删除。And in the intelligent command table sorting module, if 880, 132, 555 are stored as in the smart command list because the command meets the preset requirements, and e and ec do not change, then in the smart command list sorting module and just stored as smart The 880, 132, 555 data of the control instruction group in the instruction table are exactly the same, so in the intelligent instruction table sorting module, if the 880, 132, 555 data does not form an instruction group, the redundant 880, 132, 555 data will be deleted . In addition, the instructions that form the instruction group will not be deleted in the smart instruction list sorting module.
同时,也可以看出,除了880,132,555组指令,其他新储存入智能指令表中的指令都是新的不同的指令,经过大量数据的学习,可以有效消除前期指令的因为人为的指定带来的影响。At the same time, it can also be seen that except for the 880, 132, and 555 groups of instructions, other instructions newly stored in the smart instruction table are new and different instructions. After a large amount of data learning, it can effectively eliminate the manual designation of the previous instructions. the impact.
通过上述的重新组合,可以大大节省指令发出的时间,提高指令反馈速度。同时,通过指令的学习,智能控制系统将会学习得到一系列固定的指令组,用来应对发电机组遇到的干扰信号。Through the above-mentioned recombination, the time for issuing instructions can be greatly saved, and the speed of instruction feedback can be improved. At the same time, through the learning of instructions, the intelligent control system will learn a series of fixed instruction groups to deal with the interference signals encountered by the generator set.
发电机组励磁智能控制方法,所述励磁智能控制方法用于控制发电机励磁线圈的电流,该方法包括以下步骤:Generator set excitation intelligent control method, the excitation intelligent control method is used to control the current of the generator excitation coil, the method includes the following steps:
a.实时检测发电机定子端电压;a. Real-time detection of generator stator terminal voltage;
b.处理发电机定子端电压,根据预设电压,计算得到电压偏差量e和电压偏差变化率ec;b. Process the stator terminal voltage of the generator, and calculate the voltage deviation e and the voltage deviation change rate ec according to the preset voltage;
c.接收电压偏差量e和电压偏差变化率ec信息,并判断电压偏差量e和电压偏差变化率ec与智能指令表中的预设电压偏差量和预设电压偏差变化率的差值率是否均低于预设差值率,若是,则该指令中的PID参数为整定PID参数,若否,则选择上述两个差值率之和最低的指令,则该指令中的PID参数为整定PID参数,所述智能指令表用于确定PID计算单元的PID参数,所述智能指令表中存储有多组指令,每组指令由预设电压偏差量和预设电压偏差变化率及其对应的PID参数组成;c. Receive the information of the voltage deviation e and the voltage deviation change rate ec, and judge whether the difference rate between the voltage deviation e, the voltage deviation change rate ec and the preset voltage deviation amount and the preset voltage deviation change rate in the intelligent command table are lower than the preset difference rate, if yes, the PID parameter in the command is the set PID parameter, if not, choose the command with the lowest sum of the above two difference rates, then the PID parameter in the command is the set PID parameter Parameters, the intelligent instruction table is used to determine the PID parameters of the PID calculation unit, there are multiple sets of instructions stored in the intelligent instruction table, each set of instructions consists of a preset voltage deviation and a preset voltage deviation change rate and its corresponding PID parameter composition;
d. 采用增量式PID控制算法,根据电压偏差量e和整定PID参数输出控制信号;d. Adopt incremental PID control algorithm, output control signal according to voltage deviation e and setting PID parameters;
e.将控制信号放大从而实现控制发电机励磁线圈的电流。e. The control signal is amplified to control the current of the excitation coil of the generator.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD; Select m groups of closest PID parameters K P , K I , K D;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
在m个KI中的最大数值和最小数值之间等间距取n个KI数值;Take n K I values at equal intervals between the maximum value and the minimum value among the m K I values ;
在m个KD中的最大数值和最小数值之间等间距取n个KD数值;Take n K D values at equal intervals between the maximum value and the minimum value among the m K D values ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
所述多组PID参数获取步骤包括:The multiple groups of PID parameter acquisition steps include:
整定得到数组PID参数;Tuning to obtain the array PID parameters;
选择m组最接近的PID参数KP、KI、KD;Select m groups of closest PID parameters K P , K I , K D ;
在m个KP中的最大数值和最小数值之间等间距取n个KP数值;Take n K P values at equal intervals between the maximum value and the minimum value among the m K P values ;
利用m个坐标(KP,KI)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KI;Use m coordinates (K P , KI ) to fit a polynomial function of degree m- 1 , and use this polynomial function and n K P values to obtain n K I ;
利用m个坐标(KP,KD)拟合得到m-1次多项式函数,利用该多项式函数和n个KP数值得到n个KD;Use m coordinates (K P , K D ) to get m-1 degree polynomial function, and use this polynomial function and n K P values to get n K D ;
将上述n个KP、KI、KD数值中重新组合得到n组PID参数。Recombine the above n values of KP, KI, and KD to obtain n sets of PID parameters.
本发明中,形如 f(x)=anxn+an-1xn-1+…+a1x+a0的函数,叫做多项式函数。利用多项式函数,可以有效地获得更多的PID参数KP、KI、KD。In the present invention, a function of the form f(x)=a n x n +a n-1 x n-1 +...+a 1 x+a 0 is called a polynomial function. Using polynomial functions, more PID parameters K P , KI , K D can be obtained effectively.
所述励磁智能控制方法还包括智能指令表生成步骤:The excitation intelligent control method also includes an intelligent instruction table generation step:
接收数据处理单元的电压偏差量e和电压偏差变化率ec和整定PID参数,Receive the voltage deviation e and the voltage deviation change rate ec of the data processing unit and set the PID parameters,
分析在一预设周期内的数个整定PID参数的控制效果值,若控制效果值达到预设数值,则将该预设周期内的数组整定PID参数以及对应的电压偏差量e和电压偏差变化率ec储存于智能指令表中,并将数组整定PID参数视为一PID控制组,若控制效果值未达到预设数值,则无存储动作。Analyze the control effect value of several tuning PID parameters within a preset period, if the control effect value reaches the preset value, set the PID parameters of the array within the preset period and the corresponding voltage deviation e and voltage deviation change The rate ec is stored in the intelligent command table, and the PID parameters set by the array are regarded as a PID control group. If the control effect value does not reach the preset value, there will be no storage action.
所述励磁智能控制方法还包括智能指令表整理步骤:The excitation intelligent control method also includes the step of organizing the intelligent instruction table:
判断未成组的PID控制参数与智能指令表中的PID控制组的PID参数是否完全相同,若是,则在智能指令表中删除该未成组的PID控制参数,若否,则在智能指令表中保留该未成组的PID控制参数。Determine whether the ungrouped PID control parameters are exactly the same as the PID parameters of the PID control group in the smart command table, if so, delete the ungrouped PID control parameters in the smart command table, if not, keep them in the smart command table The ungrouped PID control parameters.
所述的预设数值通过延迟时间TD、上升时间Tr、调节时间Ts、超调量σ中的一种或几种表征。The preset value is represented by one or more of delay time T D , rise time T r , adjustment time T s , and overshoot σ.
通过上述的智能控制,可以有效控制励磁线圈电流的输出,使得发电机组的电压输出稳定,在面对不同干扰时,相对于其他智能控制系统,整体控制效果好,适应性强。相对于其他智能控制系统,由于将整定数据预先导入,规则库更简单有效,处理快速。Through the above intelligent control, the output of the excitation coil current can be effectively controlled, so that the voltage output of the generator set is stable. Compared with other intelligent control systems, the overall control effect is good and the adaptability is strong when facing different disturbances. Compared with other intelligent control systems, since the setting data is pre-imported, the rule base is simpler and more effective, and the processing is faster.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡是根据本发明内容所做的均等变化与修饰,均涵盖在本发明的专利范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. All equivalent changes and modifications made according to the contents of the present invention are covered within the patent scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610026667.8A CN105676692B (en) | 2016-01-17 | 2016-01-17 | Generating unit excitation intelligence control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610026667.8A CN105676692B (en) | 2016-01-17 | 2016-01-17 | Generating unit excitation intelligence control system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105676692A CN105676692A (en) | 2016-06-15 |
CN105676692B true CN105676692B (en) | 2017-12-05 |
Family
ID=56300905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610026667.8A Expired - Fee Related CN105676692B (en) | 2016-01-17 | 2016-01-17 | Generating unit excitation intelligence control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105676692B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106681136A (en) * | 2017-02-17 | 2017-05-17 | 三峡大学 | Synchronous motor excitation control system based on auto-adjusting fuzzy PID control |
CN110212567A (en) * | 2019-07-09 | 2019-09-06 | 江苏方天电力技术有限公司 | High voltage ac/dc serial-parallel power grid numerical simulation modeling method containing large-scale phase modifier |
KR20210074003A (en) * | 2019-12-11 | 2021-06-21 | 주식회사 엘지에너지솔루션 | Apparatus and method for diagnosing degeneracy of battery |
CN111600521B (en) * | 2020-06-15 | 2021-02-02 | 湖北师范大学 | A kind of excitation controller control method and system |
CN113138552B (en) * | 2021-03-31 | 2023-03-07 | 国网浙江省电力有限公司电力科学研究院 | PID Parameter Tuning Method Based on Step Response Data and Critical Proportionality Method |
CN113655714B (en) * | 2021-07-02 | 2023-01-06 | 中国科学院西安光学精密机械研究所 | Parameter self-tuning method for control system |
CN114687870A (en) * | 2022-03-03 | 2022-07-01 | 沈阳航天新光集团有限公司 | Vehicle-mounted power take-off generator set control system and control method |
CN115133823B (en) * | 2022-09-01 | 2022-12-13 | 广州擎天实业有限公司 | Control method and device of excitation system |
CN115488991A (en) * | 2022-11-02 | 2022-12-20 | 广州极东机械有限公司 | Closed-loop control system of edge bonding machine and control method thereof |
CN116404924B (en) * | 2023-06-09 | 2023-09-08 | 南方电网调峰调频发电有限公司检修试验分公司 | Control parameter adjustment equipment, method, device and medium for excitation system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101131571A (en) * | 2007-08-15 | 2008-02-27 | 华北电力大学 | PID Parameters Tuning Method for Coordinated Control System of Unit System Generating Sets |
US20120161442A1 (en) * | 2008-09-17 | 2012-06-28 | Chapdrive As | Turbine speed stabilisation control system |
CN103455028A (en) * | 2013-08-29 | 2013-12-18 | 国家电网公司 | Static testing and calibrating method for PID link of control system of wind turbine generator |
CN104201954A (en) * | 2014-08-13 | 2014-12-10 | 上海交通大学 | Regulation method of excitation voltage in marine power system |
CN104796020A (en) * | 2015-04-17 | 2015-07-22 | 西南交通大学 | Method for designing parameters of parameter self-tuning fuzzy PI (proportion integration) in PWM (pulse width modulation) rectifiers |
-
2016
- 2016-01-17 CN CN201610026667.8A patent/CN105676692B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101131571A (en) * | 2007-08-15 | 2008-02-27 | 华北电力大学 | PID Parameters Tuning Method for Coordinated Control System of Unit System Generating Sets |
US20120161442A1 (en) * | 2008-09-17 | 2012-06-28 | Chapdrive As | Turbine speed stabilisation control system |
CN103455028A (en) * | 2013-08-29 | 2013-12-18 | 国家电网公司 | Static testing and calibrating method for PID link of control system of wind turbine generator |
CN104201954A (en) * | 2014-08-13 | 2014-12-10 | 上海交通大学 | Regulation method of excitation voltage in marine power system |
CN104796020A (en) * | 2015-04-17 | 2015-07-22 | 西南交通大学 | Method for designing parameters of parameter self-tuning fuzzy PI (proportion integration) in PWM (pulse width modulation) rectifiers |
Also Published As
Publication number | Publication date |
---|---|
CN105676692A (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105676692B (en) | Generating unit excitation intelligence control system | |
CN103174471B (en) | Parameter-varying load optimization control method of thermal power generating unit | |
CN104122531B (en) | The method of self-adaptive processing radar antenna position oscillation | |
Luoren et al. | Research of PID control algorithm based on neural network | |
CN108696210B (en) | Parameter self-tuning method of DC motor current loop controller based on parameter identification | |
CN107070336B (en) | Two-type fuzzy fractional order sliding mode control system and method of permanent magnet linear synchronous motor | |
CN101995822A (en) | Grey active disturbance rejection control method of long time-delay system | |
CN105743107B (en) | A kind of control method of electric power Isolated Network System frequency regulation | |
CN105179164A (en) | Wind energy converting system sliding mode control method and device based on T-S fuzzy model | |
CN105515492B (en) | Motor servo system progressive tracking control method when a kind of input-bound | |
CN103618486A (en) | Fuzzy-control direct-current motor speed control method | |
CN107171612A (en) | Fuzzy score rank PID switched reluctance machines method for controlling torque and system | |
CN202663351U (en) | Servo motor rotational speed control system based on fuzzy self-adaptive proportional-integral-derivative (PID) controllers | |
CN109507869A (en) | A kind of optimization method of the motor control PI parameter suitable for permanent magnet synchronous motor | |
CN106597840A (en) | PID parameter setting method based on production rule reasoning | |
CN107061164A (en) | One kind considers the uncertain blower variable-pitch of executing agency away from Sliding Mode Adaptive Control method | |
CN104570733B (en) | Method for tracking control of preset performance in magnetic hysteresis compensation-containing motor servo system | |
Shi et al. | The research of fuzzy PID control application in DC motor of automatic doors | |
CN106059412B (en) | DC motor with separate excitation method for controlling number of revolution based on reliability rule base reasoning | |
CN109856959A (en) | A kind of linear motor control method and system based on PID | |
CN118748528A (en) | A speed control strategy for PMLSM drive system based on RBF adaptive super-twisted sliding mode | |
CN103401006B (en) | Voltage multi-model fusion control method for solid oxide fuel cell | |
CN116150969B (en) | Stability analysis method for optical storage-virtual synchronous generator | |
CN113078638A (en) | Thermal power generating unit AGC performance index calculation method and system based on fuzzy model | |
CN111237116A (en) | Method and system for joint regulation of water gate and excitation of nonlinear hidden pole hydro-generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhang Tingjun Inventor after: Zhang Xun Inventor before: Zhang Xun |
|
COR | Change of bibliographic data | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171205 Termination date: 20200117 |
|
CF01 | Termination of patent right due to non-payment of annual fee |