CN111600521B - A kind of excitation controller control method and system - Google Patents

A kind of excitation controller control method and system Download PDF

Info

Publication number
CN111600521B
CN111600521B CN202010540779.1A CN202010540779A CN111600521B CN 111600521 B CN111600521 B CN 111600521B CN 202010540779 A CN202010540779 A CN 202010540779A CN 111600521 B CN111600521 B CN 111600521B
Authority
CN
China
Prior art keywords
error
excitation
value
control condition
preset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010540779.1A
Other languages
Chinese (zh)
Other versions
CN111600521A (en
Inventor
高红亮
詹习生
朱军
杨青胜
肖凌俊
徐丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Normal University
Original Assignee
Hubei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Normal University filed Critical Hubei Normal University
Priority to CN202010540779.1A priority Critical patent/CN111600521B/en
Publication of CN111600521A publication Critical patent/CN111600521A/en
Application granted granted Critical
Publication of CN111600521B publication Critical patent/CN111600521B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2103/00Controlling arrangements characterised by the type of generator
    • H02P2103/20Controlling arrangements characterised by the type of generator of the synchronous type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种励磁控制器控制方法及系统,涉及电力系统稳定性控制技术领域。该方法包括:利用PID控制和励磁控制系统数学模型确定控制策略的参数;利用励磁控制系统的第k次采样误差值、第k次采样误差值与第k‑1次采样误差值的第一误差差值以及第k‑1次采样误差值与第k‑2次采样误差值的第二误差差值确定励磁控制器当前状态对应的预设控制条件;采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出。本发明的励磁控制器控制方法及系统可根据励磁控制系统的工作状态及误差情况自动确定不同的预设控制条件,使控制策略更加灵活;自动调整励磁控制器的参数,提高了励磁控制器的适应性,使励磁控制系统的控制效果更好。

Figure 202010540779

The invention relates to an excitation controller control method and system, and relates to the technical field of power system stability control. The method includes: using PID control and excitation control system mathematical models to determine the parameters of the control strategy; using the kth sampling error value of the excitation control system, the kth sampling error value and the first error of the k-1th sampling error value of the excitation control system The difference value and the second error difference between the k-1th sampling error value and the k-2th sampling error value determine the preset control conditions corresponding to the current state of the excitation controller; adopt the corresponding preset control conditions corresponding to the current state. The control strategy controls the output of the excitation controller. The excitation controller control method and system of the present invention can automatically determine different preset control conditions according to the working state and error conditions of the excitation control system, so that the control strategy is more flexible; the parameters of the excitation controller are automatically adjusted, and the performance of the excitation controller is improved. Adaptability, so that the control effect of the excitation control system is better.

Figure 202010540779

Description

一种励磁控制器控制方法及系统A kind of excitation controller control method and system

技术领域technical field

本发明涉及电力系统稳定性控制技术领域,特别是涉及一种励磁控制器控制方法及系统。The invention relates to the technical field of power system stability control, in particular to an excitation controller control method and system.

背景技术Background technique

电力系统的稳定性对电网的安全性和可靠性有着重要影响,通过各种各样的措施来增强电力系统的稳定性,对于社会经济的健康发展和人们生活质量的提高有着十分重要的意义。励磁控制器是同步发电机控制系统的核心,可以对发电机励磁系统进行有效的控制,是使电力系统稳定运行的重要措施。常规PID控制(proportional-integral-derivative control,比例积分微分控制)在励磁控制器上的应用虽然非常成熟,但采用这种控制方式的励磁控制器的参数固定,控制律单一,无法根据发电机励磁系统的工作状态及误差情况来自动改变励磁控制律,以及调整励磁控制器的参数,导致励磁控制器适应对象特性的能力较差。因此,现有励磁控制器存在适应性差的问题。The stability of the power system has an important impact on the security and reliability of the power grid. To enhance the stability of the power system through various measures is of great significance for the healthy development of the social economy and the improvement of people's quality of life. The excitation controller is the core of the synchronous generator control system, which can effectively control the generator excitation system and is an important measure for the stable operation of the power system. Although the application of conventional PID control (proportional-integral-derivative control, proportional-integral-derivative control) in the excitation controller is very mature, the parameters of the excitation controller using this control method are fixed and the control law is single, which cannot be based on the excitation of the generator. The working state and error situation of the system can automatically change the excitation control law and adjust the parameters of the excitation controller, resulting in a poor ability of the excitation controller to adapt to the characteristics of the object. Therefore, the existing excitation controller has the problem of poor adaptability.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种励磁控制器控制方法及系统,解决了现有励磁控制器适应性差的问题。The purpose of the present invention is to provide an excitation controller control method and system, which solves the problem of poor adaptability of the existing excitation controller.

为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:

一种励磁控制器控制方法,包括:An excitation controller control method, comprising:

获取励磁控制系统数学模型;Obtain the mathematical model of the excitation control system;

利用PID控制和所述励磁控制系统数学模型,确定励磁控制器的控制策略的参数;所述参数包括:比例系数、积分系数和微分系数;Use PID control and the mathematical model of the excitation control system to determine the parameters of the control strategy of the excitation controller; the parameters include: proportional coefficient, integral coefficient and differential coefficient;

将励磁控制系统的第k次采样时的误差值与第k-1次采样时的第一误差值的差值确定为第一误差差值,将所述第一误差值与第k-2次采样时的第二误差值的差值确定为第二误差差值;其中k表示采样次数;Determine the difference between the error value at the k-th sampling of the excitation control system and the first error value at the k-1-th sampling as the first error difference, and compare the first error value with the k-2-th sampling The difference between the second error values during sampling is determined as the second error difference; wherein k represents the number of sampling times;

利用所述第k次采样时的误差值、所述第一误差差值和所述第二误差差值确定所述励磁控制器的当前状态对应的预设控制条件;所述预设控制条件包括:第一预设控制条件、第二预设控制条件、第三预设控制条件、第四预设控制条件和第五预设控制条件;A preset control condition corresponding to the current state of the excitation controller is determined by using the error value at the k-th sampling, the first error difference value and the second error difference value; the preset control conditions include : the first preset control condition, the second preset control condition, the third preset control condition, the fourth preset control condition and the fifth preset control condition;

采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出。A control strategy corresponding to a preset control condition corresponding to the current state is used to control the output of the excitation controller.

可选的,所述利用所述第k次采样时的误差值、所述第一误差差值和所述第二误差差值确定所述励磁控制器的当前状态对应的预设控制条件,具体包括:Optionally, the preset control condition corresponding to the current state of the excitation controller is determined by using the error value at the kth sampling, the first error difference value, and the second error difference value, specifically: include:

判断所述第k次采样时的误差值的绝对值是否大于第一预设误差阈值,得到第一判断结果;judging whether the absolute value of the error value during the k-th sampling is greater than a first preset error threshold, to obtain a first judgment result;

若所述第一判断结果为是,则所述当前状态对应的预设控制条件为第一预设控制条件;If the first judgment result is yes, the preset control condition corresponding to the current state is the first preset control condition;

若所述第一判断结果为否,则判断所述第k次采样时的误差值与所述第一误差差值的乘积是否大于零或所述第一误差差值是否等于零,得到第二判断结果;If the first judgment result is no, then judge whether the product of the error value at the kth sampling time and the first error difference value is greater than zero or whether the first error difference value is equal to zero, and obtain a second judgment result;

若所述第二判断结果为是,则所述当前状态对应的预设控制条件为第二预设控制条件;If the second judgment result is yes, the preset control condition corresponding to the current state is the second preset control condition;

若所述第二判断结果为否,则判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否大于零,或者所述第k次采样时的误差值是否等于零,得到第三判断结果;If the second judgment result is no, judge whether the product of the error value at the kth sampling time and the first error difference value is less than zero and the first error difference value and the second error difference Whether the product of the values is greater than zero, or whether the error value during the kth sampling is equal to zero, a third judgment result is obtained;

若所述第三判断结果为是,则所述当前状态对应的预设控制条件为第三预设控制条件;If the third judgment result is yes, the preset control condition corresponding to the current state is the third preset control condition;

若所述第三判断结果为否,则判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否小于零,得到第四判断结果;If the third judgment result is no, then judge whether the product of the error value at the kth sampling time and the first error difference value is less than zero and the first error difference value and the second error difference Whether the product of the values is less than zero, the fourth judgment result is obtained;

若所述第四判断结果为是,则所述当前状态对应的预设控制条件为第四预设控制条件;If the fourth judgment result is yes, the preset control condition corresponding to the current state is the fourth preset control condition;

若所述第四判断结果为否,则判断所述第k次采样时的误差值的绝对值是否小于励磁控制系统误差的预设精度,得到第五判断结果;If the fourth judgment result is no, then judge whether the absolute value of the error value at the k-th sampling is less than the preset accuracy of the excitation control system error, and obtain a fifth judgment result;

若所述第五判断结果为是,则所述当前状态对应的预设控制条件为第五预设控制条件。If the fifth determination result is yes, the preset control condition corresponding to the current state is the fifth preset control condition.

可选的,当所述当前状态对应的预设控制条件为第一预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:Optionally, when the preset control condition corresponding to the current state is the first preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including: :

将所述励磁控制器的输出确定为预设定值,并对所述励磁控制系统进行开环控制。The output of the excitation controller is determined as a preset value, and the excitation control system is open-loop controlled.

可选的,当所述当前状态对应的预设控制条件为第二预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:Optionally, when the preset control condition corresponding to the current state is the second preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including: :

判断所述第k次采样时的误差值的绝对值是否大于或等于第二预设误差阈值,得到第六判断结果;Judging whether the absolute value of the error value during the k-th sampling is greater than or equal to the second preset error threshold, and obtains a sixth judgment result;

若所述第六判断结果为是,则根据公式u(k)=u(k-1)+K1Kpe(k)确定所述励磁控制器的输出;其中,u(k)表示所述励磁控制器的输出,u(k-1)表示第k-1次采样时所述励磁控制器的输出,K1表示所述励磁控制系统的放大系数,Kp表示所述比例系数,e(k)表示所述第k次采样时的误差值;If the sixth judgment result is yes, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 1 K p e(k); The output of the excitation controller, u(k-1) represents the output of the excitation controller at the k-1th sampling, K 1 represents the amplification factor of the excitation control system, K p represents the proportional coefficient, e (k) represents the error value during the k-th sampling;

若所述第六判断结果为否,则根据公式u(k)=u(k-1)+K2Kpe(k)确定所述励磁控制器的输出;其中,K2表示所述励磁控制系统的抑制系数。If the sixth judgment result is no, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 2 K p e(k); wherein, K 2 represents the excitation The suppression coefficient of the control system.

可选的,当所述当前状态对应的预设控制条件为第三预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:Optionally, when the preset control condition corresponding to the current state is the third preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including: :

保持所述励磁控制器的输出。Hold the output of the excitation controller.

可选的,当所述当前状态对应的预设控制条件为第四预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:Optionally, when the preset control condition corresponding to the current state is the fourth preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including: :

判断所述第k次采样时的误差值的绝对值是否大于或等于所述第二预设误差阈值,得到第七判断结果;judging whether the absolute value of the error value during the k-th sampling is greater than or equal to the second preset error threshold, to obtain a seventh judgment result;

若所述第七判断结果为是,则根据公式u(k)=u(k-1)+K1Kpe(k-1)确定所述励磁控制器的输出;其中,u(k)表示所述励磁控制器的输出,u(k-1)表示第k-1次采样时所述励磁控制器的输出,K1表示所述励磁控制系统的放大系数,Kp表示所述比例系数,e(k-1)表示所述第一误差值;If the seventh judgment result is yes, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 1 K p e(k-1); wherein u(k) represents the output of the excitation controller, u(k-1) represents the output of the excitation controller at the k-1th sampling, K 1 represents the amplification factor of the excitation control system, and K p represents the proportional coefficient , e(k-1) represents the first error value;

若所述第七判断结果为否,则根据公式u(k)=u(k-1)+K2Kpe(k-1)确定所述励磁控制器的输出;其中,K2表示所述励磁控制系统的抑制系数。If the seventh judgment result is no, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 2 K p e(k-1); wherein, K 2 represents the The suppression coefficient of the excitation control system is described.

可选的,当所述当前状态对应的预设控制条件为第五预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:Optionally, when the preset control condition corresponding to the current state is the fifth preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including: :

根据公式

Figure BDA0002538849250000041
确定所述励磁控制器的输出;其中,u(k)表示所述励磁控制器的输出,Kp表示所述比例系数,e(k)表示所述第k次采样时的误差值,Ki表示所述积分系数,j表示采样次数,e(j)表示第j次采样时的误差值,Kd表示所述微分系数,Δe(k)表示第一误差差值。According to the formula
Figure BDA0002538849250000041
Determine the output of the excitation controller; wherein, u(k) represents the output of the excitation controller, K p represents the proportional coefficient, e(k) represents the error value at the kth sampling, K i represents the integral coefficient, j represents the number of sampling times, e(j) represents the error value at the jth sampling, K d represents the differential coefficient, and Δe(k) represents the first error difference.

一种励磁控制器控制系统,包括:An excitation controller control system, comprising:

数学模型获取模块,用于获取励磁控制系统数学模型;The mathematical model acquisition module is used to acquire the mathematical model of the excitation control system;

参数确定模块,用于利用PID控制和所述励磁控制系统数学模型,确定励磁控制器的控制策略的参数;所述参数包括:比例系数、积分系数和微分系数;a parameter determination module, used for using PID control and the mathematical model of the excitation control system to determine the parameters of the control strategy of the excitation controller; the parameters include: proportional coefficient, integral coefficient and differential coefficient;

差值确定模块,用于将励磁控制系统的第k次采样时的误差值与第k-1次采样时的第一误差值的差值确定为第一误差差值,将所述第一误差值与第k-2次采样时的第二误差值的差值确定为第二误差差值;其中k表示采样次数;A difference determination module, configured to determine the difference between the error value at the k-th sampling of the excitation control system and the first error value at the k-1-th sampling as the first error difference, and the first error The difference between the value and the second error value in the k-2th sampling is determined as the second error difference; wherein k represents the number of sampling times;

预设控制条件确定模块,用于利用所述第k次采样时的误差值、所述第一误差差值和所述第二误差差值确定所述励磁控制器的当前状态对应的预设控制条件;所述预设控制条件包括:第一预设控制条件、第二预设控制条件、第三预设控制条件、第四预设控制条件和第五预设控制条件;A preset control condition determination module, configured to determine the preset control corresponding to the current state of the excitation controller by using the error value at the kth sampling, the first error difference value and the second error difference value conditions; the preset control conditions include: a first preset control condition, a second preset control condition, a third preset control condition, a fourth preset control condition, and a fifth preset control condition;

控制励磁控制器输出模块,用于采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出。The control excitation controller output module is used for controlling the output of the excitation controller by adopting the control strategy corresponding to the preset control conditions corresponding to the current state.

可选的,所述预设控制条件确定模块,具体包括:Optionally, the preset control condition determination module specifically includes:

第一判断单元,用于判断所述第k次采样时的误差值的绝对值是否大于第一预设误差阈值,得到第一判断结果;a first judgment unit, configured to judge whether the absolute value of the error value during the k-th sampling is greater than a first preset error threshold, and obtain a first judgment result;

第一预设控制条件确定单元,用于当所述第一判断结果为是时,所述当前状态对应的预设控制条件为第一预设控制条件;a first preset control condition determination unit, configured to, when the first judgment result is yes, the preset control condition corresponding to the current state is the first preset control condition;

第二判断单元,用于当所述第一判断结果为否时,判断所述第k次采样时的误差值与所述第一误差差值的乘积是否大于零或所述第一误差差值是否等于零,得到第二判断结果;a second judging unit, configured to judge whether the product of the error value at the k-th sampling time and the first error difference value is greater than zero or the first error difference value when the first judgment result is no Whether it is equal to zero, the second judgment result is obtained;

第二预设控制条件确定单元,用于当所述第二判断结果为是时,所述当前状态对应的预设控制条件为第二预设控制条件;a second preset control condition determining unit, configured to, when the second judgment result is yes, the preset control condition corresponding to the current state is the second preset control condition;

第三判断单元,用于当所述第二判断结果为否时,判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否大于零,或者所述第k次采样时的误差值是否等于零,得到第三判断结果;a third judging unit, configured to judge whether the product of the error value at the k-th sampling time and the first error difference value is less than zero and the first error difference value when the second judgment result is no Whether the product of the second error difference value is greater than zero, or whether the error value during the kth sampling is equal to zero, to obtain a third judgment result;

第三预设控制条件确定单元,用于当所述第三判断结果为是时,所述当前状态对应的预设控制条件为第三预设控制条件;a third preset control condition determining unit, configured to, when the third judgment result is yes, the preset control condition corresponding to the current state is the third preset control condition;

第四判断单元,用于当所述第三判断结果为否时,判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否小于零,得到第四判断结果;a fourth judging unit, configured to judge whether the product of the error value at the k-th sampling time and the first error difference value is less than zero and the first error difference value when the third judgment result is no Whether the product of the second error difference is less than zero, a fourth judgment result is obtained;

第四预设控制条件确定单元,用于当所述第四判断结果为是时,所述当前状态对应的预设控制条件为第四预设控制条件;a fourth preset control condition determining unit, configured to, when the fourth judgment result is yes, the preset control condition corresponding to the current state is the fourth preset control condition;

第五判断单元,用于当所述第四判断结果为否时,判断所述第k次采样时的误差值的绝对值是否小于励磁控制系统误差的预设精度,得到第五判断结果;a fifth judgment unit, configured to judge whether the absolute value of the error value at the k-th sampling is less than the preset accuracy of the excitation control system error when the fourth judgment result is no, and obtain a fifth judgment result;

第五预设控制条件确定单元,用于当所述第五判断结果为是时,所述当前状态对应的预设控制条件为第五预设控制条件。A fifth preset control condition determination unit, configured to, when the fifth determination result is yes, the preset control condition corresponding to the current state is the fifth preset control condition.

可选的,所述控制励磁控制器输出模块,具体包括:Optionally, the control excitation controller output module specifically includes:

开环控制单元,用于当所述当前状态对应的预设控制条件为第一预设控制条件时,将所述励磁控制器的输出确定为预设定值,并对所述励磁控制系统进行开环控制。The open-loop control unit is configured to determine the output of the excitation controller as a preset value when the preset control condition corresponding to the current state is the first preset control condition, and perform a control operation on the excitation control system. Open loop control.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:

本发明提供了一种励磁控制器控制方法及系统。该方法包括:获取励磁控制系统数学模型;利用PID控制和励磁控制系统数学模型,确定励磁控制器的控制策略的参数;参数包括:比例系数、积分系数和微分系数;将励磁控制系统的第k次采样时的误差值与第k-1次采样时的第一误差值的差值确定为第一误差差值,将第一误差值与第k-2次采样时的第二误差值的差值确定为第二误差差值;其中k表示采样次数;利用第k次采样时的误差值、第一误差差值和第二误差差值确定励磁控制器的当前状态对应的预设控制条件;预设控制条件包括:第一预设控制条件、第二预设控制条件、第三预设控制条件、第四预设控制条件和第五预设控制条件;采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出。本发明的励磁控制器控制方法及系统可根据励磁控制系统的工作状态及误差情况自动确定不同的励磁控制律,即预设控制条件,使控制策略更加灵活;自动调整励磁控制器的参数,提高了励磁控制器的适应性,使励磁控制器的适应性更强,体现了智能控制的特点,使励磁控制系统的控制效果更好。The invention provides an excitation controller control method and system. The method includes: acquiring a mathematical model of an excitation control system; using the PID control and the mathematical model of the excitation control system to determine parameters of a control strategy of the excitation controller; the parameters include: proportional coefficient, integral coefficient and differential coefficient; The difference between the error value at the time of the second sampling and the first error value at the k-1th sampling time is determined as the first error difference value, and the difference between the first error value and the second error value at the k-2th sampling time is determined as the first error value. The value is determined as the second error difference value; wherein k represents the number of sampling times; the preset control condition corresponding to the current state of the excitation controller is determined by using the error value, the first error difference value and the second error difference value during the kth sampling; The preset control conditions include: first preset control conditions, second preset control conditions, third preset control conditions, fourth preset control conditions, and fifth preset control conditions; using preset control conditions corresponding to the current state The corresponding control strategy controls the output of the excitation controller. The excitation controller control method and system of the present invention can automatically determine different excitation control laws according to the working state and error conditions of the excitation control system, that is, preset control conditions, so that the control strategy is more flexible; the parameters of the excitation controller are automatically adjusted to improve the The adaptability of the excitation controller is improved, the adaptability of the excitation controller is stronger, the characteristics of intelligent control are reflected, and the control effect of the excitation control system is better.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.

图1为本发明实施例所提供的励磁控制器控制方法的流程图;FIG. 1 is a flowchart of an excitation controller control method provided by an embodiment of the present invention;

图2为本发明实施例所提供的同步发电机励磁控制系统的结构图;2 is a structural diagram of a synchronous generator excitation control system provided by an embodiment of the present invention;

图3为本发明实施例所提供的励磁控制器控制系统的结构图;3 is a structural diagram of an excitation controller control system provided by an embodiment of the present invention;

图4为本发明实施例所提供的励磁系统的输出响应曲线图;4 is an output response curve diagram of an excitation system provided by an embodiment of the present invention;

图5为本发明实施例所提供的励磁系统的误差变化曲线图;Fig. 5 is the error change curve diagram of the excitation system provided by the embodiment of the present invention;

图6为本发明实施例所提供的励磁系统的控制量变化曲线图。FIG. 6 is a graph showing the variation of the control amount of the excitation system provided by the embodiment of the present invention.

符号说明:1、励磁控制器;2、功率放大单元;3、同步发电机;4、电压测量单元。Symbol description: 1. Excitation controller; 2. Power amplification unit; 3. Synchronous generator; 4. Voltage measurement unit.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

本发明的目的是提供一种励磁控制器控制方法及系统,解决了现有励磁控制器适应性差的问题。The purpose of the present invention is to provide an excitation controller control method and system, which solves the problem of poor adaptability of the existing excitation controller.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

本实施例提供一种励磁控制器控制方法,图1为本发明实施例所提供的励磁控制器控制方法的流程图,参见图1,励磁控制器控制方法包括:This embodiment provides an excitation controller control method. FIG. 1 is a flowchart of the excitation controller control method provided by the embodiment of the present invention. Referring to FIG. 1 , the excitation controller control method includes:

步骤101,获取励磁控制系统数学模型。本实施例的励磁控制系统为同步发电机励磁控制系统,在确定励磁控制器的控制方法之前,需要分析同步发电机励磁控制系统各个环节的组成,得出同步发电机励磁控制系统的传递函数,从而得到同步发电机励磁控制系统的数学模型。Step 101, acquiring a mathematical model of the excitation control system. The excitation control system of this embodiment is a synchronous generator excitation control system. Before determining the control method of the excitation controller, it is necessary to analyze the composition of each link of the synchronous generator excitation control system to obtain the transfer function of the synchronous generator excitation control system. Thereby, the mathematical model of the excitation control system of the synchronous generator is obtained.

图2为本发明实施例所提供的同步发电机励磁控制系统的结构图。参见图2,励磁控制系统包括:励磁控制器1、功率放大单元2、同步发电机3和电压测量单元4。励磁控制器1的输出端与功率放大单元2的输入端连接,功率放大单元2的输出端与同步发电机3的输入端连接,电压测量单元4的输入端与同步发电机3的输出端连接,电压测量单元4的的输出端与励磁控制器1的输入端连接。FIG. 2 is a structural diagram of a synchronous generator excitation control system provided by an embodiment of the present invention. Referring to FIG. 2 , the excitation control system includes: an excitation controller 1 , a power amplification unit 2 , a synchronous generator 3 and a voltage measurement unit 4 . The output end of the excitation controller 1 is connected to the input end of the power amplifying unit 2, the output end of the power amplifying unit 2 is connected to the input end of the synchronous generator 3, and the input end of the voltage measuring unit 4 is connected to the output end of the synchronous generator 3 , the output end of the voltage measuring unit 4 is connected with the input end of the excitation controller 1 .

功率放大主要是指由励磁控制器输出小的控制信号到励磁功率器件的输出之间的功率转换作用,功率放大单元可认为是一阶惯性环节,其传递函数为:Power amplification mainly refers to the power conversion between the small control signal output by the excitation controller and the output of the excitation power device. The power amplification unit can be considered as a first-order inertial link, and its transfer function is:

Figure BDA0002538849250000071
Figure BDA0002538849250000071

式(1)中,G1(s)表示功率放大单元的传递函数,s表示复数域的变量,KA为放大环节的电压比例,TA为放大环节的时间常数。In formula (1), G 1 (s) represents the transfer function of the power amplifying unit, s represents a variable in the complex domain, K A is the voltage ratio of the amplifying link, and T A is the time constant of the amplifying link.

只研究励磁控制系统的情况下,且不考虑发电机磁路的饱和特性时,同步发电机的传递函数可简化为以下一阶惯性环节:When only the excitation control system is studied, and the saturation characteristics of the generator magnetic circuit are not considered, the transfer function of the synchronous generator can be simplified to the following first-order inertia link:

Figure BDA0002538849250000072
Figure BDA0002538849250000072

式(2)中,G2(s)表示同步发电机的传递函数,KG为发电机放大系数,TG为发电机时间常数。In formula (2), G 2 (s) represents the transfer function of the synchronous generator, K G is the generator amplification factor, and T G is the generator time constant.

电压测量单元完成同步发电机输出电压到励磁控制器输入信号的转化,可用一阶惯性环节来描述,电压测量单元的传递函数可用下式表示:The voltage measurement unit completes the conversion of the output voltage of the synchronous generator to the input signal of the excitation controller, which can be described by the first-order inertial link. The transfer function of the voltage measurement unit can be expressed by the following formula:

Figure BDA0002538849250000081
Figure BDA0002538849250000081

式(3)中,G3(s)表示电压测量单元的传递函数,K3为电压比例系数,T3为测量回路时间常数。In formula (3), G 3 (s) represents the transfer function of the voltage measurement unit, K 3 is the voltage proportional coefficient, and T 3 is the time constant of the measurement loop.

可得励磁控制系统中被控对象的数学模型为:The mathematical model of the controlled object in the available excitation control system is:

Figure BDA0002538849250000082
Figure BDA0002538849250000082

其中,G(s)表示励磁控制系统中被控对象数学模型的传递函数,KA为放大环节的电压比例,TA为放大环节的时间常数,s表示复数域的变量,KG为同步发电机的放大系数,TG为同步发电机的时间常数。Among them, G (s) represents the transfer function of the mathematical model of the controlled object in the excitation control system, KA is the voltage ratio of the amplification link, TA is the time constant of the amplification link, s represents the variable in the complex domain, and KG is the synchronous power generation is the amplification factor of the generator, and T G is the time constant of the synchronous generator.

本实施例的被控制对象为功率放大单元和同步发电机,步骤101的目的是给出被控制对象的具体形式,即把被控制对象以传递函数的形式给出。励磁控制器是对被控制对象进行控制,励磁控制器控制方法是针对被控对象的数学模型的,励磁控制器的具体参数需要已知被控对象的数学模型才能确定,所以需要建立在知道被控对象数学模型的基础上,参数包括:比例系数、积分系数、微分系数、积分时间常数、微分时间常数、采样时间、控制量的上限值S1、控制量的下限值S2、第一预设误差阈值L1和第二预设误差阈值L2The controlled objects in this embodiment are the power amplifying unit and the synchronous generator. The purpose of step 101 is to give the specific form of the controlled objects, that is, to give the controlled objects in the form of transfer functions. The excitation controller controls the controlled object, and the control method of the excitation controller is based on the mathematical model of the controlled object. The specific parameters of the excitation controller can only be determined by knowing the mathematical model of the controlled object. On the basis of the mathematical model of the controlled object, the parameters include: proportional coefficient, integral coefficient, differential coefficient, integral time constant, differential time constant, sampling time, upper limit value S 1 of control quantity, lower limit value S 2 of control quantity, A preset error threshold L 1 and a second preset error threshold L 2 .

步骤102,利用PID控制和励磁控制系统数学模型,确定励磁控制器的控制策略的参数;参数包括:比例系数、积分系数、微分系数、积分时间常数、微分时间常数、采样时间、控制量的上限值S1、控制量的下限值S2、第一预设误差阈值L1和第二预设误差阈值L2。实际应用中通过对被控对象的数学模型进行常规PID控制的仿真实验得到励磁控制器的控制策略的参数。Step 102, using the PID control and the excitation control system mathematical model to determine the parameters of the control strategy of the excitation controller; the parameters include: proportional coefficient, integral coefficient, differential coefficient, integral time constant, differential time constant, sampling time, the upper limit of the control amount. The limit value S 1 , the lower limit value S 2 of the control amount, the first preset error threshold value L 1 and the second preset error threshold value L 2 . In practical application, the parameters of the control strategy of the excitation controller are obtained through the simulation experiment of conventional PID control on the mathematical model of the controlled object.

励磁控制系统加入PID控制器后,给励磁控制系统的输入端施加一个阶跃信号,经过励磁控制系统的响应,通过示波器可以观察到励磁控制系统的输出响应曲线、控制量的变化曲线和误差的变化曲线等。通过控制量的变化曲线确定控制量的上限值S1和下限值S2,以实现对控制量的饱和处理;通过误差的变化曲线确定第一预设误差阈值L1和第二预设误差阈值L2。误差为励磁控制系统的误差e(k),励磁控制系统的输入r(k)与励磁控制系统的输出y(k)之间的偏差,即e(k)=r(k)-y(k)。通过误差的变化曲线可以得到励磁控制系统的误差的最大值,在本实施例中,误差最大值为1,L1取为误差最大值的80%,即0.8;L2取为误差最大值的5%,即0.05;L1为很大的误差阈值,即当误差大于L1时,便认为误差很大;L2为较大的误差阈值,即当误差大于L2时,便认为误差较大。After the excitation control system is added to the PID controller, a step signal is applied to the input of the excitation control system. After the response of the excitation control system, the output response curve of the excitation control system, the change curve of the control amount and the error of the excitation control system can be observed through the oscilloscope. change curve, etc. The upper limit value S 1 and the lower limit value S 2 of the control variable are determined according to the change curve of the control variable, so as to realize the saturation processing of the control variable; the first preset error threshold value L 1 and the second preset error threshold value L 1 are determined according to the change curve of the error Error threshold L 2 . The error is the error e(k) of the excitation control system, the deviation between the input r(k) of the excitation control system and the output y(k) of the excitation control system, that is, e(k)=r(k)-y(k ). The maximum value of the error of the excitation control system can be obtained through the change curve of the error. In this embodiment, the maximum value of the error is 1, L 1 is taken as 80% of the maximum value of the error, that is, 0.8; L 2 is taken as the maximum value of the error 5%, that is, 0.05; L 1 is a large error threshold, that is, when the error is greater than L 1 , the error is considered to be very large; L 2 is a larger error threshold, that is, when the error is greater than L 2 , it is considered that the error is relatively large. big.

使用PID控制方法对励磁控制系统进行控制,确定励磁控制器的输出,进而得到励磁控制器的参数。The excitation control system is controlled by PID control method, the output of the excitation controller is determined, and then the parameters of the excitation controller are obtained.

Figure BDA0002538849250000091
Figure BDA0002538849250000091

其中,

Figure BDA0002538849250000092
in,
Figure BDA0002538849250000092

Figure BDA0002538849250000093
Figure BDA0002538849250000093

上式中,u’(k)表示采用PID控制方法时励磁控制器的输出;Kp为比例系数;e(k)表示第k次采样时的误差值;Ki为积分系数;j和k均代表采样次数,j代表第j次采样,k代表第k次采样,且0≤j≤k;e(j)表示第j次采样时励磁控制系统的误差值;Kd为微分系数;Δe(k)表示励磁控制系统第k次采样时的误差值与第k-1次采样时的误差值的误差差值;T为采样时间;Ti为积分时间常数;Td为微分时间常数。In the above formula, u'(k) represents the output of the excitation controller when the PID control method is used; K p is the proportional coefficient; e(k) represents the error value of the kth sampling; K i is the integral coefficient; j and k Both represent the sampling times, j represents the jth sampling, k represents the kth sampling, and 0≤j≤k; e(j) represents the error value of the excitation control system at the jth sampling; K d is the differential coefficient; Δe (k) represents the error difference between the error value at the k-th sampling of the excitation control system and the error value at the k-1-th sampling; T is the sampling time; T i is the integral time constant; T d is the differential time constant.

步骤103,将励磁控制系统的第k次采样时的误差值与第k-1次采样时的第一误差值的差值确定为第一误差差值,将第一误差值与第k-2次采样时的第二误差值的差值确定为第二误差差值;其中k表示采样次数。Step 103: Determine the difference between the error value at the k-th sampling of the excitation control system and the first error value at the k-1-th sampling as the first error difference, and determine the difference between the first error value and the k-2-th sampling. The difference between the second error values at the time of sub-sampling is determined as the second error difference value; wherein k represents the number of sampling times.

步骤103具体包括:获取励磁控制系统第k次采样时的误差值、第k-1次采样时的第一误差值和第k-2次采样时的第二误差值。Step 103 specifically includes: acquiring the error value of the excitation control system at the k-th sampling, the first error value at the k-1-th sampling, and the second error value at the k-2-th sampling.

将第k次采样时的误差值与第一误差值的差值确定为第一误差差值,即△e(k)=e(k)-e(k-1),Δe(k)表示第一误差差值,e(k)表示第k次采样时的误差值,e(k-1)表示第一误差值。The difference between the error value at the kth sampling and the first error value is determined as the first error difference, that is, Δe(k)=e(k)-e(k-1), and Δe(k) represents the first error value. An error difference, e(k) represents the error value at the k-th sampling, and e(k-1) represents the first error value.

将第一误差值与第二误差值的差值确定为第二误差差值,即△e(k-1)=e(k-1)-e(k-2),Δe(k-1)表示第二误差差值,e(k-2)表示第二误差值。The difference between the first error value and the second error value is determined as the second error difference, that is, Δe(k-1)=e(k-1)-e(k-2), Δe(k-1) represents the second error difference value, and e(k-2) represents the second error value.

步骤104,利用第k次采样时的误差值、第一误差差值和第二误差差值确定励磁控制器的当前状态对应的预设控制条件;预设控制条件包括:第一预设控制条件、第二预设控制条件、第三预设控制条件、第四预设控制条件和第五预设控制条件。Step 104: Determine a preset control condition corresponding to the current state of the excitation controller by using the error value, the first error difference value and the second error difference value at the kth sampling; the preset control conditions include: a first preset control condition , a second preset control condition, a third preset control condition, a fourth preset control condition, and a fifth preset control condition.

步骤104具体包括:Step 104 specifically includes:

判断第k次采样时的误差值的绝对值是否大于第一预设误差阈值,得到第一判断结果。It is judged whether the absolute value of the error value at the k-th sampling is greater than the first preset error threshold, and a first judgment result is obtained.

若第一判断结果为是,则当前状态对应的预设控制条件为第一预设控制条件。If the first determination result is yes, the preset control condition corresponding to the current state is the first preset control condition.

若第一判断结果为否,则判断第k次采样时的误差值与第一误差差值的乘积是否大于零或第一误差差值是否等于零,得到第二判断结果。If the first judgment result is no, then judge whether the product of the error value at the kth sampling and the first error difference value is greater than zero or whether the first error difference value is equal to zero, and obtain a second judgment result.

若第二判断结果为是,则当前状态对应的预设控制条件为第二预设控制条件。第二判断结果为是即e(k)△e(k)>0或△e(k)=0,即(1)

Figure BDA0002538849250000101
或(2)
Figure BDA0002538849250000102
或(3)e(k)-e(k-1)=0。对于(1),表示第k次采样时的误差值为正,且在增大,第k次采样时的误差值的绝对值在增大;对于(2),表示第k次采样时的误差值为负,且继续减小,第k次采样时的误差值的绝对值在增大;对于(3)表示误差未发生变化。If the second judgment result is yes, the preset control condition corresponding to the current state is the second preset control condition. The second judgment result is that e(k)Δe(k)>0 or Δe(k)=0, that is, (1)
Figure BDA0002538849250000101
or (2)
Figure BDA0002538849250000102
or (3) e(k)-e(k-1)=0. For (1), it means that the error value at the kth sampling is positive and increasing, and the absolute value of the error value at the kth sampling is increasing; for (2), it means the error at the kth sampling The value is negative and continues to decrease, and the absolute value of the error value at the kth sampling is increasing; for (3), it means that the error has not changed.

若第二判断结果为否,则判断第k次采样时的误差值与第一误差差值的乘积是否小于零且第一误差差值与第二误差差值的乘积是否大于零,或者第k次采样时的误差值是否等于零,得到第三判断结果。If the second judgment result is no, then judge whether the product of the error value at the kth sampling time and the first error difference value is less than zero and whether the product of the first error difference value and the second error difference value is greater than zero, or whether the product of the kth sampling error value and the first error difference value is greater than zero. Whether the error value at the time of sub-sampling is equal to zero, the third judgment result is obtained.

若第三判断结果为是,则当前状态对应的预设控制条件为第三预设控制条件。第三判断结果为是即e(k)△e(k)<0且△e(k)△e(k-1)>0,或者e(k)=0,即(1)e(k-2)<e(k-1)<e(k)<0或(2)0<e(k)<e(k-1)<e(k-2)或(3)r(k)-y(k)=0,其中(1)和(2)意味着误差的绝对值在朝减小的方向变化,(3)意味着误差已达平衡状态。If the third determination result is yes, the preset control condition corresponding to the current state is the third preset control condition. The third judgment result is that e(k)△e(k)<0 and △e(k)△e(k-1)>0, or e(k)=0, that is (1)e(k- 2)<e(k-1)<e(k)<0 or (2)0<e(k)<e(k-1)<e(k-2) or (3)r(k)-y (k)=0, where (1) and (2) mean that the absolute value of the error is changing in a decreasing direction, and (3) means that the error has reached an equilibrium state.

若第三判断结果为否,则判断第k次采样时的误差值与第一误差差值的乘积是否小于零且第一误差差值与第二误差差值的乘积是否小于零,得到第四判断结果。If the third judgment result is no, then judge whether the product of the error value in the kth sampling and the first error difference value is less than zero and whether the product of the first error difference value and the second error difference value is less than zero, and obtain the fourth critical result.

若第四判断结果为是,则当前状态对应的预设控制条件为第四预设控制条件。第四判断结果为是即e(k)△e(k)<0且△e(k)△e(k-1)<0,即(1)0<e(k)<e(k-1)>e(k-2)或(2)

Figure BDA0002538849250000111
(1)和(2)均意味着误差处于极值状态。If the fourth determination result is yes, the preset control condition corresponding to the current state is the fourth preset control condition. The fourth judgment result is that e(k)△e(k)<0 and △e(k)△e(k-1)<0, that is (1)0<e(k)<e(k-1 )>e(k-2) or (2)
Figure BDA0002538849250000111
Both (1) and (2) imply that the error is in an extreme state.

若第四判断结果为否,则判断第k次采样时的误差值的绝对值是否小于励磁控制系统误差的预设精度,得到第五判断结果。If the fourth judgment result is no, it is judged whether the absolute value of the error value at the kth sampling is less than the preset accuracy of the excitation control system error, and the fifth judgment result is obtained.

若第五判断结果为是,则当前状态对应的预设控制条件为第五预设控制条件。第五判断结果为是即|e(k)|<ε,ε为励磁控制系统误差的预设精度,说明误差已经很小,可在励磁控制器中加入积分环节,以减小稳态误差。If the fifth determination result is yes, the preset control condition corresponding to the current state is the fifth preset control condition. The fifth judgment result is that |e(k)|<ε, ε is the preset accuracy of the excitation control system error, indicating that the error is already small, and an integral link can be added to the excitation controller to reduce the steady-state error.

步骤105,采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出。Step 105: Control the output of the excitation controller by using a control strategy corresponding to the preset control condition corresponding to the current state.

步骤105具体包括:Step 105 specifically includes:

当当前状态对应的预设控制条件为第一预设控制条件时,采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出,具体包括:将励磁控制器的输出确定为预设定值,并对励磁控制系统进行开环控制。将励磁控制器输出的控制量调整为预设定值,并对励磁控制系统进行开环控制。When the preset control condition corresponding to the current state is the first preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, which specifically includes: determining the output of the excitation controller as the preset control condition. set value, and open-loop control of the excitation control system. The control quantity output by the excitation controller is adjusted to the preset value, and the open-loop control of the excitation control system is carried out.

当第k次采样时的误差值超过励磁控制系统的误差的最大值的80%,即超过L1时,控制量就以控制量的上限值S1给出。本实施例将L1的取值细化为误差最大值的80%,60%,40%,20%或1%。控制量的上限值S1与L1相对应,即当第k次采样时的误差值大于励磁控制系统的误差的最大值的80%,60%,40%,20%或1%时(L1分别取误差最大值的80%,60%,40%,20%或1%时),控制量的上限值S1分别对应为100,80,40,10或0.1,即控制量输出的预设定值分别对应为:100,80,40,10或0.1。第k次采样时的误差值大于误差最大值的80%时S1=100;第k次采样时的误差值大于误差最大值的60%时S1=80;第k次采样时的误差值大于误差最大值的40%时S1=40;第k次采样时的误差值大于误差最大值的20%时S1=10;第k次采样时的误差值大于误差最大值的1%时S1=0.1。本实施例仅将L1的取值细化为误差最大值的80%,60%,40%,20%或1%这5个值,但L1的取值并不局限于这5个值,L1的取值根据实际需要进行调整,可以将L1的取值细化为大于5个值或小于5个值。When the error value at the k-th sampling exceeds 80% of the maximum value of the error of the excitation control system, that is, exceeds L 1 , the control quantity is given as the upper limit value S 1 of the control quantity. This embodiment refines the value of L1 to 80%, 60%, 40%, 20% or 1 % of the maximum error value. The upper limit value S 1 of the control variable corresponds to L 1 , that is, when the error value at the kth sampling is greater than 80%, 60%, 40%, 20% or 1% of the maximum value of the error of the excitation control system ( When L 1 takes 80%, 60%, 40%, 20% or 1% of the maximum error value respectively), the upper limit value of the control quantity S 1 corresponds to 100, 80, 40, 10 or 0.1 respectively, that is, the control quantity output The preset values of , respectively, are: 100, 80, 40, 10 or 0.1. When the error value of the kth sampling is greater than 80% of the maximum error value, S 1 =100; when the error value of the kth sampling is greater than 60% of the maximum error value, S 1 =80; the error value of the kth sampling When the error value is greater than 40% of the maximum error value, S 1 =40; when the error value of the kth sampling is greater than 20% of the maximum error value, S 1 =10; when the error value of the kth sampling is greater than 1% of the maximum error value S 1 =0.1. This embodiment only refines the value of L 1 to five values of 80%, 60%, 40%, 20% or 1% of the maximum error value, but the value of L 1 is not limited to these five values , the value of L 1 is adjusted according to actual needs, and the value of L 1 can be refined into more than 5 values or less than 5 values.

当当前状态对应的预设控制条件为第二预设控制条件时,采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出,具体包括:When the preset control condition corresponding to the current state is the second preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including:

判断第k次采样时的误差值的绝对值是否大于或等于第二预设误差阈值,得到第六判断结果。It is judged whether the absolute value of the error value at the kth sampling is greater than or equal to the second preset error threshold, and a sixth judgment result is obtained.

若第六判断结果为是,则根据公式u(k)=u(k-1)+K1Kpe(k)确定励磁控制器的输出;其中,u(k)表示励磁控制器的输出,u(k-1)表示第k-1次采样时励磁控制器的输出,K1表示励磁控制系统的放大系数,K1>1,Kp表示比例系数,e(k)表示第k次采样时的误差值。第六判断结果为是,说明误差在朝误差的绝对值增大的方向变化且误差较大,需要励磁控制器产生较强的控制作用,以迅速减小误差的绝对值。If the sixth judgment result is yes, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 1 K p e(k); wherein, u(k) represents the output of the excitation controller , u(k-1) represents the output of the excitation controller at the k-1th sampling, K 1 represents the amplification factor of the excitation control system, K 1 >1, K p represents the proportional coefficient, e(k) represents the kth time Error value when sampling. The sixth judgment result is yes, indicating that the error is changing in the direction of increasing the absolute value of the error and the error is large, and the excitation controller needs to produce a strong control action to rapidly reduce the absolute value of the error.

若第六判断结果为否,则根据公式u(k)=u(k-1)+K2Kpe(k)确定励磁控制器的输出;其中,K2表示励磁控制系统的抑制系数,K2<1。第六判断结果为否,说明误差虽然在朝误差的绝对值增大的方向变化但误差并不是很大。If the sixth judgment result is no, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 2 K p e(k); wherein, K 2 represents the suppression coefficient of the excitation control system, K 2 <1. The sixth judgment result is No, indicating that although the error changes in the direction of increasing the absolute value of the error, the error is not very large.

当当前状态对应的预设控制条件为第三预设控制条件时,采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出,具体包括:保持励磁控制器的输出。励磁控制器的输出可以保持不变,即u(k)=u(k)。When the preset control condition corresponding to the current state is the third preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including: maintaining the output of the excitation controller. The output of the excitation controller can remain unchanged, ie u(k)=u(k).

当当前状态对应的预设控制条件为第四预设控制条件时,采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出,具体包括:When the preset control condition corresponding to the current state is the fourth preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including:

判断第k次采样时的误差值的绝对值是否大于或等于第二预设误差阈值,得到第七判断结果。It is judged whether the absolute value of the error value at the kth sampling is greater than or equal to the second preset error threshold, and a seventh judgment result is obtained.

第七判断结果为是,则根据公式u(k)=u(k-1)+K1Kpe(k-1)确定励磁控制器的输出;其中,e(k-1)表示第一误差值。第七判断结果为是,说明此时误差的绝对值较大,励磁控制器可实施较强的控制作用。The seventh judgment result is yes, then the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 1 K p e(k-1); wherein, e(k-1) represents the first difference. The seventh judgment result is yes, indicating that the absolute value of the error is large at this time, and the excitation controller can implement a strong control action.

若第七判断结果为否,则根据公式u(k)=u(k-1)+K2Kpe(k-1)确定励磁控制器的输出。第七判断结果为否,说明误差的绝对值较小,励磁控制器可实施较弱的控制作用。If the seventh judgment result is no, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 2 Kpe (k-1). The seventh judgment result is No, indicating that the absolute value of the error is small, and the excitation controller can implement a weaker control action.

当当前状态对应的预设控制条件为第五预设控制条件时,采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出,具体包括:When the preset control condition corresponding to the current state is the fifth preset control condition, the control strategy corresponding to the preset control condition corresponding to the current state is used to control the output of the excitation controller, specifically including:

根据公式

Figure BDA0002538849250000131
确定励磁控制器的输出;其中,Ki表示积分系数,j表示采样次数,e(j)表示第j次采样时的误差值,Kd表示微分系数,Δe(k)表示第一误差差值。According to the formula
Figure BDA0002538849250000131
Determine the output of the excitation controller; where, K i represents the integral coefficient, j represents the sampling times, e(j) represents the error value at the jth sampling, K d represents the differential coefficient, and Δe(k) represents the first error difference .

本发明的励磁控制器控制方法及系统可根据励磁控制系统的工作状态及误差情况自动确定不同的励磁控制律,即预设控制条件,使控制策略更加灵活;自动调整励磁控制器的参数,使得励磁控制器的适应性更强,体现了智能控制的特点,使励磁控制系统的控制效果更好。The excitation controller control method and system of the present invention can automatically determine different excitation control laws according to the working state and error conditions of the excitation control system, that is, preset control conditions, so that the control strategy is more flexible; and the parameters of the excitation controller are automatically adjusted so that the The adaptability of the excitation controller is stronger, which reflects the characteristics of intelligent control and makes the control effect of the excitation control system better.

本实施例还提供一种励磁控制器控制系统,图3为本发明实施例所提供的励磁控制器控制系统的结构图。参见图3,励磁控制器控制系统包括:This embodiment also provides an excitation controller control system, and FIG. 3 is a structural diagram of the excitation controller control system provided by the embodiment of the present invention. Referring to Figure 3, the excitation controller control system includes:

数学模型获取模块201,用于获取励磁控制系统数学模型。励磁控制系统中被控对象的数学模型为:The mathematical model acquisition module 201 is used to acquire the mathematical model of the excitation control system. The mathematical model of the controlled object in the excitation control system is:

Figure BDA0002538849250000132
Figure BDA0002538849250000132

其中,G(s)表示励磁控制系统中被控对象数学模型的传递函数,KA为放大环节的电压比例,TA为放大环节的时间常数,s表示复数域的变量,KG为同步发电机的放大系数,TG为同步发电机的时间常数。Among them, G (s) represents the transfer function of the mathematical model of the controlled object in the excitation control system, KA is the voltage ratio of the amplification link, TA is the time constant of the amplification link, s represents the variable in the complex domain, and KG is the synchronous power generation is the amplification factor of the generator, and T G is the time constant of the synchronous generator.

参数确定模块202,用于利用PID控制和励磁控制系统数学模型,确定励磁控制器的控制策略的参数;参数包括:比例系数、积分系数、微分系数、积分时间常数、微分时间常数、采样时间、控制量的上限值S1、控制量的下限值S2、第一预设误差阈值L1和第二预设误差阈值L2The parameter determination module 202 is used to determine the parameters of the control strategy of the excitation controller by using the PID control and the excitation control system mathematical model; the parameters include: proportional coefficient, integral coefficient, differential coefficient, integral time constant, differential time constant, sampling time, The upper limit value S 1 of the control amount, the lower limit value S 2 of the control amount, the first preset error threshold value L 1 and the second preset error threshold value L 2 .

差值确定模块203,用于将励磁控制系统的第k次采样时的误差值与第k-1次采样时的第一误差值的差值确定为第一误差差值,将第一误差值与第k-2次采样时的第二误差值的差值确定为第二误差差值;其中k表示采样次数。The difference value determination module 203 is used to determine the difference between the error value at the k-th sampling of the excitation control system and the first error value at the k-1-th sampling as the first error difference, and the first error value The difference from the second error value at the k-2th sampling is determined as the second error difference; wherein k represents the number of sampling times.

差值确定模块203具体包括:The difference determination module 203 specifically includes:

误差值获取单元,用于获取励磁控制系统第k次采样时的误差值、第k-1次采样时的第一误差值和第k-2次采样时的第二误差值。The error value obtaining unit is used for obtaining the error value of the excitation control system at the kth sampling, the first error value at the k-1th sampling, and the second error value at the k-2th sampling.

第一误差差值确定单元,用于将第k次采样时的误差值与第一误差值的差值确定为第一误差差值,即△e(k)=e(k)-e(k-1),Δe(k)表示第一误差差值,e(k)表示第k次采样时的误差值,e(k-1)表示第一误差值。The first error difference value determination unit is used to determine the difference between the error value at the k-th sampling and the first error value as the first error difference value, that is, Δe(k)=e(k)-e(k -1), Δe(k) represents the first error difference, e(k) represents the error value at the k-th sampling, and e(k-1) represents the first error value.

第二误差差值确定单元,用于将第一误差值与第二误差值的差值确定为第二误差差值,即△e(k-1)=e(k-1)-e(k-2),Δe(k-1)表示第二误差差值,e(k-2)表示第二误差值。The second error difference value determining unit is configured to determine the difference between the first error value and the second error value as the second error difference value, that is, Δe(k-1)=e(k-1)-e(k -2), Δe(k-1) represents the second error difference value, and e(k-2) represents the second error value.

预设控制条件确定模块204,用于利用第k次采样时的误差值、第一误差差值和第二误差差值确定励磁控制器的当前状态对应的预设控制条件;预设控制条件包括:第一预设控制条件、第二预设控制条件、第三预设控制条件、第四预设控制条件和第五预设控制条件。The preset control condition determination module 204 is used to determine the preset control condition corresponding to the current state of the excitation controller by using the error value, the first error difference value and the second error difference value during the kth sampling; the preset control conditions include : a first preset control condition, a second preset control condition, a third preset control condition, a fourth preset control condition, and a fifth preset control condition.

预设控制条件确定模块204具体包括:The preset control condition determination module 204 specifically includes:

第一判断单元,用于判断第k次采样时的误差值的绝对值是否大于第一预设误差阈值,得到第一判断结果。The first judgment unit is used for judging whether the absolute value of the error value at the k-th sampling is greater than the first preset error threshold, and obtains a first judgment result.

第一预设控制条件确定单元,用于当第一判断结果为是时,当前状态对应的预设控制条件为第一预设控制条件。The first preset control condition determination unit is configured to, when the first judgment result is yes, the preset control condition corresponding to the current state is the first preset control condition.

第二判断单元,用于当第一判断结果为否时,判断第k次采样时的误差值与第一误差差值的乘积是否大于零或第一误差差值是否等于零,得到第二判断结果。The second judgment unit is configured to judge whether the product of the error value at the kth sampling time and the first error difference value is greater than zero or whether the first error difference value is equal to zero when the first judgment result is no, and obtain the second judgment result .

第二预设控制条件确定单元,用于当第二判断结果为是时,当前状态对应的预设控制条件为第二预设控制条件。第二判断结果为是即e(k)△e(k)>0或△e(k)=0,即(1)

Figure BDA0002538849250000141
或(2)
Figure BDA0002538849250000142
或(3)e(k)-e(k-1)=0。对于(1),表示第k次采样时的误差值为正,且在增大,第k次采样时的误差值的绝对值在增大;对于(2),表示第k次采样时的误差值为负,且继续减小,第k次采样时的误差值的绝对值在增大;对于(3)表示误差未发生变化。The second preset control condition determination unit is configured to, when the second judgment result is yes, the preset control condition corresponding to the current state is the second preset control condition. The second judgment result is that e(k)Δe(k)>0 or Δe(k)=0, that is, (1)
Figure BDA0002538849250000141
or (2)
Figure BDA0002538849250000142
or (3) e(k)-e(k-1)=0. For (1), it means that the error value at the kth sampling is positive and increasing, and the absolute value of the error value at the kth sampling is increasing; for (2), it means the error at the kth sampling The value is negative and continues to decrease, and the absolute value of the error value at the kth sampling is increasing; for (3), it means that the error has not changed.

第三判断单元,用于当第二判断结果为否时,判断第k次采样时的误差值与第一误差差值的乘积是否小于零且第一误差差值与第二误差差值的乘积是否大于零,或者第k次采样时的误差值是否等于零,得到第三判断结果。a third judging unit, configured to judge whether the product of the error value at the k-th sampling and the first error difference value is less than zero and the product of the first error difference value and the second error difference value when the second judgment result is no Whether it is greater than zero, or whether the error value at the kth sampling is equal to zero, a third judgment result is obtained.

第三预设控制条件确定单元,用于当第三判断结果为是时,当前状态对应的预设控制条件为第三预设控制条件。第三判断结果为是即e(k)△e(k)<0且△e(k)△e(k-1)>0,或者e(k)=0,即(1)e(k-2)<e(k-1)<e(k)<0或(2)0<e(k)<e(k-1)<e(k-2)或(3)r(k)-y(k)=0,其中(1)和(2)意味着误差的绝对值在朝减小的方向变化,(3)意味着误差已达平衡状态。The third preset control condition determination unit is configured to, when the third judgment result is yes, the preset control condition corresponding to the current state is the third preset control condition. The third judgment result is that e(k)△e(k)<0 and △e(k)△e(k-1)>0, or e(k)=0, that is (1)e(k- 2)<e(k-1)<e(k)<0 or (2)0<e(k)<e(k-1)<e(k-2) or (3)r(k)-y (k)=0, where (1) and (2) mean that the absolute value of the error is changing in a decreasing direction, and (3) means that the error has reached an equilibrium state.

第四判断单元,用于当第三判断结果为否时,判断判断第k次采样时的误差值与第一误差差值的乘积是否小于零且第一误差差值与第二误差差值的乘积是否小于零,得到第四判断结果。The fourth judging unit is used for judging whether the product of the error value at the k-th sampling and the first error difference value is less than zero and the difference between the first error difference value and the second error difference value when the third judgment result is no Whether the product is less than zero, a fourth judgment result is obtained.

第四预设控制条件确定单元,用于当第四判断结果为是时,当前状态对应的预设控制条件为第四预设控制条件。第四判断结果为是即e(k)△e(k)<0且△e(k)△e(k-1)<0,即(1)0<e(k)<e(k-1)>e(k-2)或(2)

Figure BDA0002538849250000151
(1)和(2)均意味着误差处于极值状态。The fourth preset control condition determination unit is configured to, when the fourth determination result is yes, the preset control condition corresponding to the current state is the fourth preset control condition. The fourth judgment result is that e(k)△e(k)<0 and △e(k)△e(k-1)<0, that is (1)0<e(k)<e(k-1 )>e(k-2) or (2)
Figure BDA0002538849250000151
Both (1) and (2) imply that the error is in an extreme state.

第五判断单元,用于当第四判断结果为否时,判断第k次采样时的误差值的绝对值是否小于励磁控制系统误差的预设精度,得到第五判断结果。The fifth judgment unit is configured to judge whether the absolute value of the error value at the k-th sampling is less than the preset accuracy of the excitation control system error when the fourth judgment result is no, and obtain the fifth judgment result.

第五预设控制条件确定单元,用于当第五判断结果为是时,当前状态对应的预设控制条件为第五预设控制条件。第五判断结果为是即|e(k)|<ε,ε为励磁控制系统误差的预设精度,说明误差已经很小,可在励磁控制器中加入积分环节,以减小稳态误差。The fifth preset control condition determination unit is configured to, when the fifth determination result is yes, the preset control condition corresponding to the current state is the fifth preset control condition. The fifth judgment result is that |e(k)|<ε, ε is the preset accuracy of the excitation control system error, indicating that the error is already small, and an integral link can be added to the excitation controller to reduce the steady-state error.

控制励磁控制器输出模块205,用于采用当前状态对应的预设控制条件对应的控制策略控制励磁控制器的输出。The control excitation controller output module 205 is used to control the output of the excitation controller by adopting the control strategy corresponding to the preset control condition corresponding to the current state.

控制励磁控制器输出模块205具体包括:The control excitation controller output module 205 specifically includes:

开环控制单元,用于当当前状态对应的预设控制条件为第一预设控制条件时,将励磁控制器的输出确定为预设定值,并对励磁控制系统进行开环控制。The open-loop control unit is configured to determine the output of the excitation controller as a preset value when the preset control condition corresponding to the current state is the first preset control condition, and perform open-loop control of the excitation control system.

第六判断单元,用于当当前状态对应的预设控制条件为第二预设控制条件时,判断第k次采样时的误差值的绝对值是否大于或等于第二预设误差阈值,得到第六判断结果。The sixth judgment unit is used for judging whether the absolute value of the error value during the kth sampling is greater than or equal to the second preset error threshold when the preset control condition corresponding to the current state is the second preset control condition, and obtains the first Six judgment results.

第一输出单元,用于当第六判断结果为是时,根据公式u(k)=u(k-1)+K1Kpe(k)确定励磁控制器的输出;其中,u(k)表示励磁控制器的输出,u(k-1)表示第k-1次采样时励磁控制器的输出,K1表示励磁控制系统的放大系数,K1>1,Kp表示比例系数,e(k)表示第k次采样时的误差值。第六判断结果为是,说明误差在朝误差的绝对值增大的方向变化且误差较大,需要励磁控制器产生较强的控制作用,以迅速减小误差的绝对值。The first output unit is used to determine the output of the excitation controller according to the formula u(k)=u(k-1)+K 1 K p e(k) when the sixth judgment result is yes; wherein, u(k ) represents the output of the excitation controller, u(k-1) represents the output of the excitation controller at the k-1th sampling, K 1 represents the amplification factor of the excitation control system, K 1 >1, K p represents the proportional coefficient, e (k) represents the error value at the k-th sampling. The sixth judgment result is yes, indicating that the error is changing in the direction of increasing the absolute value of the error and the error is large, and the excitation controller needs to produce a strong control action to rapidly reduce the absolute value of the error.

第二输出单元,用于当第六判断结果为否时,根据公式u(k)=u(k-1)+K2Kpe(k)确定励磁控制器的输出;其中,K2表示励磁控制系统的抑制系数,K2<1。第六判断结果为否,说明误差虽然在朝误差的绝对值增大的方向变化但误差并不是很大。The second output unit is configured to determine the output of the excitation controller according to the formula u(k)=u(k-1)+K 2 K p e(k) when the sixth judgment result is no; wherein, K 2 represents Suppression coefficient of excitation control system, K 2 <1. The sixth judgment result is No, indicating that although the error changes in the direction of increasing the absolute value of the error, the error is not very large.

保持输出单元,用于当当前状态对应的预设控制条件为第三预设控制条件时,保持励磁控制器的输出。励磁控制器的输出可以保持不变,即u(k)=u(k)。The holding output unit is used for holding the output of the excitation controller when the preset control condition corresponding to the current state is the third preset control condition. The output of the excitation controller can remain unchanged, ie u(k)=u(k).

第七判断单元,用于当当前状态对应的预设控制条件为第四预设控制条件时,判断第k次采样时的误差值的绝对值是否大于或等于第二预设误差阈值,得到第七判断结果。The seventh judgment unit is used for judging whether the absolute value of the error value during the kth sampling is greater than or equal to the second preset error threshold when the preset control condition corresponding to the current state is the fourth preset control condition, and obtains the first Seven judgment results.

第三输出单元,用于当第七判断结果为是时,根据公式u(k)=u(k-1)+K1Kpe(k-1)确定励磁控制器的输出;其中,e(k-1)表示第一误差值。第七判断结果为是,说明此时误差的绝对值较大,励磁控制器可实施较强的控制作用。The third output unit is configured to determine the output of the excitation controller according to the formula u(k)=u(k-1)+K 1 K p e(k-1) when the seventh judgment result is yes; wherein, e (k-1) represents the first error value. The seventh judgment result is yes, indicating that the absolute value of the error is large at this time, and the excitation controller can implement a strong control action.

第四输出单元,用于当第七判断结果为否时,根据公式u(k)=u(k-1)+K2Kpe(k-1)确定励磁控制器的输出。第七判断结果为否,说明误差的绝对值较小,励磁控制器可实施较弱的控制作用。The fourth output unit is configured to determine the output of the excitation controller according to the formula u(k)=u(k-1)+K 2 Kpe (k-1) when the seventh judgment result is negative. The seventh judgment result is No, indicating that the absolute value of the error is small, and the excitation controller can implement a weaker control action.

第五输出单元,用于当当前状态对应的预设控制条件为第五预设控制条件时,根据公式

Figure BDA0002538849250000161
确定励磁控制器的输出;其中,Ki表示积分系数,j表示采样次数,e(j)表示第j次采样时的误差值,Kd表示微分系数,Δe(k)表示第一误差差值。The fifth output unit is used for, when the preset control condition corresponding to the current state is the fifth preset control condition, according to the formula
Figure BDA0002538849250000161
Determine the output of the excitation controller; where, K i represents the integral coefficient, j represents the sampling times, e(j) represents the error value at the jth sampling, K d represents the differential coefficient, and Δe(k) represents the first error difference .

本实施例还提供一种基于专家PID的发电机励磁控制器控制方法,该发电机励磁控制器控制方法包括:The present embodiment also provides a control method for the generator excitation controller based on the expert PID, and the control method for the generator excitation controller includes:

1、励磁控制系统数学模型建立1. Establishment of the mathematical model of the excitation control system

本实施例的励磁控制系统为同步发电机励磁控制系统,在确定励磁控制器的控制方法之前,需要分析同步发电机励磁控制系统各个环节的组成,得出同步发电机励磁控制系统的传递函数,从而建立同步发电机励磁控制系统的数学模型。The excitation control system of this embodiment is a synchronous generator excitation control system. Before determining the control method of the excitation controller, it is necessary to analyze the composition of each link of the synchronous generator excitation control system to obtain the transfer function of the synchronous generator excitation control system. Thereby, the mathematical model of the excitation control system of the synchronous generator is established.

励磁控制系统包括:励磁控制器、功率放大单元、同步发电机和电压测量单元。励磁控制器的输出端与功率放大单元的输入端连接,功率放大单元的输出端与同步发电机的输入端连接,电压测量单元的输入端与同步发电机的输出端连接,电压测量单元的的输出端与励磁控制器的输入端连接。The excitation control system includes: excitation controller, power amplification unit, synchronous generator and voltage measurement unit. The output end of the excitation controller is connected with the input end of the power amplifying unit, the output end of the power amplifying unit is connected with the input end of the synchronous generator, the input end of the voltage measuring unit is connected with the output end of the synchronous generator, and the The output terminal is connected with the input terminal of the excitation controller.

1.1功率放大单元的传递函数为:1.1 The transfer function of the power amplifier unit is:

Figure BDA0002538849250000171
Figure BDA0002538849250000171

1.2同步发电机的传递函数为:1.2 The transfer function of the synchronous generator is:

Figure BDA0002538849250000172
Figure BDA0002538849250000172

1.3电压测量单元的传递函数为:1.3 The transfer function of the voltage measurement unit is:

Figure BDA0002538849250000173
Figure BDA0002538849250000173

同步发电机励磁控制系统中被控对象的数学模型为:The mathematical model of the controlled object in the excitation control system of the synchronous generator is:

Figure BDA0002538849250000174
Figure BDA0002538849250000174

上式中,G1(s)表示功率放大单元的传递函数,s表示复数域的变量,KA为放大环节的电压比例,TA为放大环节的时间常数,G2(s)表示同步发电机的传递函数,KG为发电机放大系数,TG为发电机时间常数,G3(s)表示电压测量单元的传递函数,K3为电压比例系数,T3为测量回路时间常数,G(s)表示励磁控制系统中被控对象数学模型的传递函数。In the above formula, G 1 (s) represents the transfer function of the power amplifying unit, s represents a variable in the complex domain, K A is the voltage ratio of the amplifying link, T A is the time constant of the amplifying link, and G 2 (s) represents the synchronous power generation. is the transfer function of the generator, K G is the generator amplification factor, T G is the generator time constant, G 3 (s) represents the transfer function of the voltage measurement unit, K 3 is the voltage proportional coefficient, T 3 is the measurement loop time constant, G (s) represents the transfer function of the mathematical model of the controlled object in the excitation control system.

2、基于专家PID的发电机励磁控制器的控制方法2. Control method of generator excitation controller based on expert PID

在确定基于专家PID的发电机励磁控制器的控制方法之前,先要对励磁控制系统进行常规PID控制器的控制,得到常规PID控制时的相关参数,从而为确定专家PID控制器的控制方法提供相关依据和基础。Before determining the control method of the generator excitation controller based on the expert PID, the excitation control system should be controlled by the conventional PID controller, and the relevant parameters of the conventional PID control should be obtained, so as to provide the control method for determining the expert PID controller. Relevant basis and basis.

步骤一:通过常规PID控制得到相关参数,相关参数包括:比例系数Kp、积分系数Ki、微分系数Kd、积分时间常数Ti、微分时间常数Td、采样时间T、控制量的上限值S1、控制量的下限值S2、第一预设误差阈值L1和第二预设误差阈值L2Step 1: Obtain relevant parameters through conventional PID control, the relevant parameters include: proportional coefficient K p , integral coefficient K i , differential coefficient K d , integral time constant T i , differential time constant T d , sampling time T , the upper limit of the control variable The limit value S 1 , the lower limit value S 2 of the control amount, the first preset error threshold value L 1 and the second preset error threshold value L 2 .

根据常规PID控制器的PID控制算法,即

Figure BDA0002538849250000181
其中
Figure BDA0002538849250000182
u’(k)表示采用PID控制方法时励磁控制器的输出;Kp为比例系数;e(k)表示第k次采样时的误差值;Ki为积分系数;j和k均代表采样次数,j代表第j次采样,k代表第k次采样,且0≤j≤k;e(j)表示第j次采样时励磁控制系统的误差值;Kd为微分系数;Δe(k)表示励磁控制系统第k次采样时的误差值与第k-1次采样时的误差值的误差差值;T为采样时间;Ti为积分时间常数;Td为微分时间常数。According to the PID control algorithm of the conventional PID controller, namely
Figure BDA0002538849250000181
in
Figure BDA0002538849250000182
u'(k) represents the output of the excitation controller when the PID control method is used; K p is the proportional coefficient; e(k) represents the error value at the kth sampling time; K i is the integral coefficient; j and k both represent the sampling times , j represents the jth sampling, k represents the kth sampling, and 0≤j≤k; e(j) represents the error value of the excitation control system at the jth sampling; K d is the differential coefficient; Δe(k) represents The error difference between the error value at the kth sampling of the excitation control system and the error value at the k-1th sampling; T is the sampling time; T i is the integral time constant; T d is the differential time constant.

励磁控制系统加入PID控制器后,给励磁控制系统的输入端施加一个阶跃信号,通过励磁控制系统的响应,得到控制量的变化曲线,进而通过控制量的变化曲线确定控制量的上限值S1和下限值S2,以实现对控制量的饱和处理;即必须根据控制量的变化曲线观察控制量的变化范围和相应的持续时间,结合仿真实验观察系统的响应曲线,便可确定控制量的上限和下限,如果没有经过这个过程,便无从知道控制量的上限值和下限值。After the excitation control system is added to the PID controller, a step signal is applied to the input end of the excitation control system, and the change curve of the control variable is obtained through the response of the excitation control system, and then the upper limit of the control variable is determined through the change curve of the control variable. S 1 and the lower limit S 2 to realize the saturation treatment of the control variable; that is, the variation range and the corresponding duration of the control variable must be observed according to the change curve of the control variable, and the response curve of the system must be observed in combination with the simulation experiment. The upper limit and lower limit of the control amount, if you don't go through this process, there is no way to know the upper limit and lower limit of the control amount.

励磁控制系统加入PID控制器后,给励磁控制系统的输入端施加一个阶跃信号,通过励磁控制系统的响应,得到误差的变化曲线,进而确定第一预设误差阈值L1和第二预设误差阈值L2。该误差是励磁控制系统的误差e(k),就是励磁控制系统的系统输入r(k)和系统输出y(k)之间的偏差,即e(k)=r(k)-y(k)。利用误差的变化曲线也就可以确定对应的误差范围,本实施例中,误差最大值为1,L1取为误差最大值的80%,即0.8;L2取为误差最大值的5%,即0.05;L1为很大的误差阈值,即当误差大于L1时,便认为误差很大;L2为较大的误差阈值,即当误差大于L2时,便认为误差较大。励磁控制系统的输出响应曲线、控制量的变化曲线和误差的变化曲线等都可以通过示波器观察到。After the excitation control system is added to the PID controller, a step signal is applied to the input end of the excitation control system, and the change curve of the error is obtained through the response of the excitation control system, and then the first preset error threshold L1 and the second preset error threshold L1 and the second preset value are determined. Error threshold L 2 . The error is the error e(k) of the excitation control system, which is the deviation between the system input r(k) of the excitation control system and the system output y(k), that is, e(k)=r(k)-y(k ). The corresponding error range can be determined by using the change curve of the error. In this embodiment, the maximum error value is 1, L 1 is taken as 80% of the maximum error value, that is, 0.8; L 2 is taken as 5% of the maximum error value, That is, 0.05; L 1 is a large error threshold, that is, when the error is greater than L 1 , it is considered that the error is large; L 2 is a large error threshold, that is, when the error is greater than L 2 , it is considered that the error is large. The output response curve of the excitation control system, the change curve of the control quantity and the change curve of the error can all be observed through the oscilloscope.

步骤二:确定专家PID控制条件。令e(k)表示离散化的第k次采样时的误差值,e(k-1)表示第k-1次采样时的误差值(即第一误差值),e(k-2)表示第k-2次采样时的误差值(即第二误差值),则有:△e(k)=e(k)-e(k-1),△e(k-1)=e(k-1)-e(k-2),Δe(k-1)表示第二误差差值,e(k-2)表示第二误差值。Step 2: Determine the expert PID control conditions. Let e(k) represent the discretized error value at the k-th sampling, e(k-1) represent the error value (ie, the first error value) at the k-1-th sampling, and e(k-2) represent The error value (ie the second error value) at the k-2th sampling time is: △e(k)=e(k)-e(k-1), △e(k-1)=e(k -1)-e(k-2), Δe(k-1) represents the second error difference value, and e(k-2) represents the second error value.

条件1:如果|e(k)|>L1,说明励磁控制系统的误差很大,需要施加较大的控制量,结合步骤一中的误差的变化曲线和误差大小的程度,将控制量以一个定值输出,对励磁控制系统实施开环控制。在本实施例中,当误差大于其最大值的80%,60%,40%,20%或1%时,控制量分别输出的定值为100,80,40,10或0.1,对励磁控制系统实施开环控制。当误差超过误差最大值的80%时,控制量就以控制量的上限值S1给出。可对L1再进一步细化为多个点分别实施开环控制,即将L1细分为多个点,比如在本实施例中,将L1细分为5个点,分别为误差最大值的80%,60%,40%,20%或1%,即当误差大于其最大值的80%,60%,40%,20%或1%时,控制量分别对应输出的定值(控制量的上限值S1)为:100,80,40,10或0.1,以达到快速减小励磁控制系统误差的效果。根据实际控制的需要,将L1细化为多个点,励磁控制器的控制效果会更好,如果对控制效果要求不是很高,也可以不必细化为多个点或减少细化的点数。Condition 1: If |e(k)|>L 1 , it means that the error of the excitation control system is very large, and a larger control amount needs to be applied. Combined with the change curve of the error in step 1 and the degree of the error size, the control amount is equal to A fixed value output that implements open-loop control of the excitation control system. In this embodiment, when the error is greater than 80%, 60%, 40%, 20% or 1% of its maximum value, the control variable output is set to 100, 80, 40, 10 or 0.1, respectively. The system implements open loop control. When the error exceeds 80% of the maximum error value, the control amount is given as the upper limit value S 1 of the control amount. L 1 can be further subdivided into multiple points to implement open-loop control, that is, L 1 is subdivided into multiple points. For example, in this embodiment, L 1 is subdivided into 5 points, which are the maximum error values. 80%, 60%, 40%, 20% or 1%, that is, when the error is greater than 80%, 60%, 40%, 20% or 1% of its maximum value, the control amount corresponds to the fixed value of the output (control The upper limit value S 1 ) of the quantity is: 100, 80, 40, 10 or 0.1, in order to achieve the effect of rapidly reducing the error of the excitation control system. According to the actual control needs, if L 1 is refined into multiple points, the control effect of the excitation controller will be better. If the requirements for the control effect are not very high, it is not necessary to refine it into multiple points or reduce the number of refined points. .

条件2:如果e(k)△e(k)>0或△e(k)=0时,即(1)

Figure BDA0002538849250000191
或(2)
Figure BDA0002538849250000192
或(3)e(k)-e(k-1)=0。对于(1),表示第k次采样时的误差为正,且在增大,误差的绝对值在增大;对于(2),表示第k次采样时的误差为负,且继续减小,误差的绝对值在增大;对于(3)表示误差未发生变化。Condition 2: If e(k)△e(k)>0 or △e(k)=0, that is (1)
Figure BDA0002538849250000191
or (2)
Figure BDA0002538849250000192
or (3) e(k)-e(k-1)=0. For (1), it means that the error at the kth sampling is positive and increasing, and the absolute value of the error is increasing; for (2), it means that the error at the kth sampling is negative and continues to decrease, The absolute value of the error is increasing; for (3) it means that the error has not changed.

进而如果|e(k)|≥L2,说明误差在朝误差的绝对值增大的方向变化且误差较大,需要励磁控制器产生较强的控制作用,以迅速减小误差的绝对值,励磁控制器的输出为:u(k)=u(k-1)+K1Kpe(k);K1>1,为放大系数。Furthermore, if |e(k)|≥L 2 , it means that the error is changing in the direction of increasing the absolute value of the error and the error is large, and the excitation controller needs to have a strong control effect to rapidly reduce the absolute value of the error, The output of the excitation controller is: u(k)=u(k-1)+K 1 K p e(k); K 1 >1, which is an amplification factor.

如果|e(k)|<L2,说明误差虽然在朝误差的绝对值增大的方向变化但误差并不是很大,励磁控制器的输出为:u(k)=u(k-1)+K2Kpe(k);K2<1,为抑制系数。If |e(k)|<L 2 , it means that although the error changes in the direction of increasing the absolute value of the error, the error is not very large, and the output of the excitation controller is: u(k)=u(k-1) +K 2 K p e(k); K 2 <1, is the suppression coefficient.

条件3:如果e(k)△e(k)<0且△e(k)△e(k-1)>0时,或者e(k)=0时,即(1)e(k-2)<e(k-1)<e(k)<0或(2)0<e(k)<e(k-1)<e(k-2)或(3)r(k)-y(k)=0,其中(1)和(2)意味着误差的绝对值在朝减小的方向变化,(3)意味着误差已达平衡状态。此时励磁控制器的输出可以保持不变,即u(k)=u(k)。Condition 3: If e(k)△e(k)<0 and △e(k)△e(k-1)>0, or when e(k)=0, that is (1)e(k-2 )<e(k-1)<e(k)<0 or (2)0<e(k)<e(k-1)<e(k-2) or (3)r(k)-y( k)=0, where (1) and (2) mean that the absolute value of the error is changing in a decreasing direction, and (3) means that the error has reached an equilibrium state. At this time, the output of the excitation controller can remain unchanged, that is, u(k)=u(k).

条件4:如果e(k)△e(k)<0且△e(k)△e(k-1)<0时,即(1)0<e(k)<e(k-1)>e(k-2)或(2)

Figure BDA0002538849250000201
(1)和(2)均意味着误差处于极值状态。Condition 4: If e(k)△e(k)<0 and △e(k)△e(k-1)<0, that is (1)0<e(k)<e(k-1)> e(k-2) or (2)
Figure BDA0002538849250000201
Both (1) and (2) imply that the error is in an extreme state.

进而如果|e(k)|≥L2,说明此时误差的绝对值较大,励磁控制器可实施较强的控制作用,励磁控制器的输出为:u(k)=u(k-1)+K1Kpe(k-1)。Furthermore, if |e(k)|≥L 2 , it means that the absolute value of the error is large at this time, and the excitation controller can implement a strong control effect. The output of the excitation controller is: u(k)=u(k-1 )+K 1 K p e(k-1).

进而如果|e(k)|<L2,说明误差的绝对值较小,励磁控制器可实施较弱的控制作用,励磁控制器的输出为:u(k)=u(k-1)+K2Kpe(k-1)。Furthermore, if |e(k)|<L 2 , it means that the absolute value of the error is small, the excitation controller can implement a weaker control effect, and the output of the excitation controller is: u(k)=u(k-1)+ K 2 K p e(k-1).

条件5:当|e(k)|<ε时,ε为励磁控制系统误差的预设精度,说明误差已经很小,可在励磁控制器中加入积分环节,以减小稳态误差。此时加入积分环节后励磁控制器的输出为:

Figure BDA0002538849250000202
Condition 5: When |e(k)|<ε, ε is the preset accuracy of the excitation control system error, indicating that the error is already small, and an integral link can be added to the excitation controller to reduce the steady-state error. At this time, the output of the excitation controller after adding the integral link is:
Figure BDA0002538849250000202

为了便于体现本发明发电机励磁控制器控制方法的控制效果,分别对励磁控制系统实施简单负反馈闭环控制方法、常规PID控制方法和本发明发电机励磁控制器控制方法三种控制方法,三种控制方法对应的同步发电机励磁控制系统的输出响应曲线、误差变化曲线和控制量变化曲线分别如图4、图5和图6所示,图4、图5和图6的横轴为励磁控制系统的响应时间,单位:秒(s);图4中系统输入表示励磁控制系统的系统输入r,常规PID控制表示实施常规PID控制方法的励磁控制系统的系统输出y,专家PID控制表示实施本发明发电机励磁控制器控制方法的励磁控制系统的系统输出y,简单负反馈闭环控制表示实施简单负反馈闭环控制方法的励磁控制系统的系统输出y。从图5和图6可以看出误差和控制量这两个参数在三种控制方法下的变化情况;从图4可以明显看出,当励磁控制系统采用本发明的发电机励磁控制器控制方法时,励磁控制系统的超调量和调节时间等动态性能指标明显优于另外两种控制方法,且将三种控制方法的输出响应分别与系统输入对比,可见本发明发电机励磁控制器控制方法的输出相比另外两种控制方法更接近系统输入,所以励磁控制系统的控制效果更好。In order to easily reflect the control effect of the control method of the generator excitation controller of the present invention, three control methods, namely the simple negative feedback closed-loop control method, the conventional PID control method and the generator excitation controller control method of the present invention are respectively implemented for the excitation control system. The output response curve, error change curve and control variable change curve of the synchronous generator excitation control system corresponding to the control method are shown in Figure 4, Figure 5 and Figure 6, respectively. The horizontal axis of Figure 4, Figure 5 and Figure 6 is the excitation control The response time of the system, unit: second (s); in Figure 4, the system input represents the system input r of the excitation control system, the conventional PID control represents the system output y of the excitation control system implementing the conventional PID control method, and the expert PID control represents the implementation of this The system output y of the excitation control system of the invention generator excitation controller control method, the simple negative feedback closed-loop control represents the system output y of the excitation control system implementing the simple negative feedback closed-loop control method. It can be seen from Figure 5 and Figure 6 that the two parameters of error and control amount change under the three control methods; it can be clearly seen from Figure 4 that when the excitation control system adopts the generator excitation controller control method of the present invention The dynamic performance indicators such as overshoot and adjustment time of the excitation control system are obviously better than those of the other two control methods, and the output responses of the three control methods are compared with the system input respectively. It can be seen that the control method of the generator excitation controller of the present invention is Compared with the other two control methods, the output is closer to the system input, so the control effect of the excitation control system is better.

本实施例还提供一种励磁控制器控制方法的具体应用实例:以一同步发电机励磁控制系统为例,确定发电机励磁控制器的控制方法。This embodiment also provides a specific application example of the excitation controller control method: taking a synchronous generator excitation control system as an example, the control method of the generator excitation controller is determined.

励磁控制系统数学模型建立:同步发电机励磁控制系统的具体参数如表1所示:The mathematical model of the excitation control system is established: the specific parameters of the excitation control system of the synchronous generator are shown in Table 1:

表1 同步发电机励磁控制系统的具体参数Table 1 Specific parameters of synchronous generator excitation control system

Figure BDA0002538849250000211
Figure BDA0002538849250000211

可得对应的被控对象数学模型为:The corresponding mathematical model of the controlled object can be obtained as:

Figure BDA0002538849250000212
Figure BDA0002538849250000212

其中,G(s)表示同步发电机励磁控制系统中被控对象数学模型的传递函数,s表示复数域的变量。Among them, G(s) represents the transfer function of the mathematical model of the controlled object in the excitation control system of the synchronous generator, and s represents the variable in the complex domain.

发电机励磁控制器的控制方法:通过常规PID控制得到相关参数。Control method of generator excitation controller: obtain relevant parameters through conventional PID control.

对上述同步发电机励磁控制系统使用常规PID控制器,相关参数调整好以后,可得到常规PID控制时,对应的Kp、Ki、Kd、Ti、Td和T分别为60、40、25、0.0015秒、0.00042秒和0.001秒。通过同步发电机励磁控制系统的阶跃响应,得到控制量的变化曲线,确定控制量的上限值S1=100和下限值S2=-100。通过同步发电机励磁控制系统的响应,得到误差的变化曲线,进而确定第一预设误差阈值L1和第二预设误差阈值L2,在本应用实例中,将L1细分为5个点,分别是0.8、0.6、0.4、0.2和0.01,最大值是0.8,最小值是0.01,具体表示为L10=0.8、L11=0.6、L12=0.4、L13=0.2和L14=0.01,L2=0.05。The conventional PID controller is used for the above-mentioned synchronous generator excitation control system. After the relevant parameters are adjusted, when the conventional PID control can be obtained, the corresponding K p , K i , K d , T i , T d and T are 60, 40 respectively. , 25, 0.0015 seconds, 0.00042 seconds, and 0.001 seconds. Through the step response of the excitation control system of the synchronous generator, the change curve of the control variable is obtained, and the upper limit value S 1 =100 and the lower limit value S 2 =-100 of the control variable are determined. Through the response of the excitation control system of the synchronous generator, the change curve of the error is obtained, and then the first preset error threshold L 1 and the second preset error threshold L 2 are determined. In this application example, L 1 is subdivided into 5 The points are 0.8, 0.6, 0.4, 0.2 and 0.01 respectively, the maximum value is 0.8, and the minimum value is 0.01, which are specifically expressed as L 10 =0.8, L 11 =0.6, L 12 =0.4, L 13 =0.2 and L 14 = 0.01, L 2 =0.05.

条件1:当|e(k)|>L10=0.8时,u(k)=S1=100。当|e(k)|>L11=0.6时,u(k)=80。当|e(k)|>L12=0.4时,u(k)=40。当|e(k)|>L13=0.2时,u(k)=10。当|e(k)|>L14=0.01时,u(k)=0.1。在本条件1中,励磁控制器输出的控制量均根据L1的具体值以不同的定值方式输出,对同步发电机励磁控制系统实施开环控制,以迅速减小误差。Condition 1: When |e(k)|>L 10 =0.8, u(k)=S 1 =100. When |e(k)|>L 11 =0.6, u(k)=80. When |e(k)|>L 12 =0.4, u(k)=40. When |e(k)|>L 13 =0.2, u(k)=10. When |e(k)|>L 14 =0.01, u(k)=0.1. In this condition 1, the control variables output by the excitation controller are output in different fixed value ways according to the specific value of L 1 , and open-loop control is implemented for the excitation control system of the synchronous generator to reduce the error quickly.

条件2:当e(k)△e(k)>0或△e(k)=0时,Condition 2: When e(k)△e(k)>0 or △e(k)=0,

如果|e(k)|≥0.05,控制器的输出为:u(k)=u(k-1)+1.5×60e(k),K1=1.5;If |e(k)|≥0.05, the output of the controller is: u(k)=u(k-1)+1.5×60e(k), K 1 =1.5;

如果|e(k)|<0.05,控制器的输出为:u(k)=u(k-1)+0.4×60e(k),K2=0.4。If |e(k)|<0.05, the output of the controller is: u(k)=u(k-1)+0.4×60e(k), K 2 =0.4.

条件3:当e(k)△e(k)<0且△e(k)△e(k-1)>0时,或者当e(k)=0时,此时励磁控制器的输出可以保持不变,即u(k)=u(k)。Condition 3: When e(k)△e(k)<0 and △e(k)△e(k-1)>0, or when e(k)=0, the output of the excitation controller can be It remains the same, ie u(k)=u(k).

条件4:当e(k)△e(k)<0且△e(k)△e(k-1)<0时,Condition 4: When e(k)△e(k)<0 and △e(k)△e(k-1)<0,

如果|e(k)|≥0.05,说明此时误差的绝对值较大,励磁控制器可实施较强的控制作用,u(k)=u(k-1)+1.5×60e(k-1);If |e(k)|≥0.05, it means that the absolute value of the error is large at this time, and the excitation controller can implement a strong control effect, u(k)=u(k-1)+1.5×60e(k-1 );

如果|e(k)|<0.05,说明误差的绝对值较小,励磁控制器可实施较弱的控制作用,u(k)=u(k-1)+0.4×60e(k-1)。If |e(k)|<0.05, it means that the absolute value of the error is small, and the excitation controller can implement a weaker control effect, u(k)=u(k-1)+0.4×60e(k-1).

条件5:当|e(k)|<ε=0.001时,此时励磁控制器的输出为:Condition 5: When |e(k)|<ε=0.001, the output of the excitation controller is:

Figure BDA0002538849250000221
Figure BDA0002538849250000221

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.

Claims (8)

1.一种励磁控制器控制方法,其特征在于,包括:1. an excitation controller control method, is characterized in that, comprises: 获取励磁控制系统数学模型;Obtain the mathematical model of the excitation control system; 利用PID控制和所述励磁控制系统数学模型,确定励磁控制器的控制策略的参数;所述参数包括:比例系数、积分系数和微分系数;Use PID control and the mathematical model of the excitation control system to determine the parameters of the control strategy of the excitation controller; the parameters include: proportional coefficient, integral coefficient and differential coefficient; 将励磁控制系统的第k次采样时的误差值与第k-1次采样时的第一误差值的差值确定为第一误差差值,将所述第一误差值与第k-2次采样时的第二误差值的差值确定为第二误差差值;其中k表示采样次数;Determine the difference between the error value at the k-th sampling of the excitation control system and the first error value at the k-1-th sampling as the first error difference, and compare the first error value with the k-2-th sampling The difference between the second error values during sampling is determined as the second error difference; wherein k represents the number of sampling times; 利用所述第k次采样时的误差值、所述第一误差差值和所述第二误差差值确定所述励磁控制器的当前状态对应的预设控制条件;所述预设控制条件包括:第一预设控制条件、第二预设控制条件、第三预设控制条件、第四预设控制条件和第五预设控制条件;A preset control condition corresponding to the current state of the excitation controller is determined by using the error value at the k-th sampling, the first error difference value and the second error difference value; the preset control conditions include : the first preset control condition, the second preset control condition, the third preset control condition, the fourth preset control condition and the fifth preset control condition; 采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出;Control the output of the excitation controller by using the control strategy corresponding to the preset control condition corresponding to the current state; 所述利用所述第k次采样时的误差值、所述第一误差差值和所述第二误差差值确定所述励磁控制器的当前状态对应的预设控制条件,具体包括:The determining the preset control condition corresponding to the current state of the excitation controller by using the error value at the k-th sampling, the first error difference value and the second error difference value specifically includes: 判断所述第k次采样时的误差值的绝对值是否大于第一预设误差阈值,得到第一判断结果;judging whether the absolute value of the error value during the k-th sampling is greater than a first preset error threshold, to obtain a first judgment result; 若所述第一判断结果为是,则所述当前状态对应的预设控制条件为第一预设控制条件;If the first judgment result is yes, the preset control condition corresponding to the current state is the first preset control condition; 若所述第一判断结果为否,则判断所述第k次采样时的误差值与所述第一误差差值的乘积是否大于零或所述第一误差差值是否等于零,得到第二判断结果;If the first judgment result is no, then judge whether the product of the error value at the kth sampling time and the first error difference value is greater than zero or whether the first error difference value is equal to zero, and obtain a second judgment result; 若所述第二判断结果为是,则所述当前状态对应的预设控制条件为第二预设控制条件;If the second judgment result is yes, the preset control condition corresponding to the current state is the second preset control condition; 若所述第二判断结果为否,则判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否大于零,或者所述第k次采样时的误差值是否等于零,得到第三判断结果;If the second judgment result is no, judge whether the product of the error value at the kth sampling time and the first error difference value is less than zero and the first error difference value and the second error difference Whether the product of the values is greater than zero, or whether the error value during the kth sampling is equal to zero, a third judgment result is obtained; 若所述第三判断结果为是,则所述当前状态对应的预设控制条件为第三预设控制条件;If the third judgment result is yes, the preset control condition corresponding to the current state is the third preset control condition; 若所述第三判断结果为否,则判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否小于零,得到第四判断结果;If the third judgment result is no, then judge whether the product of the error value at the kth sampling time and the first error difference value is less than zero and the first error difference value and the second error difference Whether the product of the values is less than zero, the fourth judgment result is obtained; 若所述第四判断结果为是,则所述当前状态对应的预设控制条件为第四预设控制条件;If the fourth judgment result is yes, the preset control condition corresponding to the current state is the fourth preset control condition; 若所述第四判断结果为否,则判断所述第k次采样时的误差值的绝对值是否小于励磁控制系统误差的预设精度,得到第五判断结果;If the fourth judgment result is no, then judge whether the absolute value of the error value at the k-th sampling is less than the preset accuracy of the excitation control system error, and obtain a fifth judgment result; 若所述第五判断结果为是,则所述当前状态对应的预设控制条件为第五预设控制条件。If the fifth determination result is yes, the preset control condition corresponding to the current state is the fifth preset control condition. 2.根据权利要求1所述的励磁控制器控制方法,其特征在于,当所述当前状态对应的预设控制条件为第一预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:2 . The excitation controller control method according to claim 1 , wherein when the preset control condition corresponding to the current state is the first preset control condition, the preset control condition corresponding to the current state is used. 3 . The corresponding control strategy controls the output of the excitation controller, specifically including: 将所述励磁控制器的输出确定为预设定值,并对所述励磁控制系统进行开环控制。The output of the excitation controller is determined as a preset value, and the excitation control system is open-loop controlled. 3.根据权利要求1所述的励磁控制器控制方法,其特征在于,当所述当前状态对应的预设控制条件为第二预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:3 . The excitation controller control method according to claim 1 , wherein when the preset control condition corresponding to the current state is the second preset control condition, the preset control condition corresponding to the current state is used. 4 . The corresponding control strategy controls the output of the excitation controller, specifically including: 判断所述第k次采样时的误差值的绝对值是否大于或等于第二预设误差阈值,得到第六判断结果;Judging whether the absolute value of the error value during the k-th sampling is greater than or equal to the second preset error threshold, and obtains a sixth judgment result; 若所述第六判断结果为是,则根据公式u(k)=u(k-1)+K1Kpe(k)确定所述励磁控制器的输出;其中,u(k)表示所述励磁控制器的输出,u(k-1)表示第k-1次采样时所述励磁控制器的输出,K1表示所述励磁控制系统的放大系数,Kp表示所述比例系数,e(k)表示所述第k次采样时的误差值;If the sixth judgment result is yes, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 1 K p e(k); The output of the excitation controller, u(k-1) represents the output of the excitation controller at the k-1th sampling, K 1 represents the amplification factor of the excitation control system, K p represents the proportional coefficient, e (k) represents the error value during the k-th sampling; 若所述第六判断结果为否,则根据公式u(k)=u(k-1)+K2Kpe(k)确定所述励磁控制器的输出;其中,K2表示所述励磁控制系统的抑制系数。If the sixth judgment result is no, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 2 K p e(k); wherein, K 2 represents the excitation The suppression coefficient of the control system. 4.根据权利要求1所述的励磁控制器控制方法,其特征在于,当所述当前状态对应的预设控制条件为第三预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:4 . The control method of the excitation controller according to claim 1 , wherein when the preset control condition corresponding to the current state is a third preset control condition, the preset control condition corresponding to the current state is used. 5 . The corresponding control strategy controls the output of the excitation controller, which specifically includes: 保持所述励磁控制器的输出。Hold the output of the excitation controller. 5.根据权利要求3所述的励磁控制器控制方法,其特征在于,当所述当前状态对应的预设控制条件为第四预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:5 . The control method of the excitation controller according to claim 3 , wherein when the preset control condition corresponding to the current state is the fourth preset control condition, the preset control condition corresponding to the current state is used. 6 . The corresponding control strategy controls the output of the excitation controller, specifically including: 判断所述第k次采样时的误差值的绝对值是否大于或等于所述第二预设误差阈值,得到第七判断结果;judging whether the absolute value of the error value during the k-th sampling is greater than or equal to the second preset error threshold, to obtain a seventh judgment result; 若所述第七判断结果为是,则根据公式u(k)=u(k-1)+K1Kpe(k-1)确定所述励磁控制器的输出;其中,u(k)表示所述励磁控制器的输出,u(k-1)表示第k-1次采样时所述励磁控制器的输出,K1表示所述励磁控制系统的放大系数,Kp表示所述比例系数,e(k-1)表示所述第一误差值;If the seventh judgment result is yes, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 1 K p e(k-1); wherein u(k) represents the output of the excitation controller, u(k-1) represents the output of the excitation controller at the k-1th sampling, K 1 represents the amplification factor of the excitation control system, and K p represents the proportional coefficient , e(k-1) represents the first error value; 若所述第七判断结果为否,则根据公式u(k)=u(k-1)+K2Kpe(k-1)确定所述励磁控制器的输出;其中,K2表示所述励磁控制系统的抑制系数。If the seventh judgment result is no, the output of the excitation controller is determined according to the formula u(k)=u(k-1)+K 2 K p e(k-1); wherein, K 2 represents the The suppression coefficient of the excitation control system is described. 6.根据权利要求1所述的励磁控制器控制方法,其特征在于,当所述当前状态对应的预设控制条件为第五预设控制条件时,所述采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出,具体包括:6 . The control method of the excitation controller according to claim 1 , wherein when the preset control condition corresponding to the current state is the fifth preset control condition, the preset control condition corresponding to the current state is used. 7 . The corresponding control strategy controls the output of the excitation controller, specifically including: 根据公式
Figure FDA0002827790490000031
确定所述励磁控制器的输出;其中,u(k)表示所述励磁控制器的输出,Kp表示所述比例系数,e(k)表示所述第k次采样时的误差值,Ki表示所述积分系数,j表示采样次数,e(j)表示第j次采样时的误差值,Kd表示所述微分系数,Δe(k)表示第一误差差值。
According to the formula
Figure FDA0002827790490000031
Determine the output of the excitation controller; wherein, u(k) represents the output of the excitation controller, K p represents the proportional coefficient, e(k) represents the error value at the kth sampling, K i represents the integral coefficient, j represents the number of sampling times, e(j) represents the error value at the jth sampling, K d represents the differential coefficient, and Δe(k) represents the first error difference.
7.一种励磁控制器控制系统,其特征在于,包括:7. An excitation controller control system, characterized in that, comprising: 数学模型获取模块,用于获取励磁控制系统数学模型;The mathematical model acquisition module is used to acquire the mathematical model of the excitation control system; 参数确定模块,用于利用PID控制和所述励磁控制系统数学模型,确定励磁控制器的控制策略的参数;所述参数包括:比例系数、积分系数和微分系数;a parameter determination module, used for using PID control and the mathematical model of the excitation control system to determine the parameters of the control strategy of the excitation controller; the parameters include: proportional coefficient, integral coefficient and differential coefficient; 差值确定模块,用于将励磁控制系统的第k次采样时的误差值与第k-1次采样时的第一误差值的差值确定为第一误差差值,将所述第一误差值与第k-2次采样时的第二误差值的差值确定为第二误差差值;其中k表示采样次数;A difference determination module, configured to determine the difference between the error value at the k-th sampling of the excitation control system and the first error value at the k-1-th sampling as the first error difference, and the first error The difference between the value and the second error value in the k-2th sampling is determined as the second error difference; wherein k represents the number of sampling times; 预设控制条件确定模块,用于利用所述第k次采样时的误差值、所述第一误差差值和所述第二误差差值确定所述励磁控制器的当前状态对应的预设控制条件;所述预设控制条件包括:第一预设控制条件、第二预设控制条件、第三预设控制条件、第四预设控制条件和第五预设控制条件;A preset control condition determination module, configured to determine the preset control corresponding to the current state of the excitation controller by using the error value at the kth sampling, the first error difference value and the second error difference value conditions; the preset control conditions include: a first preset control condition, a second preset control condition, a third preset control condition, a fourth preset control condition, and a fifth preset control condition; 控制励磁控制器输出模块,用于采用当前状态对应的预设控制条件对应的控制策略控制所述励磁控制器的输出;Controlling the excitation controller output module, which is used for controlling the output of the excitation controller by adopting the control strategy corresponding to the preset control condition corresponding to the current state; 所述预设控制条件确定模块,具体包括:The preset control condition determination module specifically includes: 第一判断单元,用于判断所述第k次采样时的误差值的绝对值是否大于第一预设误差阈值,得到第一判断结果;a first judgment unit, configured to judge whether the absolute value of the error value during the k-th sampling is greater than a first preset error threshold, and obtain a first judgment result; 第一预设控制条件确定单元,用于当所述第一判断结果为是时,所述当前状态对应的预设控制条件为第一预设控制条件;a first preset control condition determination unit, configured to, when the first judgment result is yes, the preset control condition corresponding to the current state is the first preset control condition; 第二判断单元,用于当所述第一判断结果为否时,判断所述第k次采样时的误差值与所述第一误差差值的乘积是否大于零或所述第一误差差值是否等于零,得到第二判断结果;a second judging unit, configured to judge whether the product of the error value at the k-th sampling time and the first error difference value is greater than zero or the first error difference value when the first judgment result is no Whether it is equal to zero, the second judgment result is obtained; 第二预设控制条件确定单元,用于当所述第二判断结果为是时,所述当前状态对应的预设控制条件为第二预设控制条件;a second preset control condition determining unit, configured to, when the second judgment result is yes, the preset control condition corresponding to the current state is the second preset control condition; 第三判断单元,用于当所述第二判断结果为否时,判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否大于零,或者所述第k次采样时的误差值是否等于零,得到第三判断结果;a third judging unit, configured to judge whether the product of the error value at the k-th sampling time and the first error difference value is less than zero and the first error difference value when the second judgment result is no Whether the product of the second error difference value is greater than zero, or whether the error value during the kth sampling is equal to zero, to obtain a third judgment result; 第三预设控制条件确定单元,用于当所述第三判断结果为是时,所述当前状态对应的预设控制条件为第三预设控制条件;a third preset control condition determining unit, configured to, when the third judgment result is yes, the preset control condition corresponding to the current state is the third preset control condition; 第四判断单元,用于当所述第三判断结果为否时,判断所述第k次采样时的误差值与所述第一误差差值的乘积是否小于零且所述第一误差差值与所述第二误差差值的乘积是否小于零,得到第四判断结果;a fourth judging unit, configured to judge whether the product of the error value at the k-th sampling time and the first error difference value is less than zero and the first error difference value when the third judgment result is no Whether the product of the second error difference is less than zero, a fourth judgment result is obtained; 第四预设控制条件确定单元,用于当所述第四判断结果为是时,所述当前状态对应的预设控制条件为第四预设控制条件;a fourth preset control condition determining unit, configured to, when the fourth judgment result is yes, the preset control condition corresponding to the current state is the fourth preset control condition; 第五判断单元,用于当所述第四判断结果为否时,判断所述第k次采样时的误差值的绝对值是否小于励磁控制系统误差的预设精度,得到第五判断结果;a fifth judgment unit, configured to judge whether the absolute value of the error value at the k-th sampling is less than the preset accuracy of the excitation control system error when the fourth judgment result is no, and obtain a fifth judgment result; 第五预设控制条件确定单元,用于当所述第五判断结果为是时,所述当前状态对应的预设控制条件为第五预设控制条件。A fifth preset control condition determination unit, configured to, when the fifth determination result is yes, the preset control condition corresponding to the current state is the fifth preset control condition. 8.根据权利要求7所述的励磁控制器控制系统,其特征在于,所述控制励磁控制器输出模块,具体包括:8. The excitation controller control system according to claim 7, wherein the controlling the excitation controller output module specifically comprises: 开环控制单元,用于当所述当前状态对应的预设控制条件为第一预设控制条件时,将所述励磁控制器的输出确定为预设定值,并对所述励磁控制系统进行开环控制。The open-loop control unit is configured to determine the output of the excitation controller as a preset value when the preset control condition corresponding to the current state is the first preset control condition, and perform a control operation on the excitation control system. Open loop control.
CN202010540779.1A 2020-06-15 2020-06-15 A kind of excitation controller control method and system Active CN111600521B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010540779.1A CN111600521B (en) 2020-06-15 2020-06-15 A kind of excitation controller control method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010540779.1A CN111600521B (en) 2020-06-15 2020-06-15 A kind of excitation controller control method and system

Publications (2)

Publication Number Publication Date
CN111600521A CN111600521A (en) 2020-08-28
CN111600521B true CN111600521B (en) 2021-02-02

Family

ID=72191424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010540779.1A Active CN111600521B (en) 2020-06-15 2020-06-15 A kind of excitation controller control method and system

Country Status (1)

Country Link
CN (1) CN111600521B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713961A (en) * 2009-12-16 2010-05-26 袁亚军 Control method of large delay system
CN105676692A (en) * 2016-01-17 2016-06-15 山东万亚动力科技有限公司 Intelligent excitation control system for generator set
CN107181437A (en) * 2017-06-29 2017-09-19 贵州电网有限责任公司电力调度控制中心 A kind of synchronous generator exciting control method
CN108628159A (en) * 2018-05-07 2018-10-09 广东工业大学 A kind of PID control method, device, equipment and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465717C1 (en) * 2011-07-29 2012-10-27 Общество с ограниченной ответственностью "СТТНПРОМ" Automatic voltage controller of synchronous generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713961A (en) * 2009-12-16 2010-05-26 袁亚军 Control method of large delay system
CN105676692A (en) * 2016-01-17 2016-06-15 山东万亚动力科技有限公司 Intelligent excitation control system for generator set
CN107181437A (en) * 2017-06-29 2017-09-19 贵州电网有限责任公司电力调度控制中心 A kind of synchronous generator exciting control method
CN108628159A (en) * 2018-05-07 2018-10-09 广东工业大学 A kind of PID control method, device, equipment and system

Also Published As

Publication number Publication date
CN111600521A (en) 2020-08-28

Similar Documents

Publication Publication Date Title
CN108696210B (en) Parameter self-tuning method of DC motor current loop controller based on parameter identification
CN113960923B (en) Model-free self-adaptive sliding mode control method based on discrete extended state observer
CN105807632B (en) A kind of furnace temp controller design method based on improvement dahlin algorithm
CN109765502B (en) A program-controlled DC electronic load
CN105259414B (en) A kind of electric network impedance online test method based on inverter
CN109245167B (en) Control method for improving grid-connected current quality of LCL-type grid-connected inverter in weak grid
CN109802433B (en) Grid-connected inverter power oscillation suppression system and method
CN112417792B (en) Electrolytic aluminum external characteristic modeling method based on controllable boundary of saturation reactor
CN101505110A (en) Inverter for instant voltage PID current PI digital control
CN111600521B (en) A kind of excitation controller control method and system
CN106160501A (en) A kind of shore electric power being automatically adjusted voltage
CN102323750A (en) Embedded Nonlinear Pulse Cooperative Controller
KR102686946B1 (en) Apparatus and method for estimating parameters of SPMSM driving system using NLMS adaptive filter
CN105656203B (en) A kind of Loop Closing Operation control method and device
CN107479386B (en) An improved H∞ control method for grid-connected inverter suitable for weak grid
CN108880383B (en) Discretization design method for proportional resonant controller of permanent magnet motor
CN109256995A (en) Induction motor stator resistance starts discrimination method
CN109884884A (en) A kind of method of adjustment and relevant apparatus of system Control platform
CN113740609A (en) Self-adaptive current source impedance measuring device and measuring method
CN201369685Y (en) Inverter power supply for digital control of instantaneous voltage PID and current PI
CN103066590B (en) Coal-fired power unit primary frequency modulation method based on estimating compensation control
CN106887986A (en) A kind of permagnetic synchronous motor self-adaptation control method based on RLS algorithm
CN113300627A (en) Discrete control method and device of single-phase full-bridge inverter
CN118659692B (en) Method for adjusting current loop PI parameter by using bandwidth and damping ratio
CN111416343B (en) Method, device and medium for evaluating DC power boost of power system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant