CN105670611A - 稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法 - Google Patents

稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法 Download PDF

Info

Publication number
CN105670611A
CN105670611A CN201610209802.2A CN201610209802A CN105670611A CN 105670611 A CN105670611 A CN 105670611A CN 201610209802 A CN201610209802 A CN 201610209802A CN 105670611 A CN105670611 A CN 105670611A
Authority
CN
China
Prior art keywords
rare
luminescent material
cationic surfactant
surfactant
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610209802.2A
Other languages
English (en)
Other versions
CN105670611B (zh
Inventor
李焕荣
杨大清
贺亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201610209802.2A priority Critical patent/CN105670611B/zh
Publication of CN105670611A publication Critical patent/CN105670611A/zh
Application granted granted Critical
Publication of CN105670611B publication Critical patent/CN105670611B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明为一种稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法。该方法包括以下步骤:将稀土杂化发光材料浸入到含有阳离子表面活性剂的溶液中,停留0.5~2秒后抽出,室温下进行干燥;然后对其进行荧光测试,再通过与表面活性剂接触之前发光材料进行荧光测试的结果,进行荧光强度的对比,可以判断溶液中是否含有阳离子表面活性剂。所述的阳离子表面活性剂的浓度范围为2.7×10-9M~5.5×10-3M。本发明可以实现微量阳离子表面活性剂的快速检测,可以广泛地应用于造纸业、医药、纺织等化学工业排放污水中微量阳离子表面活性剂的快速检测。

Description

稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法
技术领域
本发明隶属稀土发光材料领域,涉及一种稀土杂化发光材料及透明薄膜的制备和应用,具体为一种稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法。通过紫外灯下荧光的显著增强,稀土杂化发光材料可以快速检测微量阳离子表面活性剂,检测限为3.8nM;并在所有表面活性剂中只识别阳离子表面活性剂,达到区分的目的。
技术背景
表面活性剂是能够显著降低水的表面张力或两相界面张力的物质,因具有良好的杀菌、杀藻、防霉能力而广泛地用作乳化剂,洗涤剂和工业清洁剂,以及在化妆品等许多工业领域中,但其难以快速生物降解,使得部分洗涤液被直接排入废水系统,它不仅直接危害水生环境,而且抑制其它有毒物质的降解,导致严重的水质污染,影响环境和人体健康。由于现行法律的规定,表面活性剂被释放到下水道系统的量为最小化,并在河流和湖泊的浓度保持在较低水平。因此,准确快速地测定微量表面活性剂的含量,对于研究其在环境中的转化、迁移及对生理过程的影响,均具有重要意义。
表面活性剂的分子结构由亲水基与疏水基两部分组成,按照其亲水基结构的不同可以分为离子型表面活性剂和非离子型表面活性剂两大类。离子型表面活性剂可以分为阳离子型、阴离子型及两性离子型表面活性剂。表面活性剂的性能差异主要包括烃基大小、形状结构和亲水基种类的不同,其中亲水基的不同决定了表面活性剂的主要差异。通过分析表面活性剂的组成可以检测表面活性剂。目前水环境中表面活性剂的检测技术较为成熟,常用的测试方法有滴定法,高效液相色谱(HPLC)法,气相色谱法,分光光度法和毛细管电泳法。然而,这些技术有的不能满足快速分析的要求、对操作人员的要求较高,需要进行化学预处理,而且灵敏度低;有的需要昂贵的仪器,检测限较高,分析不准确。因此,在实际应用中需要一种快速、经济、简单的检测微量表面活性剂的方法。
稀土元素和合适的有机配体结合形成的配合物,具有吸光能力强,荧光色彩丰富且色纯度高等优点,在发光材料领域有着极其重要的地位,但其缺点是对光和热不稳定,易分解,导致其应用受到了一定限制。研究表明,将稀土有机配合物与沸石、粘土等基质结合在一起可有效提高其光稳定性、热稳定性及机械稳定性。近年来,由于稀土杂化发光材料优异的光学性能,将其作为pH或多种应用的检测传感器已经得到了很多的报道。但是,利用杂化发光材料的荧光技术快速检测表面活性剂的方法还没有见过具体的报道。
本发明制备了一种基于锂皂石的稀土杂化发光材料及其发光薄膜,该纳米颗粒在水中可以完全剥离成单独的片层结构,层间有原位合成的稀土配合物。将该发光材料分散到水介质中,缓慢挥发水溶剂可以制备出透明、高效发光薄膜。利用荧光强度的灵敏度以及在紫外灯下直观的颜色变化,发光材料及薄膜可以用来快速检测微量阳离子表面活性剂,检测限为3.8nM,随着阳离子表面活性剂浓度的逐渐变化,荧光强度会有非常明显的变化;并在所有表面活性剂中只识别阳离子表面活性剂,达到区分的目的。
发明内容
本发明的目的为提供快速检测微量阳离子表面活性剂的方法,该方法基于锂皂石的稀土杂化发光材料及其透明薄膜,这种材料为含有锂皂石和Eu3+-β-二酮配合物的稀土杂化发光材料,在紫外灯下有Eu3+的特征红光,利用这种材料锂皂石薄片表面有质子存在的特性,将其与存在微量阳离子表面活性剂的水溶液结合,可以呈现出非常明显的荧光增强效果;而且,随着阳离子表面活性剂浓度的逐渐变化,荧光强度会有非常明显的变化。通过对该行为的研究及分析,实现了对表面活性剂中阳离子表面活性剂的识别及区分,并可以实现微量阳离子表面活性剂的快速检测,检测限为3.8nM,时间约为1s。
本发明的技术方案为:
一种稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法,该方法包括以下步骤:
将稀土杂化发光材料浸入到含有阳离子表面活性剂的溶液中,停留0.5~2秒后抽出,室温下进行干燥;然后对其进行荧光测试,再通过与表面活性剂接触之前发光材料进行荧光测试的结果,进行荧光强度的对比,可以判断溶液中是否含有阳离子表面活性剂。
所述的阳离子表面活性剂的浓度范围为2.7*10-9M~5.5*10-3M。
所述的阳离子表面活性剂为胺盐、季铵盐或杂环有机化合物;其中,胺盐是脂肪胺盐、乙醇胺盐和聚乙烯多胺盐;季铵盐型阳离子表面活性剂通式为:RlR2R3N+X-,式中Rl、R2和R3为C10~C18的长链烷基,优选为甲基或乙基,X是氟、氯、溴或碘;杂环有机化合物为带咪唑环或吡啶环的有机化合物。
所述的所述的阳离子表面活性剂优选为:硬脂酰胺基丙基二甲基胺、二乙醇胺、N—烷基二乙三胺、十六烷基三甲基溴化铵、十二烷基苄基三甲基溴化铵、二甲基二烯丙基氯化铵、苄基三甲基碘化铵、四丁基氟化铵、硬脂基二甲基苄基氯化铵、异硬脂酰胺基丙基乙基二甲基硫酸乙酯铵、2—烷基咪唑啉或N-丙酮基氯化吡啶。
本发明的有益效果是:
(1)本发明的原理是阳离子表面活性剂可以增强稀土杂化发光材料的荧光强度,并且在紫外灯下肉眼可以可以看到红光的明显变化,实现对表面活性剂中阳离子表面活性剂的识别及区分。常规测定阳离子表面活性剂的方法,有滴定、示波极谱和气相色谱等方法。但这些大部分需使用有机溶剂萃取,需要大型昂贵的仪器和复杂的测试手段,有的需要进行化学预处理。本发明的方法简单,容易,通过肉眼观察和简单的荧光强度对比,可以快速、准确地判断阳离子表面活性剂的存在。在阳离子型、阴离子型、两性离子型和非离子型四种表面活性剂中,只有阳离子表面活性剂可以使稀土杂化发光材料的荧光强度产生明显的变化。
(2)本发明可以实现微量阳离子表面活性剂的快速检测,检测限可以达到3.8nM,这样低的检测限在现有的文献中不曾报道的,相比于文献中的10nM(Nanoscale.2010,2,69-71)和300mg/L(Anal.Chem.2012,84,6416-6420),本发明的方法可以检测更微量的阳离子表面活性剂。
(3)本发明是对稀土发光材料的一项应用。论文中有报道过利用稀土发光材料进行pH的检测,但是利用其进行表面活性剂的检测还未见报道。本发明可以广泛地应用于造纸业、医药、纺织等化学工业排放污水中阳离子表面活性剂的快速检测。
(4)随着阳离子表面活性剂浓度的逐渐变化,荧光强度会有非常明显的变化,以实施例1中检测十六烷基三甲基溴化铵(CTAB,阳离子表面活性剂)为例,浓度为2.7nM的CTAB水溶液可以使稀土杂化发光材料的荧光强度有明显的变化,随着CTAB水溶液浓度的不断增加,其强度逐渐增加,当CTAB的浓度增加至2.7mM时,612nm处荧光强度从8291增加到89630,发光寿命从0.31ms增加到0.54ms,稀土配合物发光量子效率也从13.4%提高到30.7%。当CTAB的浓度增加至5.4mM时,稀土杂化发光材料的荧光强度达到了最大值,612nm处荧光强度可以达到75245,寿命也可以增加到0.58ms,稀土配合物发光量子效率提高到36.5%。同时,在紫外灯下肉眼可以明显看到明显的颜色变化。
附图说明
图1为制备的稀土杂化发光薄膜的扫描电子显微镜(SEM)图片。
图2为锂皂石和稀土杂化发光材料的X射线衍射(XRD)图片。
图3为不同表面活性剂对稀土杂化发光材料在荧光发射光谱中612nm处荧光强度影响的柱状图。
图4为不同表面活性剂对稀土杂化发光材料影响荧光寿命的柱状图。
图5为实施例1中与阳离子表面活性剂CTAB水溶液接触前和后稀土杂化发光材料的对比激发光谱图。
图6为实施例1中与阳离子表面活性剂CTAB水溶液接触前和后稀土杂化发光材料的对比发射光谱图。
图7为实施例1中与阳离子表面活性剂CTAB水溶液接触前和后稀土杂化发光材料的对比荧光寿命图。
图8为实施例2中与阳离子表面活性剂DTBAB水溶液接触前和后稀土杂化发光材料的对比激发光谱图。
图9为实施例2中与阳离子表面活性剂DTBAB水溶液接触前和后稀土杂化发光材料的对比发射光谱图。
图10为实施例2中与阳离子表面活性剂DTBAB水溶液接触前和后稀土杂化发光材料的对比荧光寿命图。
具体实施方式
为了更清楚的说明本发明,列举以下实施例,但其对发明的范围无任何限制。
本发明涉及的锂皂石LAPONITERD纳米粘土是由市售的美国洛克伍德公司生产的一种白色粉末,主要成分是SiO2,是一种合成的片状硅酸盐。它不溶解于水但可在水中水合膨胀形成无色透明的胶体,即便在很低的浓度下,LAPONITERD也具有极佳的触变性和屈服值。经过插层、组装、修饰后,所得粘土平均粒径为30nm,厚度为1nm;
本发明所述的稀土杂化发光材料为公知物质,为申请人先前专利(一种水溶性高效稀土发光材料及其制备方法,ZL201410160081.1)实施例实施过程第二步中得到的材料LA-EuTTA,将其分散在水中,通过滴加到玻璃片上得到发光薄膜,浸入阳离子表面活性剂的水溶液中,迅速(时间约为1s)抽出,室温下进行干燥。通过对与表面活性剂接触之前和之后的薄膜进行荧光测试,进行荧光强度的对比。经过实验结论,可知其检测范围和可被检测的表面活性剂具体为:
测试范围:以阳离子表面活性剂CTAB为例:2.7*10-9M—5.5*10-3M,浓度为2.7*10-9M开始,荧光强度有变化;浓度超过5.5*10-3M时其强度变化会开始缩小。
可被检测的阳离子表面活性剂为胺盐、季铵盐或杂环有机化合物;其中,胺盐是脂肪胺盐、乙醇胺盐和聚乙烯多胺盐;季铵盐型阳离子表面活性剂通式为:RlR2R3N+X-,式中Rl、R2和R3为C10~C18的长链烷基,优选为甲基或乙基,X是氟、氯、溴或碘;杂环有机化合物为带咪唑环或吡啶环的有机化合物。
实施例1
(1)取1g锂皂石LAPONITERD于100ml烧瓶中,加入15ml双蒸水溶解,超声,并用玻璃棒搅拌至透明凝胶状态(大约30min),然后向其中加入10ml0.1mol/LEuCl3 .6H2O乙醇溶液,在80℃油浴中回流24h。离心,干燥成粉末后,得到离子交换后的纳米粘土。
(2)取0.29g(1.305mmol)α-噻吩甲酰三氟丙酮(TTA)于100ml烧瓶中(Ln离子摩尔数相对TTA过量),加入10ml无水乙醇溶解,然后将上步得到的纳米粘土加入烧瓶,超声,再加入6ml无水乙醇,反应5h后,离心,干燥至粉末状态,得到含有Eu3+-β-二酮配合物的稀土杂化发光材料。经EDTA滴定法方法测得稀土杂化发光材料中稀土离子质量百分含量为6.5%。
(3)取稀土杂化发光材料10mg分散到10ml水中,采用滴加法滴加到玻璃片上,滴加过程中不能有溶液流走,保证溶液全部在玻璃片上。然后80℃烘干,得到杂化发光透明薄膜。上述玻璃片为1cm×2cm×1mm,每2cm2载体上附有稀土杂化发光材料1mg,得到的稀土杂化发光材料厚度为100μm。
(4)取3.65mg(0.01mmol)十六烷基三甲基溴化铵(CTAB),加入10mL水,制备成1mM的CTAB水溶液,将上述制备的杂化发光透明薄膜浸入其中,并迅速(时间约为1s)抽出,在室温下干燥,并进行荧光测试。荧光测试采用采用英国EdinburghFS920P分光计测量荧光光谱和寿命。用450W的氙灯作为激发光源,配有一个双重激发单色光镜,一个发射单色光镜,和一个半导体冷却式HamamatsuRMP928型光电倍增管。荧光发射光谱是以340nm为最大激发波长,612nm为最大发射波长测得。
图5~7为与阳离子表面活性剂CTAB水溶液接触前后稀土杂化发光材料的对比荧光激发(612nm为检测波长)、发射光谱图(350nm为检测波长)及寿命图。从图中可以看出,与CTAB水溶液接触后,稀土杂化发光材料的发光强度,发光寿命等都得到了很大的提高:612nm处荧光强度从8291增加到113000,发光寿命从0.31ms增加到0.58ms;而且,通过测定,发现在水中处理过的稀土配合物发光量子效率也从13.4%提高到36.5%。由此可以看出,通过稀土杂化发光材料荧光强度的显著变化,可以用来进行阳离子表面活性剂的识别与检测。
进而,我们进行了一系列的实施例,通过不断升高步骤(4)中CTAB水溶液的浓度,测出了一系列荧光数据,相应的荧光数据也会变化,具体如图表1所示:
如图,当阳离子表面活性剂CTAB的浓度为2.7*10-9M时,稀土发光材料的荧光强度、寿命、效率都有了提高。随着阳离子浓度的增加,稀土发光材料的各项发光性能都得到了提高,并在5.4×10-3M时达到了最高水平。
实施例2
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为十二烷基苄基三甲基溴化铵(DTBAB),其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命从0.31ms提高到0.56ms,量子效率从13.4%提高到44.0%,612nm处荧光强度也有了很大的提高。
图表2:随着DTBAB水溶液浓度的升高,相应的荧光数据也会变化。我们进行了一系列的实施例,通过不断升高DTBAB水溶液的浓度,测出了一系列荧光数据,具体如下:
如图,当阳离子表面活性剂DTBAB的浓度为2.8*10-9M时,稀土发光材料的荧光强度、寿命、效率都有了提高。随着阳离子浓度的增加,稀土发光材料的各项发光性能都得到了提高,并在5.6×10-3M时达到了最高水平。
实施例3
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为阳离子表面活性剂氯化十六烷基吡啶,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命从0.31ms提高到0.57ms,量子效率从13.4%提高到32.7%,612nm处荧光强度也有了很大的提高。
实施例4
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为阳离子表面活性剂十二烷基三甲基氯化铵,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命从0.31ms提高到0.48ms,量子效率从13.4%提高到36.3%,612nm处荧光强度也有了很大的提高。
实施例5
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为阳离子表面活性剂十六烷基三甲基氯化铵,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例6
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为阳离子表面活性剂二甲基二烯丙基氯化铵,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例7
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为阳离子表面活性剂十八烷基三甲基溴化铵,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例8
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为苄基三甲基碘化铵,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例9
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为N—烷基二乙三胺,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例10
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为2—烷基咪唑啉,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例11
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为N-丙酮基氯化吡啶,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例12
步骤(1)(3)(4)同实施例1,将步骤(2)中的α-噻吩甲酰三氟丙酮(TTA)改为六氟乙酰丙酮(HFA),其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例13
步骤(1)(3)(4)同实施例1,将步骤(2)中的α-噻吩甲酰三氟丙酮(TTA)改为乙酰丙酮(ACAC),其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例14
步骤(3)(4)同实施例1,将步骤(1)中的EuCl3﹒6H2O乙醇溶液改为TbCl3﹒6H2O乙醇溶液,步骤(2)中的α-噻吩甲酰三氟丙酮(TTA)改为乙酰丙酮(ACAC),其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的绿光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、544nm处荧光强度也有了很大的提高。
实施例15
步骤(3)(4)同实施例1,将步骤(1)中的EuCl3﹒6H2O乙醇溶液改为TbCl3﹒6H2O乙醇溶液,步骤(2)中的α-噻吩甲酰三氟丙酮(TTA)改为六氟乙酰丙酮(HFA),其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的绿光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、544nm处荧光强度也有了很大的提高。
实施例16
步骤(1)(3)(4)同实施例1,将步骤(2)中的α-噻吩甲酰三氟丙酮(TTA)改为其余有机配体,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也有了很大的提高。
实施例17
步骤(3)(4)同实施例1,将步骤(1)中的EuCl3﹒6H2O乙醇溶液改为TbCl3﹒6H2O乙醇溶液,步骤(2)中的α-噻吩甲酰三氟丙酮(TTA)改为其余有机配体,其他条件不变,同样用稀土杂化发光材料进行了阳离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的绿光亮度得到了明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、544nm处荧光强度也有了很大的提高。
实施例18
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为阴离子表面活性剂十二烷基硫酸钠(SDS),其他条件不变,同样用稀土杂化发光材料进行了阴离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度没有明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也没有明显变化,说明稀土发光材料无法识别和检测阴离子表面活性剂。
实施例19
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为两性离子表面活性剂甜菜碱,其他条件不变,同样用稀土杂化发光材料进行了两性离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度没有明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也没有明显变化,说明稀土发光材料无法识别和检测两性表面活性剂。
实施例20
步骤(1)(2)(3)同实施例1,将步骤(4)中的十六烷基三甲基溴化铵(CTAB)改为非离子型表面活性剂吐温20,其他条件不变,同样用稀土杂化发光材料进行了两性离子表面活性剂的识别与检测。在紫外灯下,稀土杂化发光材料的红光亮度没有明显的变化。与稀土杂化发光材料本身相比,发光寿命、量子效率、612nm处荧光强度也没有明显变化,说明稀土发光材料无法识别和检测非离子型表面活性剂。
本发明未述事宜为公知技术。

Claims (5)

1.一种稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法,其特征为该方法包括以下步骤:
将稀土杂化发光材料浸入到含有阳离子表面活性剂的溶液中,停留0.5~2秒后抽出,室温下进行干燥;然后对其进行荧光测试,再通过与表面活性剂接触之前发光材料进行荧光测试的结果,进行荧光强度的对比,可以判断溶液中是否含有阳离子表面活性剂。
2.如权利要求1所述的稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法,其特征为所述的阳离子表面活性剂的浓度范围为2.7*10-9M~5.5*10-3M。
3.如权利要求1所述的稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法,其特征为所述的阳离子表面活性剂为胺盐、季铵盐或杂环有机化合物;其中,胺盐是脂肪胺盐、乙醇胺盐和聚乙烯多胺盐;季铵盐型阳离子表面活性剂通式为:RlR2R3N+X-,式中Rl、R2和R3为C10~C18的长链烷基,X是氟、氯、溴或碘;杂环有机化合物为带咪唑环或吡啶环的有机化合物。
4.如权利要求3所述的稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法,其特征为Rl、R2和R3优选为甲基或乙基。
5.如权利要求1所述的稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法,其特征为所述的所述的阳离子表面活性剂优选为:硬脂酰胺基丙基二甲基胺、二乙醇胺、N—烷基二乙三胺、十六烷基三甲基溴化铵、十二烷基苄基三甲基溴化铵、二甲基二烯丙基氯化铵、苄基三甲基碘化铵、四丁基氟化铵、硬脂基二甲基苄基氯化铵、异硬脂酰胺基丙基乙基二甲基硫酸乙酯铵、2—烷基咪唑啉或N-丙酮基氯化吡啶。
CN201610209802.2A 2016-04-05 2016-04-05 稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法 Expired - Fee Related CN105670611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610209802.2A CN105670611B (zh) 2016-04-05 2016-04-05 稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610209802.2A CN105670611B (zh) 2016-04-05 2016-04-05 稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法

Publications (2)

Publication Number Publication Date
CN105670611A true CN105670611A (zh) 2016-06-15
CN105670611B CN105670611B (zh) 2018-08-10

Family

ID=56309663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610209802.2A Expired - Fee Related CN105670611B (zh) 2016-04-05 2016-04-05 稀土杂化发光材料在快速检测微量阳离子表面活性剂中的应用方法

Country Status (1)

Country Link
CN (1) CN105670611B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674912A (zh) * 2013-12-03 2014-03-26 齐齐哈尔大学 吡啶季铵盐阳离子表面活性剂的荧光检测方法及其应用
CN103923638A (zh) * 2014-04-21 2014-07-16 河北工业大学 一种水溶性高效稀土发光材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674912A (zh) * 2013-12-03 2014-03-26 齐齐哈尔大学 吡啶季铵盐阳离子表面活性剂的荧光检测方法及其应用
CN103923638A (zh) * 2014-04-21 2014-07-16 河北工业大学 一种水溶性高效稀土发光材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAQING YANG等: "Luminescence Enhancement after Adding Organic Salts to Nanohybrid under Aqueous Condition", 《ACS APPL. MATER. INTERFACES》 *

Also Published As

Publication number Publication date
CN105670611B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
Zhao et al. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots
Zu et al. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium Tris (2, 2 ‘) bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity
Weidgans et al. Fluorescent pH sensors with negligible sensitivity to ionic strength
Qu et al. Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities
Nishimoto et al. Simultaneous visualization of pH and Cl− distributions inside the crevice of stainless steel
Dennany et al. Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films
Binetti et al. Spectroscopic study on imidazolium-based ionic liquids: effect of alkyl chain length and anion
Ma et al. A novel ascorbic acid sensor based on the Fe 3+/Fe 2+ modulated photoluminescence of CdTe quantum dots@ SiO 2 nanobeads
Jin et al. Synthesis of yeast extract-stabilized Cu nanoclusters for sensitive fluorescent detection of sulfide ions in water
Wang et al. Electrochemiluminescence of a nanoAg–carbon nanodot composite and its application to detect sulfide ions
CN110028446B (zh) 一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用
Nishiyabu et al. Dansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in water
CN111687408B (zh) 一种荧光铜纳米团簇、制备方法及其应用
Ci et al. Fluorometric determination of samarium and gadolinium by enhancement of fluorescence of samarium-thenoyltrifluoroacetone-1, 10-phenanthroline ternary complex by gadolinium
Lucht et al. Optimized recipe for sol–gel‐based SERS substrates
Huang et al. DNA-functionalized upconversion nanoparticles as biosensors for rapid, sensitive, and selective detection of Hg 2+ in complex matrices
CN103923638B (zh) 一种水溶性高效稀土发光材料及其制备方法
CN104086927B (zh) 一种柔性稀土透明发光薄膜及其制备方法
WO2013071822A1 (zh) 一种荧光检测氯离子的方法及其装置和应用
Fujiwara et al. Time-resolved total internal reflection fluorometry of ternary europium (III) complexes formed at the liquid/liquid interface
Sanchez-Barragan et al. Tailoring the pH response range of fluorescent-based pH sensing phases by sol–gel surfactants co-immobilization
Nakahara et al. Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water
Devi et al. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles
Li et al. Post-oxidation treated graphene quantum dots as a fluorescent probe for sensitive detection of copper ions
CN109060778A (zh) 一种基于石墨烯量子点的电化学发光检测丁基羟基茴香醚的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180810

CF01 Termination of patent right due to non-payment of annual fee