CN105670013B - 六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用 - Google Patents

六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN105670013B
CN105670013B CN201610003091.3A CN201610003091A CN105670013B CN 105670013 B CN105670013 B CN 105670013B CN 201610003091 A CN201610003091 A CN 201610003091A CN 105670013 B CN105670013 B CN 105670013B
Authority
CN
China
Prior art keywords
paa
p4vp
pba
sixfold
interpenetrating network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610003091.3A
Other languages
English (en)
Other versions
CN105670013A (zh
Inventor
姚惠琴
冯宁川
朱美霖
李玲
姚遥
甘倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Medical University
Original Assignee
Ningxia Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Medical University filed Critical Ningxia Medical University
Priority to CN201610003091.3A priority Critical patent/CN105670013B/zh
Publication of CN105670013A publication Critical patent/CN105670013A/zh
Application granted granted Critical
Publication of CN105670013B publication Critical patent/CN105670013B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/08Homopolymers or copolymers of vinyl-pyridine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/08Homopolymers or copolymers of vinyl-pyridine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用,其中,制备方法包括以下步骤:(一)、合成PAA‑PBA;(二)、在石墨电极表面形成P4VP薄膜;(三)、在PG/P4VP电极上形成PNIPAm‑(PAA‑PBA)水凝胶薄膜。制备得到的六重环境敏感型半互穿网络水凝胶薄膜可以应用在电化学传感器上和生物传感器上。本发明的有益之处在于:将电化学聚合方法与自由基聚合方法相结合,制备方法简单便利,同时生物大分子酶可以被固定在水凝胶薄膜中,这种基于二元结构概念的多重刺激响应性智能模型界面能够被用于实现电化学生物电催化的六重开关,这项研究能够对构建基于生物分子如酶的电化学催化的多重可控的生物传感器提供方法和思路。

Description

六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用
技术领域
本发明涉及一种水凝胶薄膜及其制备方法和应用,具体涉及一种六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用,属于化学技术领域。
背景技术
互穿聚合物网络水凝胶,简称互穿网络水凝胶(Interpenetrating polymernetworks,IPN/IPNs),是一种由两种或两种以上的网状聚合物在物理上相互贯穿或缠结而形成的,是一类特殊形式的聚合物共混体系。当互穿网络水凝胶中的一种组分是线性而非网状结构时,就被称为半互穿网络水凝胶(semi-IPN)。由于互穿网络水凝胶中的各组成聚合物之间没有发生化学作用,它们之间不形成化学键,因此各聚合物组分具有相对的独立性,而同时网络之间又具有一定的依赖性和协同作用。因此,可以采用互穿网络水凝胶或者半互穿网络水凝胶的策略将两种单一刺激响应型的聚合物结合在一起,构筑多重刺激响应界面。这种特殊的物理化学性质使互穿或半互穿网络水凝胶可同时具备多种优异性能。但据我们所知,将电化学聚合薄膜与自由基聚合的半互穿网络水凝胶薄膜相结合的多元结构的多重刺激响应性的薄膜还未见报道。
近年来,刺激响应性界面和智能界面引起了研究者们极大的关注,并在构建可控的生物传感器、药物输送、微流控装置、选择性渗透膜和生物分离等方面都表现出潜在的应用价值。在这方面,多重刺激响应性界面尤其引起人们的兴趣,因为它可以模拟和反映复杂的生理和生物体系。
目前,发展多重刺激响应的可开关的生物电催化体系仍然是一个具有极大挑战性的任务。相对于单一刺激响应体系,多重刺激响应体系表现出明显的优势,它可以增加体系的维数和生物电催化的复杂性,因而更加接近真实的生物体系,可以应用于多重可开关或可调控生物传感器。
文献报道了一些特殊的均聚物,例如聚N-异丙基丙烯酰胺(PNIPAm),由于其独特的结构和本身固有的性质,可以在两种或更多的外部刺激下改变其构型、体积或者其他性质。但是,具有这种性质的均聚物种类非常有限。
更加普遍的构建多重敏感体系的策略是将两种或者多种不同的具有单一刺激响应性质的聚合物单元结合在一起。经常采用共聚反应来达到这个目的。
另外,还可将两种不同类型的刺激响应性薄膜相结合,在同一固体基底表面构筑二元结构的多重敏感性薄膜。二元结构的想法或概念为采用简便易行的方法构建多重响应性界面开拓了一个新的和具有普遍性的思路。但据我们所知,将电化学聚合方法与自由基聚合方法相结合,在电极表面上构筑具有多元结构的多重刺激响应性半互穿网络水凝胶薄膜尚未见报道。
发明内容
本发明的目的在于提供一种半互穿网络水凝胶薄膜的制备方法,该方法将电化学聚合方法与自由基聚合方法相结合,既新颖又简便,可成功制备出具有六重刺激响应性的半互穿网络水凝胶二元结构。
为了实现上述目标,本发明采用如下的技术方案:
一种六重环境敏感型半互穿网络水凝胶薄膜的制备方法,其特征在于,包括以下步骤:
(一)、合成PAA-PBA:
PAA与APBA在交联剂NHS和EDC存在的条件下发生缩合反应,生成PAA-PBA;
(二)、在石墨电极表面形成P4VP薄膜:
以甘汞电极为参比电极、铂电极为对电极,将石墨电极置于通氮除氧的混合溶液中,然后进行循环伏安扫描,经过5个循环后在石墨电极表面聚合形成P4VP薄膜,用水清洗薄膜并吹干,获得PG/P4VP电极,
前述混合溶液以体积浓度为20%的甲醇为溶剂,每升溶液中含有:0.25mol 4VP、0.02mol Na2S2O8和0.1mol NaClO4
(三)、在PG/P4VP电极上形成PNIPAm-(PAA-PBA)水凝胶薄膜:
将PG/P4VP电极置于密封的玻璃瓶中,通入高纯氮至少10min,然后用注射器在PG/P4VP电极表面滴涂8μL预凝胶溶液,10min后PG/P4VP表面上形成PNIPAm-(PAA-PBA)水凝胶薄膜,
前述预凝胶溶液中含有:2mg/mL PAA-PBA、0.5mol/L NIPAm单体、1.5mg/mL BIS交联剂、0.4mg/mL Na2S2O8引发剂和0.46mg/mL TEMED促进剂。
前述的六重环境敏感型半互穿网络水凝胶薄膜的制备方法,其特征在于,在步骤(一)中,合成PAA-PBA的过程为:
(1)、将含有2.77mmolPAA单体的水溶液用20mL、50mmol/L的HEPES缓冲溶液稀释,并将pH调至8.5;
(2)、将含有1.22mmolAPBA的水溶液用20mL、50mmol/L的HEPES缓冲溶液稀释,并将pH调至8.5;
(3)、将上述两种溶液混合均匀,逐滴加入含有0.124mmol/L NHS、浓度为50mmol/L的HEPES缓冲溶液4mL,搅拌10min;
(4)、逐滴加入含有1.24mmol/L EDC、浓度为50mmol/L的HEPES缓冲溶液4mL,室温下搅拌12h;
(5)、将上述溶液透析除杂,冷冻干燥后得到产物PAA-PBA。
前述的六重环境敏感型半互穿网络水凝胶薄膜的制备方法,其特征在于,在步骤(二)中,循环伏安扫描的条件为:以0.10V s–1的扫速在–0.7V~2.5V电位范围内扫描。
本发明的有益之处在于:将电化学聚合方法与自由基聚合方法相结合,制备方法简单便利,同时生物大分子酶可以被固定在水凝胶薄膜中,这种基于二元结构概念的多重刺激响应性智能模型界面能够被用于实现电化学生物电催化的六重开关,这项研究能够对构建基于生物分子如酶的电化学催化的多重可控的生物传感器提供方法和思路。
附图说明
图1是P4VP电化学聚合物薄膜电极在不同pH的0.2mM双羧酸二茂铁Fc(COOH)2探针溶液中的循环伏安图;
图2是在25℃和pH 5.0的条件下,P4VP电化学聚合物薄膜电极在分别含有0M和0.2M NaClO4浓度的0.5mM Fc(COOH)2探针溶液的循环伏安图;
图3是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜电极在不同pH的含有10.0mM葡萄糖、0.5mM双羧酸二茂铁Fc(COOH)2探针溶液中,对葡萄糖的多重电催化刺激响应开关循环伏安图;
图4是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜电极在不同环境温度的含有10.0mM葡萄糖、0.5mM双羧酸二茂铁Fc(COOH)2探针溶液中,对葡萄糖的多重电催化刺激响应开关循环伏安图;
图5是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对氯化钠浓度具有敏感的生物电催化开关图;
图6是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对糖分子具有敏感的生物电催化开关图;
图7是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对甲醇具有敏感的生物电催化开关图。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
六重环境敏感型半互穿网络水凝胶薄膜的制备方法,具体包括以下三大步骤:
一、合成PAA-PBA
聚丙烯酸(以下简称PAA)与3-氨基苯硼酸半硫酸盐(以下简称APBA)在交联剂N-羟基丁二胺磺酸钠(以下简称NHS)和交联剂N-(3-二甲氨基丙基)-N'-乙基-碳二亚胺盐酸盐(以下简称EDC)存在的条件下发生缩合反应,生成PAA-PBA。合成路线如下:
合成PAA-PBA的具体过程为:
1、将0.57g的PAA水溶液(含有2.77mmol PAA单体)用4-羟乙基哌嗪乙磺酸(以下简称HEPES)缓冲溶液(20mL,50mM)稀释,并将pH调至8.5。
2、将20mL的APBA水溶液(含有1.22mmol APBA单体)用同样的HEPES缓冲溶液(20mL,50mM)稀释,并将pH调至8.5。
3、将上述两种溶液混合均匀,逐滴加入浓度为50mmol/L的HEPES缓冲溶液(该HEPES缓冲溶液中含有0.124mmol/L NHS)4mL,搅拌10min。
4、将4mL浓度为50mmol/L的HEPES缓冲溶液(该HEPES缓冲溶液中含有1.24mmol/LEDC)逐滴加入上述混合溶液中,室温下搅拌12h。
5、将上述溶液透析一周以除去所有小分子量的杂质,冷冻干燥后得到产物PAA-PBA,为白色粉末状固体。
二、在石墨电极表面形成聚(4-乙烯基吡啶)薄膜,即P4VP薄膜
以甘汞电极为参比电极、铂电极为对电极,将石墨电极置于通氮除氧的混合溶液(详见下一段)中,然后以0.10V s–1的扫速在–0.7V~2.5V电位范围内进行循环伏安扫描,经过5个循环后在石墨电极表面聚合形成P4VP薄膜。聚合反应完成后,用水清洗薄膜的表面以除去未参加反应的4VP单体,然后将电极表面吹干,即获得PG/P4VP电极。
在该步骤中,所使用的混合溶液以体积浓度为20%的甲醇为溶剂,每升溶液中含有:0.25mol 4VP、0.02mol Na2S2O8和0.1mol NaClO4
经试验,该P4VP电化学聚合物薄膜对pH、次氯酸钠NaClO4浓度敏感。
1、P4VP电化学聚合物薄膜对pH敏感
我们用电活性探针双羧酸二茂铁Fc(COOH)2来考察薄膜的pH敏感性。
图1是P4VP电化学聚合物薄膜电极在不同pH的0.2mM双羧酸二茂铁Fc(COOH)2探针溶液中的循环伏安图。扫描速度0.1V s-1。曲线a、b、c对应的pH分别为5.0、6.0、7.0。
从图1我们可知:
(1)在pH=5.0时,Fc(COOH)2的氧化峰电流非常大;
(2)在pH=7.0时,Fc(COOH)2的氧化峰电流急剧降低,几乎观察不到;
(3)从pH=5.0到pH=7.0,Fc(COOH)2的氧化峰电流显示出了明显的降低趋势。
由于Fc(COOH)2在裸电极上的CV响应基本不受溶液pH的影响,所以Fc(COOH)2对pH敏感的CV行为不是由于探针本身的性质而引起的,肯定与薄膜的性质有关。
因此,我们得出结论:P4VP电化学聚合物薄膜对pH敏感。
2、P4VP电化学聚合物薄膜对次氯酸钠NaClO4敏感
图2是在25℃和pH 5.0的条件下,P4VP电化学聚合物薄膜电极在分别含有0M和0.2M NaClO4浓度的0.5mM Fc(COOH)2探针溶液的循环伏安图。扫描速度0.05V s-1
从图2我们可知:在pH=5.0和25℃条件下,ClO4 -浓度从0增大到0.2M,Fc(COOH)2的CV峰电流急剧降低,探针的CV响应变得非常小。
因此,我们得出结论:Fc(COOH)2探针在P4VP薄膜电极上的电化学循环伏安(CV)响应对ClO4 -浓度也非常敏感。
三、在PG/P4VP电极上形成PNIPAm-(PAA-PBA)水凝胶薄膜
将PG/P4VP电极置于密封的玻璃瓶中,通入高纯氮至少10min,然后用注射器在PG/P4VP电极表面滴涂8μL预凝胶溶液,10min后PG/P4VP表面上即形成了PNIPAm-(PAA-PBA)水凝胶薄膜,从而得到了PG/P4VP/PNIPAm-(PAA-PBA)电极,然后我们需要将PG/P4VP/PNIPAm-(PAA-PBA)电极浸泡在水中,浸泡时间大约15min,以除去没有参与反应的试剂。
在整个聚合过程中,玻璃瓶中始终保持氮气氛围。
在该步骤中,所使用的预凝胶溶液中含有:
2mg/mL PAA-PBA、
0.5mol/L N-异丙基丙烯酰胺(N-isopropylacrylamide,NIPAm)单体、
1.5mg/mL N,N’-亚甲基双丙烯酰胺(BIS)交联剂、
0.4mg/mL Na2S2O8引发剂、
以及0.46mg/mL N,N,N’,N’-四甲基乙二胺(TEMED)促进剂。
预凝胶溶液为新鲜配制,并在滴涂前通氮除氧。
所滴涂的预凝胶溶液的量越多,所形成的薄膜越厚。立体显微镜实验表明,滴涂5μL预凝胶溶液可获得136μm厚的PNIPAm-(PAA-PBA)水凝胶薄膜,该厚度的薄膜具有较好的使用效果。
如果在制备预凝胶的过程中,向混合溶液中加入2.0mg/mL GOD酶(葡萄糖氧化酶),那么凝胶形成后,即可将该生物分子固定化并包埋于PNIPAm-(PAA-PBA)水凝胶薄膜中,从而我们可得到PG/P4VP/PNIPAm-(PAA-PBA)-GOD薄膜电极。
葡萄糖的测定在许多实际工作中有着非常重要的意义,如临床中糖尿病的诊断和控制,食品工业中废水的处理等。在测定葡萄糖的各种方法中,基于GOD酶的电化学方法是最经常采用的方法之一,并一直引起研究者们极大的兴趣。众所周知,在溶液中的酶往往在生物电催化中不能被有效地利用,而且很难回收和重复使用。而酶的固定通常是构建生物传感器的必要步骤,并且通过酶的固定可以极大地增强酶的稳定性。因此,将酶有效地固定于电极表面而又不改变酶的原始结构和生物活性,对发展电化学生物传感器和其它生物器件至关重要。固定酶的方法有很多种,如物理包埋、表面吸附、溶胶-凝胶固定、共价键合和层层组装等。
经相关试验验证,P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对环境温度、氯化钠浓度、糖分子、甲醇以及pH具有多重敏感的生物电催化性。
1、P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对pH具有敏感的生物电催化
图3是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜电极在不同pH的含有10.0mM葡萄糖、0.5mM双羧酸二茂铁Fc(COOH)2探针溶液中,对葡萄糖的多重电催化刺激响应开关循环伏安图。扫描速度0.01V s-1
曲线a代表:pH 5.0+25℃,
曲线b代表:pH 7.0+25℃。
从图3我们可知:在25℃、pH 5.0的Fc(COOH)2+葡萄糖溶液中,薄膜体系表现出一对很大的电催化还原峰,然而,当该薄膜置于含有相同浓度的Fc(COOH)2+葡萄糖的pH 7.0的缓冲溶液中时,其电催化响应变得非常小,这是因为薄膜在pH 7.0时对探针表现为“关闭”,导致了催化循环的终止。
2、P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对环境温度具有敏感的生物电催化
图4是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜电极在不同环境温度的含有10.0mM葡萄糖、0.5mM双羧酸二茂铁Fc(COOH)2探针溶液中,对葡萄糖的多重电催化刺激响应开关循环伏安图。扫描速度0.01V s-1
曲线a代表:pH 5.0+25℃,
曲线b代表:pH 5.0+34℃。
从图4我们可知:在25℃的Fc(COOH)2溶液中加入GOD和葡萄糖后,Fc(COOH)2的CV氧化峰很大,然而在含有同量葡萄糖和Fc(COOH)2的34℃的溶液中,薄膜电极对葡萄糖的电催化响应几乎观察不到,说明P4VP/PNIPAm-(PAA-PBA)-GOD薄膜电极具有对温度敏感的生物电催化。
3、P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对氯化钠浓度、糖分子、甲醇具有敏感的生物电催化
底液:10.0mM葡萄糖+0.5mM双羧酸二茂铁Fc(COOH)2探针溶液。
扫描速度:0.01V s-1
图5是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对氯化钠浓度具有敏感的生物电催化开关图。氯化钠的浓度分别为0M和0.8M。
图6是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对糖分子具有敏感的生物电催化开关图。果糖的浓度分别为0M和0.15M。
图7是P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对甲醇具有敏感的生物电催化开关图。甲醇的浓度分别为0%和25%。
从图5、图6和图7我们可知:P4VP/PNIPAm-(PAA-PBA)-GOD薄膜对氯化钠浓度、糖分子、甲醇具有敏感的生物电催化。
综上所述,我们在热解石墨电极上将P4VP电化学聚合物薄膜(对次氯酸钠NaClO4和pH敏感)与半互穿网络水凝胶薄膜PNIPAm-(PAA-PBA)(对环境温度、氯化钠浓度、糖分子、甲醇、pH具有四重敏感)组装,成功的得到了对外界环境具有六重(温度、NaClO4浓度,氯化钠浓度、糖分子、甲醇、pH)刺激响应性的P4VP/PNIPAm-(PAA-PBA)智能薄膜。
由于该智能薄膜对外界环境具有六重(温度、NaClO4浓度,氯化钠浓度、糖分子、甲醇、pH)刺激响应性,所以其可以应用于以下方面:
1、应用在电化学传感器上,可以调控电子传递;
2、应用在生物传感器上,可以将这种通过半互穿网络水凝胶薄膜的方法用于实现多重可控的GOD对葡萄糖的电化学催化氧化。
需要说明的是,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (6)

1.六重环境敏感型半互穿网络水凝胶薄膜的制备方法,其特征在于,包括以下步骤:
(一)、合成PAA-PBA:
PAA与APBA在交联剂NHS和EDC存在的条件下发生缩合反应,生成PAA-PBA;
(二)、在石墨电极表面形成P4VP薄膜:
以甘汞电极为参比电极、铂电极为对电极,将石墨电极置于通氮除氧的混合溶液中,然后进行循环伏安扫描,经过5个循环后在石墨电极表面聚合形成P4VP薄膜,用水清洗薄膜并吹干,获得PG/P4VP电极,
所述混合溶液以体积浓度为20%的甲醇为溶剂,每升溶液中含有:0.25mol 4VP、0.02mol Na2S2O8和0.1mol NaClO4
(三)、在PG/P4VP电极上形成PNIPAm-(PAA-PBA)水凝胶薄膜:
将PG/P4VP电极置于密封的玻璃瓶中,通入高纯氮至少10min,然后用注射器在PG/P4VP电极表面滴涂8μL预凝胶溶液,10min后PG/P4VP表面上形成PNIPAm-(PAA-PBA)水凝胶薄膜,
所述预凝胶溶液中含有:2mg/mL PAA-PBA、0.5mol/L NIPAm单体、1.5mg/mL BIS交联剂、0.4mg/mL Na2S2O8引发剂和0.46mg/mL TEMED促进剂。
2.根据权利要求1所述的六重环境敏感型半互穿网络水凝胶薄膜的制备方法,其特征在于,在步骤(一)中,合成PAA-PBA的过程为:
(1)、将含有2.77mmolPAA单体的水溶液用20mL、50mmol/L的HEPES缓冲溶液稀释,并将pH调至8.5;
(2)、将含有1.22mmolAPBA的水溶液用20mL、50mmol/L的HEPES缓冲溶液稀释,并将pH调至8.5;
(3)、将上述两种溶液混合均匀,逐滴加入含有0.124mmol/L NHS、浓度为50mmol/L的HEPES缓冲溶液4mL,搅拌10min;
(4)、逐滴加入含有1.24mmol/L EDC、浓度为50mmol/L的HEPES缓冲溶液4mL,室温下搅拌12h;
(5)、将上述溶液透析除杂,冷冻干燥后得到产物PAA-PBA。
3.根据权利要求1所述的六重环境敏感型半互穿网络水凝胶薄膜的制备方法,其特征在于,在步骤(二)中,循环伏安扫描的条件为:以0.10V s–1的扫速在–0.7V~2.5V电位范围内扫描。
4.六重环境敏感型半互穿网络水凝胶薄膜,其特征在于,由权利要求1至3任意一项所述方法制备得到。
5.权利要求4所述的六重环境敏感型半互穿网络水凝胶薄膜在电化学传感器上的应用。
6.权利要求4所述的六重环境敏感型半互穿网络水凝胶薄膜在生物传感器上的应用。
CN201610003091.3A 2016-01-05 2016-01-05 六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用 Expired - Fee Related CN105670013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610003091.3A CN105670013B (zh) 2016-01-05 2016-01-05 六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610003091.3A CN105670013B (zh) 2016-01-05 2016-01-05 六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105670013A CN105670013A (zh) 2016-06-15
CN105670013B true CN105670013B (zh) 2018-08-07

Family

ID=56298845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610003091.3A Expired - Fee Related CN105670013B (zh) 2016-01-05 2016-01-05 六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105670013B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538618B (zh) * 2018-05-28 2022-01-14 浙江工业大学 一种以核壳结构微凝胶作为开关的温度和pH双响应智能开关膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775078A (zh) * 2012-03-13 2012-11-14 大庆麦伯康生物技术有限公司 对糖类物质有浓度响应的可降解的苯硼酸/粘液素层层自组装超薄膜
CN104334596A (zh) * 2012-05-25 2015-02-04 庄臣及庄臣视力保护公司 聚合物和纳米凝胶材料及其制备和使用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775078A (zh) * 2012-03-13 2012-11-14 大庆麦伯康生物技术有限公司 对糖类物质有浓度响应的可降解的苯硼酸/粘液素层层自组装超薄膜
CN104334596A (zh) * 2012-05-25 2015-02-04 庄臣及庄臣视力保护公司 聚合物和纳米凝胶材料及其制备和使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis and Volume Phase Transitions of Glucose-Sensitive Microgels;Yongjun Zhang等;《Biomacromolecules》;20060930;第7卷(第11期);3196-3201 *

Also Published As

Publication number Publication date
CN105670013A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Chen et al. Construction of a flexible electrochemiluminescence platform for sweat detection
Zane et al. An impedimetric glucose biosensor based on overoxidized polypyrrole thin film
Luo et al. Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection
Liu et al. Heme protein-gluten films: voltammetric studies and their electrocatalytic properties
CN107941879A (zh) 一种金纳米笼和肌红蛋白修饰电极的制备方法及其应用
Justin et al. Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs)
AU2021221410B2 (en) Electrically active hydrophilic bio-polymers
Aliabadi et al. A new droplet-based polymeric banana electrochemical biosensor for analysis of one microliter solution of paracetamol
Anderson et al. Solid-contact ion-selective and reference electrodes covalently attached to functionalized poly (ethylene terephthalate)
CN111961151B (zh) 一种用于植入式传感器的两性离子聚合物及其制备方法
CN105670013B (zh) 六重环境敏感型半互穿网络水凝胶薄膜及其制备方法和应用
Mac Kenna et al. Impedimetric transduction of swelling in pH-responsive hydrogels
CN108387624A (zh) 三维多孔碳/聚硫堇复合物修饰电极及其制备和应用
CN108414600A (zh) 一种透明质酸酶修饰氮化钒糊电极传感器的制备方法
Zhang et al. A gold electrode modified with a nanoparticulate film composed of a conducting copolymer for ultrasensitive voltammetric sensing of hydrogen peroxide
Zhang et al. Application of conducting micelles self-assembled from commercial poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) and chitosan for electrochemical biosensor
CN111912883A (zh) 一种用于检测气相双氧水的pedot:pss可视化化敏传感器
Lu et al. Salt-induced swelling and electrochemical property change of hyaluronic acid/myoglobin multilayer films
Yao et al. Thermo-and sulfate-controllable bioelectrocatalysis of glucose based on horseradish peroxidase and glucose oxidase embedded in poly (N, N-diethylacrylamide) hydrogel films
Sun et al. Fabrication and electrochemical behavior of hemoglobin modified carbon ionic liquid electrode
Zanardi et al. Development of a redox polymer based on poly (2-hydroxyethyl methacrylate) for disposable amperometric sensors
Li et al. Electroactive porous films of myoglobin within calcium alginate
Kim et al. Electrostimulus responsive behavior of poly (acrylic acid)/polyacrylonitrile semi‐interpenetrating polymer network hydrogels
Sheng et al. Immobilization and bioelectrochemistry of hemoglobin based on carrageenan and room temperature ionic liquid composite film
Liu et al. Graphene Oxide–Poly (vinyl alcohol) Hydrogel-Coated Solid-Contact Ion-Selective Electrodes for Wearable Sweat Potassium Ion Sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180807

Termination date: 20220105