CN105655269B - 一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法 - Google Patents

一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法 Download PDF

Info

Publication number
CN105655269B
CN105655269B CN201610024710.7A CN201610024710A CN105655269B CN 105655269 B CN105655269 B CN 105655269B CN 201610024710 A CN201610024710 A CN 201610024710A CN 105655269 B CN105655269 B CN 105655269B
Authority
CN
China
Prior art keywords
film
amorphous semiconductor
sio
semiconductor sio
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610024710.7A
Other languages
English (en)
Other versions
CN105655269A (zh
Inventor
曲崇
李宏光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201610024710.7A priority Critical patent/CN105655269B/zh
Publication of CN105655269A publication Critical patent/CN105655269A/zh
Application granted granted Critical
Publication of CN105655269B publication Critical patent/CN105655269B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法,制作一种固态阴极射线发光器件,非晶半导体SiO2薄膜为电子加速层,发光材料为有机高分子聚合物。在器件两电极施加单向矩形脉冲电压,正极接有机发光材料薄膜,负极接非晶半导体SiO2薄膜;脉冲电压值(高度)V,先用较窄脉宽(高频),然后改变脉宽t,逐步增大脉宽,直至有机发光体发光时的脉宽,即电子跨越非晶半导体SiO2薄膜的跨越时间。由即导出迁移率的值,其中d为非晶半导体SiO2薄膜的厚度,为有机发光薄膜的厚度。

Description

一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量 方法
技术领域
本发明属于一种非晶半导体SiO2电学参数的测量方法,主要涉及非晶半导体SiO2薄膜电子迁移率的测定,它将评估固态阴极射线发光器件中非晶半导体SiO2薄膜制备条件的选择和优化。
背景技术
薄膜电致发光中,一种发光形式是在电场下利用非晶半导体SiO2加速电子,使电子成为过热电子,过热电子直接碰撞有机发光材料,实现有机材料的发光,称之为固态阴极射线发光。在固态阴极射线发光中,非晶半导体SiO2加速电子的二次特性是重要的理论基础之一。
非晶半导体SiO2薄膜电子迁移率是表征其加速电子的二次特性的重要参数。对于一般的无机半导体材料,载流子迁移率的测量可利用霍尔效应测量方法。霍尔效应测量方法,主要适用于较大的无机半导体载流子迁移率的测量。在霍尔效应测量方法中,样品需为规则的长方体薄片形状,长度、宽度为cm量级,而厚度为10 -3 cm量级。测量时在垂直薄片方向需加一较强的外磁场。但对于利用真空薄膜制备技术制备出可实现霍尔效应测量的宏观体材料是不现实的、不经济的,若采用工业化生产的符合实际测量要求尺寸的体材料,则由于制备技术、制备条件、掺杂条件等诸多方面与实际发光器件中的薄膜材料产生很大的差别。另一方面,采用霍尔效应测量方法,测量的是载流子沿着平行于薄片表面的方向运动的迁移率,固态阴极射线发光器件中非晶半导体SiO2电子的运动方向是垂直于薄膜表面,电子的运动距离很短,二者的运动环境不同,因此用霍尔效应测量方法得出的迁移率和固态阴极射线发光器件中的真实情况不相同,会产生较大的误差。非晶半导体SiO2加速电子的二次特性同制备方法、掺杂等因素有很大关系。例如纯净的SiO2是绝缘体,而非半导体。
由于非晶半导体SiO2为无机薄膜,本身不发光,故其迁移率测量不能利用有机半导体材料所采用测定飞行时间的方法,也不能采用在频率域内测量的方法(例如,专利申请号为200510086781.1,专利名称为“在频率内测量有机半导体载流子迁移率的方法”的专利)。
发明内容
本发明要解决的技术问题是提出了一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法。
其特征是,可以采用以下步骤:
(1)制备固态阴极射线发光器件:取基片ITO玻璃清洗干净,烘干箱中干燥后,依次在ITO玻璃上用电子束热蒸发方法制备非晶半导体SiO2薄膜,用甩膜技术制备发光层,用热蒸发技术制备Al背电极;
(2)在非晶半导体SiO2薄膜/有机发光材料薄膜两边通过电极施加电场,电场用单向矩形脉冲(方波)电源提供,正极接有机发光材料薄膜,负极接非晶半导体SiO2薄膜,脉冲电压值(高度)V,先用较窄脉宽(高频),然后改变脉宽t,逐步增大脉宽,直至有机发光体发光时的脉宽,即电子跨越非晶半导体SiO2薄膜的跨越时间
(3)由公式,其中为平均漂移速度,为电场强度,为迁移率,
,其中d为非晶半导体SiO2薄膜的厚度,为有机发光薄膜的厚度,V为脉冲电压值(高度),
,其中为电子跨越非晶半导体SiO2薄膜的跨越时间,
所以
即得出待测非晶半导体SiO2薄膜电子迁移率
所述的一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法,发光材料为有机高分子聚合物:MEH-PPV或PPV。
本发明与现有技术相比有如下优点:
1、本方法为非霍尔效应方法,不涉及霍尔测量数据,避免了由于霍尔效应测量样品同实际发光器件的差别带来的误差。被测样品为薄膜,制备条件等同发光器件的制备条件完全相同。
2、本方法结合了发光技术,不需要特制新设备,测试成本低,操作简单方便、可靠性高。
3、主要适用于非晶半导体SiO2薄膜电子迁移率的测量,或其它宽禁带无机半导体材料。
4、这是利用固态阴极射线发光现象来测量非晶半导体SiO2薄膜电子迁移率,不同于其它的电学和光学测量。
附图说明:
图1固态阴极射线发光器件结构图。
图2激发电场单向方波脉冲示意图。
图3非晶半导体SiO2迁移率测量原理图。
具体实施方式
一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法:
1、制备固态阴极射线发光器件,其结构见图1。
取基片ITO玻璃,清洗干净,烘干箱中干燥,然后在ITO玻璃上用电子束热蒸发方法制备非晶半导体SiO2薄膜,薄膜厚度用石英振荡膜厚检测仪测得,厚度为500nm;发光层MEH-PPV用甩膜技术成膜,薄膜厚度用台阶仪测得,厚度为50nm;背电极Al用热蒸发技术实现。
2、在器件两电极间施加激发电压80V,激发电压为单向方波脉冲,正极接有机发光材料薄膜,负极接非晶半导体SiO2薄膜;频率调节范围在20Hz-10 7 Hz之间,继续降低频率,加大脉宽t,直至器件发光,记录此脉宽,此值即电子跨越非晶半导体SiO2薄膜的跨越时间
图2为激发电场单向方波脉冲示意图。
图3为非晶半导体SiO2迁移率测量原理图。
3、根据导出非晶半导体SiO2薄膜的电子迁移率。为迁移率,d
为非晶半导体SiO2薄膜的厚度,为有机发光层薄膜的厚度,脉宽,即电子跨越非晶半导体SiO2薄膜的跨越时间V为激发电压脉冲高度。
4、当d=500nmV=80V,时,

Claims (3)

1.一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法,其特征是,可以采用以下步骤:
(1)制备固态阴极射线发光器件:取基片ITO玻璃清洗干净,烘干箱中干燥后,依次在ITO玻璃上用电子束热蒸发方法制备非晶半导体SiO2薄膜,用甩膜技术制备发光层,用热蒸发技术制备Al背电极;
(2)在非晶半导体SiO2薄膜/有机发光材料薄膜两边通过电极施加电场,电场用单向矩形脉冲电源提供,正极接有机发光材料薄膜,负极接非晶半导体SiO2薄膜,脉冲电压值V,先用初始脉宽,然后改变脉宽t,逐步增大脉宽,直至有机发光体发光时的脉宽t0,即电子跨越非晶半导体SiO2薄膜的跨越时间t0
(3)由公式v=μE,其中v为平均漂移速度,E为电场强度,μ为迁移率,而其中d为非晶半导体SiO2薄膜的厚度,dr为有机发光薄膜的厚度,V为脉冲电压值,其中t0为电子跨越非晶半导体SiO2薄膜的跨越时间,所以即得出待测非晶半导体SiO2薄膜电子迁移率μ;
所述的基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法也适用于其它宽禁带无机半导体材料。
2.根据权利要求1所述的一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法,其特征是,发光材料为有机高分子聚合物:MEH-PPV。
3.根据权利要求1所述的一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法,其特征是,发光材料为有机高分子聚合物:PPV。
CN201610024710.7A 2016-01-14 2016-01-14 一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法 Expired - Fee Related CN105655269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610024710.7A CN105655269B (zh) 2016-01-14 2016-01-14 一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610024710.7A CN105655269B (zh) 2016-01-14 2016-01-14 一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法

Publications (2)

Publication Number Publication Date
CN105655269A CN105655269A (zh) 2016-06-08
CN105655269B true CN105655269B (zh) 2018-08-17

Family

ID=56487232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610024710.7A Expired - Fee Related CN105655269B (zh) 2016-01-14 2016-01-14 一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法

Country Status (1)

Country Link
CN (1) CN105655269B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226739B (zh) * 2018-01-19 2020-09-08 河北工业大学 有机电致发光器件变温双脉冲瞬态光响应的测试方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893508A (zh) * 2010-07-02 2010-11-24 北京交通大学 用变频交流电源测定有机场致发光的发光期间的方法
CN104569776A (zh) * 2014-12-18 2015-04-29 复旦大学 一种测量有多层发光层的oled器件中电子有效迁移率的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060530B2 (ja) * 2012-06-12 2017-01-18 ソニー株式会社 有機電界発光素子及び表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893508A (zh) * 2010-07-02 2010-11-24 北京交通大学 用变频交流电源测定有机场致发光的发光期间的方法
CN104569776A (zh) * 2014-12-18 2015-04-29 复旦大学 一种测量有多层发光层的oled器件中电子有效迁移率的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEH-PPV/SiO2 异质结发光机理和非晶SiO2二次特性的研究;曲崇等;《光谱学与光谱分析》;20091231;第29卷(第12期);第3223-3227页 *

Also Published As

Publication number Publication date
CN105655269A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
Yakuphanoglu Nanocluster n-CdO thin film by sol–gel for solar cell applications
Brown et al. Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer
Chen et al. Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials
Zhao et al. Correlation between trapping parameters and surface insulation strength of solid dielectric under pulse voltage in vacuum
Li et al. High Efficiency Perovskite Solar Cells Employing Quasi‐2D Ruddlesden‐Popper/Dion‐Jacobson Heterojunctions
Meier et al. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells
CN105655269B (zh) 一种基于发光技术的非晶半导体SiO2薄膜电子迁移率的测量方法
Li et al. Pulsed Laser Deposition Assisted van der Waals Epitaxial Large Area Quasi‐2D ZnO Single‐Crystal Plates on Fluorophlogopite Mica
Lee et al. Field-emission triode of low-temperature synthesized ZnO nanowires
Gonzalez et al. Minority-carrier diffusion length in a GaN-based light-emitting diode
Xiong et al. Radiation hardness and abnormal photoresponse dynamics of the CH 3 NH 3 PbI 3 perovskite photodetector
Yin et al. Self-powered ultraviolet-blue photodetector based on GaN/double halide perovskite/NiO heterostructure
Shikoh et al. On the relation between mobile ion kinetics, device design, and doping in double-cation perovskite solar cells
Xu et al. Nanoscale quantification of charge injection and transportation process in Si-nanocrystal based sandwiched structure
Giubileo et al. SnO2 nanofibers network for cold cathode applications in vacuum nanoelectronics
Voitsekhovskii et al. Admittance of Organic LED Structures with an Emission YAK-203 Layer
Hazama et al. Revealing solar-cell photovoltage dynamics at the picosecond time scale with time-resolved photoemission spectroscopy
Östergård et al. The role of interfaces in polymeric light-emitting diodes
Romanov et al. Measurement of the charge carrier mobility in MEH-PPV and MEH-PPV-POSS organic semiconductor films
Zhou et al. Schottky contact of an artificial polymer semiconductor composed of poly (dimethylsiloxane) and multiwall carbon nanotubes
Li et al. Determination of capacitance-voltage characteristics of organic semiconductor devices by combined current-voltage and voltage decay measurements
Tripathi et al. Impact of defect states on the capacitance voltage characteristics of space charge limited organic diodes, and determination of defect states
Ali et al. Photovoltaic and impedance spectroscopy of CdS quantum dots onto nano urchin TiO2 structure for quantum dots sensitized solar cell applications
Patil et al. Flexible solar cells
Nesmelov et al. Impedance characterization of organic light-emitting structures with thermally activated delayed fluorescence

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180817

Termination date: 20210114