CN105647512B - 一种Cu2+荧光探针、制备方法及其应用 - Google Patents

一种Cu2+荧光探针、制备方法及其应用 Download PDF

Info

Publication number
CN105647512B
CN105647512B CN201510961621.0A CN201510961621A CN105647512B CN 105647512 B CN105647512 B CN 105647512B CN 201510961621 A CN201510961621 A CN 201510961621A CN 105647512 B CN105647512 B CN 105647512B
Authority
CN
China
Prior art keywords
fluorescence probe
mol ratio
compound
preparation
bfee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510961621.0A
Other languages
English (en)
Other versions
CN105647512A (zh
Inventor
叶家海
卞松
张文超
秦志春
田桂蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201510961621.0A priority Critical patent/CN105647512B/zh
Publication of CN105647512A publication Critical patent/CN105647512A/zh
Application granted granted Critical
Publication of CN105647512B publication Critical patent/CN105647512B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种Cu2+荧光探针、制备方法及其应用。本发明以2,4‑二甲基吡咯、对甲氧基苯甲醛和水杨酰肼为原料,经过四个合成步骤得到荧光探针。所述的荧光探针在N,N‑二甲基甲酰胺与水的混合溶液中,能够很好的识别Cu2+,并且不受其它金属离子和常见阴离子的干扰,具有很高的灵敏度,荧光探针溶液无论是在可见光还是365nm紫外灯下颜色都发生了明显的变化。

Description

一种Cu2+荧光探针、制备方法及其应用
技术领域
本发明属于荧光探针检测技术领域,特别是一种Cu2+荧光探针、制备方法及其应用。
背景技术
随着人们生活质量的日益提高,人们对于环境污染问题以及生命体中各种微量元素的探究也变得迫在眉睫,与这方面相关的报道也在不断地增多。Cu2+也是一种广泛存在于环境中的一种重金属离子,也在人体中起着维持机体正常工作的微量元素,人体细胞内的造血就需要这种微量元素,一些酶的反应还有一些生命体内的氧化还原过程也是需要铜离子的参与。如果生命体内的Cu2+代谢遭到破坏,就可能导致一些疾病,比如说威尔逊氏症、阿兹海默症、家族性肌萎缩侧索硬化症、帕金森综合症和门克斯氏综合症等。
人们致力于寻找一种快速而灵敏的检测方法,其中包括传统的原子吸收光谱法,原子发射光谱法,电化学法等。其中紫外可见分光光度分析法的特点是分析速度快,仪器简单,操作方便。水环境中Cu2+的检测方法也有很多,例如原子吸收法,比色法,荧光淬灭法,极谱仪法,电化学发光分析法以及电修饰法等。近年来人们也研究了各种荧光分子探针对Cu2+进行检测,其中罗丹明B的衍生物具有摩尔消光系数大,吸收波长长,水溶性好等优点,也被用于检测中。由于如下结构的化合物也具有荧光量子产率高,摩尔消光系数大,光稳定性强等特点,其光物理性能如此优越,非常适合应用于各种生物荧光探针的分析领域当中,所以近年来围绕着该类的荧光探针分子结构的创新以及开发一直都是众多有机化学工作者的兴趣热点。
发明内容
本发明的目的在于提供一种高选择性的、高灵敏性的、荧光增强型的,能够实现在水溶液中对Cu2+检测的荧光探针。
实现本发明目的的技术解决方案为:一种Cu2+荧光探针,所述荧光探针具有如下结构:
上述Cu2+荧光探针的制备方法,包括如下步骤:
步骤一:将对甲氧基苯甲醛和2,4-二甲基吡咯置于容器中,再倒入溶剂二氯甲烷,滴加催化剂三氟乙酸,在室温下搅拌过夜,再加入四氯苯醌,继续搅拌5 个小时以上,滴加三乙胺和三氟化硼乙醚后继续反应得到化合物;
步骤二:将1,2-二氯乙烷于置于容器中,之后加入N,N-二甲基甲酰胺,搅拌均匀后,滴入草酰氯,搅拌30min以上,之后在室温下继续反应2h以上得到化合物;
步骤三:在0℃以下的反应浴中,于步骤一制得的化合物中滴加步骤二制得的化合物,最后在常温下搅拌过夜反应得到化合物;
步骤四:将步骤三制得的化合物置于容器中,在乙醇溶液中回流使其溶解,慢慢滴入水杨酰肼的乙醇溶液,1小时内滴加完毕,最后制备得目标化合物。
步骤一中,2,4-二甲基吡咯与对甲氧基苯甲醛与三氟化硼乙醚的摩尔比为24:11:11,四氯苯醌与三氟化硼乙醚的摩尔比为1.5:1,三乙胺与三氟化硼乙醚的摩尔比为1:1,三氟乙酸与三氟化硼乙醚的摩尔比为100:1。
步骤二中,N,N-二甲基甲酰胺与草酰氯的摩尔比为1:1。
步骤三中,步骤二制得的化合物与步骤一制得的化合物的摩尔比为30:1~20:1。
步骤四中,步骤三制得的化合物与水杨酰肼的摩尔比为1:2~1:3,回流反应时间为4小时以上。
一种Cu2+荧光探针的应用,所述应用是将上述荧光探针用于检测溶液中Cu2+
本发明与现有技术相比,其优点有:
1、制得的荧光探针溶液无论是在可见光还是紫外灯(365nm)下颜色都发生了明显的变化。
2、制得的荧光探针能够很好的识别Cu2+,并且不受其它金属离子(K+,Na+,Li+, Mg2 +,Ca2+,Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+,Hg2+, Bi2+,Pb2+,Ni2+,Sn2+)和常见阴离子(Cl-,SO4 2-,NO3 -,OAc-,Br-)的干扰,具有很高的灵敏度和抗干扰性。
3、制得的荧光探针对Cu2+和其它离子的检测结果的不同,都可以通过紫外光谱和荧光光谱检测出来。
4、温度和pH(4~10)对于制得的荧光探针检测Cu2+没有影响,适用于生理环境下的检测。
附图说明
图1为本发明的目标化合物荧光探针溶液在未加和分别加入不同阳离子(Cu2+,K+,Na+,Li+,Mg2+,Ca2+,Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+, Hg2+,Bi2+,Pb2+,Ni2+,Sn2+)的紫外吸收光谱图。
图2为本发明的目标化合物荧光探针溶液在未加和分别加入不同阳离子(Cu2+,K+,Na+,Li+,Mg2+,Ca2+,Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+, Hg2+,Bi2+,Pb2+,Ni2+,Sn2+)的荧光发射光谱图。
图3为本发明的目标化合物荧光探针溶液未加和分别加入铜盐(CuCl2,CuSO4,CuNO3, Cu(OAc)2,CuBr2)之后的荧光探针荧光强度条状图,其中,黑条代表未加入铜盐荧光探针的荧光强度,白条代表加入铜盐荧光探针的荧光强度。
图4为本发明的目标化合物荧光探针溶液加入其它金属离子(K+,Na+,Li+,Mg2+,Ca2+,Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+,Hg2+,Bi2+,Pb2+, Ni2+,Sn2+)和再加入Cu2+之后的荧光探针荧光强度条状图,其中,黑条代表加入荧光探针与其它金属离子荧光强度,白条代表荧光探针与其它金属离子再加入Cu2+荧光强度。
具体实施方式
(一)目标产物荧光探针合成路线如下所示
(二)可见光和紫外灯(365nm)颜色对比测试
合成的荧光探针溶解在N,N-二甲基甲酰胺与水(7:3)的混合溶液中,配置成10μM的稀溶液,放置于22个白色菌种瓶中,留一个空白,之后依次加入不同金属离子(K+, Na+,Li+,Mg2+,Ca2+,Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+, Hg2+,Bi2+,Pb2+,Ni2+,Sn2+,Cu2+)在可见光和紫外灯(365nm)下进行颜色对比。
(三)紫外光谱测试
在合成的荧光探针溶解在N,N-二甲基甲酰胺与水(7:3)的混合溶液中,配置成10μM的稀溶液,并对该溶液进行紫外光谱测试,之后再加入金属阳离子(K+,Na+, Li+,Mg2+,Ca2 +,Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+,Hg2+, Bi2+,Pb2+,Ni2+,Sn2+,Cu2+)进行紫外光谱测试。
(四)荧光光谱测试
在合成的荧光探针溶解在N,N-二甲基甲酰胺与水(7:3)的混合溶液中,配置成 10μM的稀溶液,并对该溶液进行荧光光谱测试,之后再加入金属阳离子(K+,Na+, Li+,Mg2+,Ca2 +,Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+,Hg2+, Bi2+,Pb2+,Ni2+,Sn2+)和铜盐(CuCl2,CuSO4,CuNO3,Cu(OAc)2,CuBr2)进行荧光光谱测试。
实施例1荧光探针的合成
1、化合物[1]的合成
在氩气的保护之下,将称取的1.5g(0.011mol)对甲氧基苯甲醛和2,4-二甲基吡咯2.3g(0.024mol)加入500mL的三口烧瓶中,再倒入250mL干燥二氯甲烷,滴入0.01mL三氟乙酸,溶液呈酒红色,在室温下搅拌过夜,TLC跟踪反应,当对甲氧基苯甲醛几乎完全消失时,加入4.04g四氯苯醌,继续搅拌约5个小时,滴加1.11 mL三乙胺和1.25mL三氟化硼乙醚后继续反应,TLC跟踪,当对甲氧基苯甲醛几乎完全反应时,停止反应,先水洗三次,再用二氯甲烷萃取水层,合并有机层,无水硫酸镁干燥,过滤,减压旋蒸去除二氯甲烷后得粗产物,粗产品用石油醚﹕乙酸乙酯=50﹕1作为洗脱剂进行柱层析,得红色化合物[1]1.50g。
化合物[1],红色固体,产率为38.43%。
1H-NMR(CDCl3,500MHz)δ(TMS,ppm):7.17(d,J=8.4Hz,2H,Ar-H),7.01(d,J=8.4Hz,2H, Ar-H),5.97(s,2H,pyrrol-H),3.87(s,3H,OCH3),2.55(s,6H,CH3),1.43(s,6H,CH3).
2、化合物[2]的合成
在冰水浴下,量取90mL1,2-二氯乙烷于250mL的三口烧瓶中,在氩气的保护下加入3mL N,N-二甲基甲酰胺(DMF),搅拌均匀后,用滴管缓慢注入5mL草酰氯,有大量白色固体出现,停止注入后继续搅拌30min,撤去冰水浴,在室温下反应约 2h,即制得氯代亚胺盐。在-15℃的低温反应浴中,称取637mg(1.8mmol)化合物 [1]于500mL的三口烧瓶中,缓慢加入上述制得的氯代亚胺盐,滴加完毕后,继续搅拌30min,将反应液于30℃下搅拌过夜。停止反应后,将反应液缓慢倒入饱和碳酸氢钠水溶液中,搅拌约2h后,用二氯甲烷多次萃取,合并有机层,无水硫酸镁干燥,过滤,减压旋蒸去除二氯甲烷后得粗产物,粗产品用石油醚﹕乙酸乙酯=30﹕1作为洗脱剂进行柱层析,得深红色化合物[2]463mg。
化合物[2],深红色固体,产率为67.83%。
1H-NMR(CDCl3,500MHz)δ(TMS,ppm):10.02(s,1H,CHO),7.17-7.19(m,2H,ArH),7.05(d,J=8.7Hz,2H,ArH),6.16(s,1H,pyrrol-H),3.90(s,3H,OCH3),2.83(s,3H,CH3),2.62(s,3H,CH3),1.72(s,3H,CH3),1.49(s,3H,CH3);
13C-NMR(d6-DMSO,125MHz)δ(TMS,ppm):185.89,161.40,160.57,156.34,147.33,143.78,142.87,134.50,130.20,129.03,126.27,126.09,123.89,114.89,55.37,15.05,12.97,11.75.
EI-MS:m/z=383.13[M+H+].
3、目标化合物荧光探针的合成
称取382mg(1.00mmol)化合物[2]于100mL的三口烧瓶中,再加入20ml乙醇,回流下使其溶解。称取304mg(2.00mmol)水杨酰肼溶于20mL乙醇,用恒压滴液漏斗缓慢滴加至三口烧瓶中,约1小时滴加完毕,TLC跟踪反应,当化合物[2]不再继续消失时,停止反应,趁热过滤,固体用二氯甲烷溶解,无水硫酸镁干燥,过滤,旋蒸去除溶剂,得粗产品,用石油醚﹕乙酸乙酯=10﹕1作为洗脱剂进行柱层析,得红色目标化合物104mg。
目标化合物,红色固体,产率﹕20.16%。
1H-NMR(500MHz,d6-DMSO)δ(TMS,ppm):12.00(s,1H,NH-N),11.65(s,1H,OH),8.44(s, 1H,CH=N),7.84(d,J=10.0Hz,1H,Ar-H),7.43-7.40(m,1H,Ar-H),7.31(d,J=5.0Hz,2H, Ar-H),7.13(d,J=10.0Hz,2H,Ar-H),6.92(t,J=10.0Hz,2H,Ar-H),6.28(s,1H,Pyrrol-H), 3.83(s,3H,OCH3),2.73(s,3H,CH3),2.48(s,3H,CH3),CH3),1.56(s,3H,CH3),1.41(s, 3H,CH3).
13C-NMR(125MHz,d6-DMSO)δ(TMS,ppm):165.09,160.53,160.03,158.09,154.10,145.29,144.06,143.25,140.18,134.27,132.83,130.74,129.72,128.49,126.17,123.75,123.15,119.25,117.83,115.80,115.27,55.75,14.90,14.33,12.41.
ESI-MS:m/z=517.2339[M+H+].
实施例2可见光和紫外灯(365nm)颜色对比测试
配置好荧光探针溶液(1.0×10-5mol/L),吸取3mL置于5mL透明菌种瓶,留一个空白,再吸取12μL金属离子溶液(1.0×10-2mol/L)(K+,Na+,Li+,Mg2+,Ca2+, Fe2+,Al3+,Zn2+,Ag+,Ba2+,Fe3+,Cd2+,Co2+,Mn2+,Cr3+,Hg2+,Bi2+,Pb2+,Ni2+, Sn2+,Cu2+)加入瓶中,用移液枪搅拌一分钟,静置一小时。对比可见光和紫外灯 (365nm)下的变化,观察在N,N-二甲基甲酰胺与水(DMF﹕H2O)=7﹕3体系中,荧光探针(10μM)溶液在不加和加入4倍当量的不同金属离子3小时后肉眼和紫外灯下的颜色变化。结果表明,加入Cu2+的荧光探针(10μM)溶液在3小时以后具有较大的颜色变化,肉眼观察由粉红色变成了橙黄色,在365nm紫外灯下,则发出强烈的绿色荧光,说明荧光探针对于Cu2+有很好的单一选择性。
实施例3紫外光谱测试
配置好荧光探针溶液(1.0×10-5mol/L),吸取3mL置于比色皿中,预先设置吸收波长范围(300nm~700nm)。先做空白试验,扣除空白再进行紫外吸收光谱操作,得到我们的最大吸收波长。
如图1所示是在N,N-二甲基甲酰胺与水(DMF﹕H2O)=7﹕3体系中,在荧光探针 (10μM)溶液中加入了12μL金属离子溶液(1.0×10-2mol/L)(Li+,Na+,K+,Mg2+, Ca2+,Ba2+,Al3+,Pb2 +,Cr3+,Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Ag+,Zn2+,Cd2+,Hg2+, Sn2+,Fe3+,Bi3+)10分钟后的紫外吸收光谱图。由该图可知,只有Cu2+的加入引起了荧光探针吸收光谱的明显变化,荧光探针(10μM)溶液对其它常见金属离子均无识别作用。因此,荧光探针对于Cu2+的识别具有较高的选择性。
实施例4荧光光谱测试
配置好荧光探针溶液(1.0×10-5mol/L),吸取3mL置于比色皿中,预先设置激发波长得到一个发射光谱,再通过得到的发射波长反扫得到一个激发光谱,通过我们得到的激发光谱,选取需要的激发波长进行荧光发射波长的测定。
如图2所示是在N,N-二甲基甲酰胺与水(DMF﹕H2O)=7﹕3体系中,在荧光探针 (10μM)溶液中加入12μL金属离子溶液(1.0×10-2mol/L)(Li+,Na+,K+,Mg2+, Ca2+,Ba2+,Al3+,Pb2+,Cr3+,Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Ag+,Zn2+,Cd2+,Hg2+, Sn2+,Fe3+,Bi3+)10分钟后的荧光光谱图。由该图可知,只有Cu2+的加入引起了荧光探针发射光谱的明显变化,荧光探针(10μM)溶液对其它常见金属离子均无识别作用。因此,荧光探针对于Cu2+的识别具有较高的选择性,
如图3与4所示常见阴离子(NO3 -,Cl-,SO4 2-,Br-,OAc-)与常见金属离子(Li+, Na+,K+,Mg2+,Ca2+,Ba2+,Al3+,Pb2+,Cr3+,Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Ag+, Zn2+,Cd2+,Hg2+,Sn2+,Fe3+,Bi3+)以1:1或者2:1的比例与Cu2+共存的情况下进行荧光测试,发现其它金属阳离子并没有对Cu2+的响应产生干扰,因此,荧光探针对于Cu2+的识别具有很高的单一选择性,且不受常见阴离子与阳离子干扰。

Claims (7)

1.一种Cu2+荧光探针,其特征在于,所述荧光探针具有如下结构:
2.如权利要求1所述的Cu2+荧光探针的制备方法,其特征在于,包括如下步骤:
步骤一:将对甲氧基苯甲醛和2,4-二甲基吡咯置于容器中,加入溶剂二氯甲烷后,滴加催化剂三氟乙酸,在室温下搅拌过夜,再加入四氯苯醌,继续搅拌5小时以上,滴加三乙胺和三氟化硼乙醚后继续反应得到化合物;
步骤二:将1,2-二氯乙烷于置于容器中,之后加入N,N-二甲基甲酰胺,搅拌均匀后,滴入草酰氯,搅拌30min以上,之后在室温下继续反应2h以上得到化合物;
步骤三:在0℃以下的反应浴中,于步骤一制得的化合物中滴加步骤二制得的化合物,最后在常温下搅拌过夜反应得到化合物;
步骤四:将步骤三制得的化合物置于容器中,在乙醇溶液中回流使其溶解,慢慢滴入水杨酰肼的乙醇溶液,1小时内滴加完毕,最后制备得目标化合物。
3.如权利要求2所述的制备方法,其特征在于,步骤一中,2,4-二甲基吡咯与对甲氧基苯甲醛与三氟化硼乙醚的摩尔比为24:11:11,四氯苯醌与三氟化硼乙醚的摩尔比为1.5:1,三乙胺与三氟化硼乙醚的摩尔比为1:1,三氟乙酸与三氟化硼乙醚的摩尔比为100:1。
4.如权利要求2所述的制备方法,其特征在于,步骤二中,N,N-二甲基甲酰胺与草酰氯的摩尔比为1:1。
5.如权利要求2所述的制备方法,其特征在于,步骤三中,步骤二制得的化合物与步骤一制得的化合物的摩尔比为30:1~20:1。
6.如权利要求2所述的制备方法,其特征在于,步骤四中,步骤三制得的化合物与水杨酰肼的摩尔比为1:2~1:3,回流反应时间为4小时以上。
7.一种如权利要求1-6任一所述的Cu2+荧光探针在检测溶液中Cu2+中的应用。
CN201510961621.0A 2015-12-18 2015-12-18 一种Cu2+荧光探针、制备方法及其应用 Expired - Fee Related CN105647512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510961621.0A CN105647512B (zh) 2015-12-18 2015-12-18 一种Cu2+荧光探针、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510961621.0A CN105647512B (zh) 2015-12-18 2015-12-18 一种Cu2+荧光探针、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN105647512A CN105647512A (zh) 2016-06-08
CN105647512B true CN105647512B (zh) 2017-12-08

Family

ID=56477427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510961621.0A Expired - Fee Related CN105647512B (zh) 2015-12-18 2015-12-18 一种Cu2+荧光探针、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN105647512B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106220531B (zh) * 2016-07-27 2018-09-25 黄淮学院 用于识别铜离子的荧光探针、膜材料、制备方法及应用
CN109320535B (zh) * 2018-09-29 2021-04-13 江汉大学 一种检测Cu2+的比率型荧光探针、其制备方法及应用
CN109776591B (zh) * 2019-03-05 2020-02-07 中国科学技术大学 一种快速检出光气的比色荧光探针化合物及其合成方法
CN112500427A (zh) * 2020-12-11 2021-03-16 烟台大学 一种检测Fe3+的荧光探针及其制备方法和应用
CN114874188B (zh) * 2022-05-10 2023-07-11 安徽大学 一种含有咔唑-吡啶甲酰肼基的脂滴荧光探针及其制备方法和用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747353A (zh) * 2010-01-08 2010-06-23 商丘师范学院 N′-(3-硝基苯甲酰基)-n-水杨酰肼合铜配合物及其制法与用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747353A (zh) * 2010-01-08 2010-06-23 商丘师范学院 N′-(3-硝基苯甲酰基)-n-水杨酰肼合铜配合物及其制法与用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A colorimetric and highly sensitive and selective chemodosimeter for Cu2+ and its application in live cell imaging;Jia-Hai Ye 等;《Tetrahedron Letters》;20140928;第55卷;6269-6273 *
A highly sensitive and selective turn-on fluorescent chemodosimeter for Cu2+ based on BODIPY and its application in bioimaging;Jia-Hai Ye 等;《RSC Adv.》;20140106;第4卷;6691-6695 *
A retrievable and highly selective fluorescent sensor for detecting copper and sulfide;Cunji Gao 等;《Sensors and Actuators B》;20130504;第185卷;125-131 *
Coumarin-derivative-based off–on catalytic chemodosimeter for Cu2+ ions;Mi Hee Kim 等;《Chem. Commun.》;20090703;第2009卷;4838-4840 *
Cu2+-selective fluorescent chemosensor based on coumarin and its application in bioimaging;Liang Huang 等;《Dalton Trans.》;20110914;第40卷;10815-10817 *
新型BODIPY类铜离子(II)荧光探针的研究及其细胞显影性能;徐菁;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20140715;21-55 *

Also Published As

Publication number Publication date
CN105647512A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN105647512B (zh) 一种Cu2+荧光探针、制备方法及其应用
Guo et al. A highly selective and sensitive dual-mode sensor for colorimetric and turn-on fluorescent detection of cyanide in water, agro-products and living cells
Wang et al. A novel reaction-based colorimetric and ratiometric fluorescent sensor for cyanide anion with a large emission shift and high selectivity
Fang et al. Naphthalimide–Rhodamine based chemosensors for colorimetric and fluorescent sensing Hg2+ through different signaling mechanisms in corresponding solvent systems
Peralta-Domínguez et al. A Schiff base derivative from cinnamaldehyde for colorimetric detection of Ni2+ in water
CN106220640B (zh) 一类汞离子荧光探针及其制备方法和应用
CN103772318B (zh) 一种用于测定水环境中金属离子含量的有机化合物及其应用
Li et al. A ratiometric fluorescent probe for fast detection of hydrogen sulfide and recognition of biological thiols
CN105924449B (zh) 一种检测汞离子反应型荧光素类荧光探针制备与应用
Bhaskar et al. Colorimetric sensor for real-time detection of cyanide ion in water and food samples
Hua et al. A novel turn off fluorescent sensor for Fe (III) and pH environment based on coumarin derivatives: the fluorescence characteristics and theoretical study
CN103113380B (zh) 一种罗丹明衍生物、其制备方法及应用
Qu et al. A recyclable probe for highly selective and sensitive detection of cyanide anion in aqueous medium by fluorescent and colorimetric changes
Yin et al. A new aggregation-induced emission active red-emitting fluorescent sensor for ultrarapidly, selectively and sensitively detecting hydrazine and its multiple applications
Ma et al. A simply and highly selective “turn-on” type fluorescent chemosensor for Hg2+ based on chiral BINOL-Schiff’s base ligand
Li et al. A rhodamine derivative for Hg2+-selective colorimetric and fluorescent sensing and its application to in vivo imaging
Zhang et al. A selectively rhodamine-based colorimetric probe for detecting copper (II) ion
Tang et al. A fluorescent chemosensor for Cu2+ ions and its application in cell imaging
CN103666451A (zh) 一种用于Fe3+、Cr3+检测与识别的含有咔唑-噻吩基席夫碱荧光探针化合物
CN103275697B (zh) 双芘两亲型荧光探针及其合成方法和应用
Rui et al. Spirolactone and spirothiolactone rhodamine-pyrene probes for detection of Hg2+ with different sensing properties and its application in living cells
Wang et al. A highly selective fluorescent sensor for ratiometric detection of cyanide in aqueous solution and solid states
Ning et al. A novel colorimetric and fluorescence turn-on pH sensor with a notably large Stokes shift for its application
Wu et al. A novel flavonol-based fluorescent probe for rapid detection of Hg2+ and its multi-functional applications
Lv et al. A novel coumarin-benzopyrylium based near-infrared fluorescent probe for Hg2+ and its practical applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171208

Termination date: 20201218

CF01 Termination of patent right due to non-payment of annual fee