CN105642184A - 石墨烯分散剂及其应用 - Google Patents
石墨烯分散剂及其应用 Download PDFInfo
- Publication number
- CN105642184A CN105642184A CN201510770154.3A CN201510770154A CN105642184A CN 105642184 A CN105642184 A CN 105642184A CN 201510770154 A CN201510770154 A CN 201510770154A CN 105642184 A CN105642184 A CN 105642184A
- Authority
- CN
- China
- Prior art keywords
- graphene
- dispersion
- phenylamine
- oligomer
- dispersion agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/16—Amines or polyamines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/46—Graphite
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/10—Treatment with macromolecular organic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种石墨烯分散剂,其包括含有苯胺低聚物单元的电活性高分子,且所述电活性高分子能够与石墨烯形成π-π复合物。本发明还公开了所述石墨烯分散剂的应用,例如提供了基于所述石墨烯分散剂的分散方法、分散体等。本发明利用易于合成,成本低廉的导电类苯胺低聚物衍生物作为石墨烯分散剂,并通过将所述分散剂与石墨烯或其它纳米碳材料在分散介质中简单混合,即可大幅提升纳米碳材料于分散介质中的分散度、分散稳定性及再分散性能,还无损于这些碳材料的物理、化学性能,且操作简单,利于规模化实施。
Description
技术领域
本发明涉及一种石墨烯分散方法,特别涉及一种石墨烯分散剂及其应用。
背景技术
石墨烯是由sp2杂化碳原子相互连接形成单原子层厚度二维蜂窝状晶格结构的碳材料,具有优异的电学、力学、热学和机械性能。石墨烯的制备方法通常包括机械剥离、化学气相沉积、氧化-还原、溶液超声玻璃等方法。剥离的石墨烯由于片层强烈的π-π相互作用,石墨烯片层容易团聚在一起,致使有机溶剂或水中的溶解度有限,这就很大程度上限制了其应用。
有鉴于此,研究人员提出了多种方案,以期解决这些问题。其中常用的一种方式是通过在分散介质中加入表面活性剂等辅助分散剂,其虽然能够在一定程度上提升石墨烯的分散度,但效果不明显,而且通常来说,特定的表面活性剂只适用于特定的分散介质,不具普适性。另外一种方式是通过对石墨烯进行化学改性处理,从而提升其分散性能,但这种方式会导致石墨烯材料的化学组成及物理形貌等均发生变化。
因此,如何在不破坏石墨烯独特理化性能的基础上实现石墨烯于分散介质中的高效、稳定分散,一直是业界亟待解决的难题。
发明内容
针对现有技术的不足,本发明的主要目的在于提供一种石墨烯分散剂,藉此该石墨烯分散剂,可以简便方式实现石墨烯在分散介质中的良好分散。
本发明的另一目的在于提供一种所述石墨烯分散剂的应用,例如基于所述石墨烯分散剂的石墨烯分散体,高效石墨烯分散方法及再分散方法等。
为实现前述发明目的,本发明采用的技术方案包括:
在一些实施例中提供了一种石墨烯分散剂,其包括含苯胺低聚物单元的电活性高分子,且所述电活性高分子能够与石墨烯形成π-π复合物。
在一些实施例中还提供了石墨烯与所述石墨烯分散剂的π-π复合物。
在一些实施例中还提供了一种石墨烯分散体,其包含:分散介质,以及,分散于所述分散介质中的、如上所述的π-π复合物。
在一些实施例中还提供了一种石墨烯分散体的制备方法,其包括:将石墨烯及所述的石墨烯分散剂于分散介质中均匀混合形成稳定分散体。
在一些实施例中还提供了一种石墨烯分散和再分散方法,其包括:
将石墨烯及所述的石墨烯分散剂于分散介质中均匀混合形成稳定分散体,
去除所述分散体中的分散介质而获得石墨烯与所述石墨烯分散剂的复合物,
以及,将所述复合物再次分散于分散介质中,再次形成稳定分散体。
在一些实施例中还提供了一种纳米碳材料分散剂,其有效成分选自包含有2-8个芳香环,并能够与纳米碳材料形成π-π复合物的化合物,所述化合物选自含苯胺低聚物单元的电活性高分子。
其中,所述纳米碳材料至少选自石墨烯、碳纳米管和纳米碳纤维,优选为石墨烯。
较之现有技术,本发明的有益效果至少包括:利用易于合成,成本低廉的导电类苯胺低聚物衍生物作为石墨烯分散剂,并通过将该分散剂与石墨烯在分散介质中简单混合,即可大幅提升石墨烯于分散介质中的分散度、分散稳定性及再分散性能,还无损于石墨烯的独特物理、化学性能,且操作简单,利于规模化实施。
附图说明
图1是本发明一典型实施案例之中一种石墨烯分散液和可再分散石墨烯粉体的制程图;
图2是实施例1中石墨烯、石墨烯分散剂及石墨烯-分散剂复合物的XRD谱图;
图3是实施例1中石墨烯-分散剂复合物的SEM图;
图4是实施例1中石墨烯-分散剂复合物的AFM图;
图5是实施例1石墨烯分散剂-纳米碳纤维复合物与环氧树脂组合物的固化物的SEM形貌图;
图6是实施例1石墨烯-分散剂复合物/环氧树脂底漆的防腐效果测试图;
图7是实施例1石墨烯-分散剂复合物/环氧树脂底漆与其它市售底漆的防腐效果对比图。
具体实施方式
鉴于现有技术中石墨烯在普通分散介质,例如四氢呋喃、二甲基甲酰胺,二甲基亚砜等有机溶剂中分散效果不佳的不足(参阅图1),本案发明人经长期研究和大量实践,特提出本发明的技术方案,并获得了出乎意料的良好技术效果。如下将对本发明的技术方案进行较为详细的解释说明。
本发明的一个方面提供了一种石墨烯分散剂,其有效成分选自包含有2~8个芳香环,并能够与石墨烯形成π-π复合物的化合物。
在一些实施例中,所述化合物选自含苯胺低聚物单元的电活性高分子。相应的,此处所述的“π-π复合物”系指由所述的含苯胺低聚物单元的电活性高分子与石墨烯主要经π-π作用,而不是通过化学键结合形成的复合物。
所述的苯胺低聚物亦称苯胺齐聚物,其包含的苯胺共轭链段短于聚苯胺,电活性与聚苯胺相似,但分子中不存在缺陷,且具有更好的溶解性。
例如,所述石墨烯分散剂可以是主要由能够与石墨烯通过π-π相互作用结合,从而使石墨烯稳定分散于有机溶剂中的含苯胺低聚物单元的电活性高分子组成。
在一些更为具体的案例中,所述石墨烯分散剂可以由能够与石墨烯通过π-π相互作用结合,从而使石墨烯在有机溶剂中的最大分散度达到5mg/mL的含苯胺低聚物单元的电活性高分子组成。需要说明的是,此处所述的“最大分散度”对应于采用最低有效量的石墨烯分散剂的情况。其中,藉由所述石墨烯分散剂,使石墨烯能够通过物理方法而稳定分散于有机溶剂中,此处所述的物理方法可以是搅拌、超声等简单物理方式,但不局限于此。
在一些更为具体的案例中,所述石墨烯分散剂包括苯胺低聚物封端的聚乙二醇、苯胺低聚物接枝聚己内酯、含苯胺低聚物的聚氨酯,含苯胺低聚物的聚酰亚胺和苯胺低聚物接枝丙烯酸酯共聚物中的至少一种。
在一些较佳实施例中,所述苯胺低聚物包括苯胺三聚体、苯胺四聚体,苯胺五聚体和苯胺六聚体中的任意一种或两种以上的组合。
在一些较为典型的实施例中,适用于本发明的含苯胺低聚物单元的电活性高分子可具有如下结构:
聚乙二醇接枝苯胺四聚体
苯胺三聚体聚己内酯共聚物
苯胺四聚体接枝聚己内酯
苯胺四聚体丙烯酰胺丙烯酸酯共聚物
适用于本发明的含苯胺低聚物单元的电活性高分子可以从商购途径获取,也可以参考文献(例如,CN103131006A;CN102993435B;《高等学校化学学报》,2010,第32卷(第2期),411-415;《J.Amer.Chem.Soc.》,1986,108,8311;《Macromol.RapidCommun.》,2011,32,35;《Langmuir》,2008,24,13376;《Macromol.RapidCommun.》,2007,28,1559等)自制。
本发明的另一个方面还提供了石墨烯与所述石墨烯分散剂的π-π复合物。
较为优选的,所述的π-π复合物中石墨烯与石墨烯分散剂的摩尔比为100:1~1:100,优选为10:1~1:10,尤其优选为2:1~1:2。
事实上,所述π-π复合物亦可视为一种可再分散石墨烯粉体,其主要是通过将主要由石墨烯与石墨烯分散剂组成的分散体,例如石墨烯分散液干燥后获得的粉体,且所述粉体能够被再次直接分散于分散介质,例如有机溶剂中。
其中,所述干燥的方式包括喷雾干燥,当然也可以是业界已知的其它合适干燥方式,例如冷冻干燥、超临界干燥等。
本发明的另一个方面还提供了一种分散体,其包含:分散介质,以及,分散于所述分散介质中的、如前所述的π-π复合物。
较为优选的,所述分散体为流体状分散体,尤其优选为液态分散体。
较为优选的,所述分散体包含浓度为0.1mg/ml~100mg/ml的石墨烯。
其中,所述石墨烯材料的定义可参见文献“Allinthegraphenefamily-Arecommendednomenclaturefortwo-dimensionalcarbonmaterials”。其可以从市售等途径获取,也可自制,例如采用本领域技术人员熟知的石墨烯产品或用常规的制备方法制备,例如可选自化学氧化法如Brodie法、Hummers法或Staudenmaier法中的任意一种方法制备的氧化石墨烯、经热膨胀制得的石墨烯材料。也可以选用机械剥离、液相剥离或电化学剥离制备的石墨烯材料、或者还原氧化石墨烯。其结构亦不限于石墨烯纳米片、石墨烯微米片、石墨烯纳米带、少层石墨烯(2-5层)、多层石墨烯(2-9层)、石墨烯量子点以及这些石墨烯类材料的衍生物。其厚度可优选为≤20nm,更优选地,厚度≤10nm。
其中,所述分散介质可包括水、有机溶剂、高分子聚合物中的任意一种或两种以上的组合;例如可优选自有机溶剂。
其中,所述有机溶剂可选自业界已知的合适种类,特别是极性有机溶剂,例如醇类有机溶剂,醚类有机溶剂,卤代烷烃类有机溶剂等,例如可选自但不限于乙醇(EtOH)、四氢呋喃(THF)、二甲基甲酰胺(DMF),二甲基亚砜(DMSO)和氯仿等。
其中,所述高分子聚合物可选自业界已知的合适树脂等,例如醇酸树脂、氨基树脂、环氧树脂、聚酯树脂、丙烯酸树脂、有机硅树脂、呋喃树脂等,且不限于此。
在一些实施例中,一种石墨烯分散液可包含前述任一种石墨烯分散剂、石墨烯以及有机溶剂。优选的,所述石墨烯分散液是由所述石墨烯分散剂、石墨烯以及有机溶剂形成的稳定石墨烯分散体系。在一些更为具体的案例中,在所述石墨烯分散液中石墨烯的含量最大为5mg/mL。同样的,此处所述的“最大分散度”对应于采用最低有效量的石墨烯分散剂的情况。
本案发明人还发现,本发明石墨烯分散剂与石墨烯形成的π-π复合物具有特别优异的稳定性,例如,当将其分散于水、有机溶剂或高分子聚合物(例如树脂)时,即使在低温为-50℃或高温为80℃的极端温度条件下,该π-π复合物亦会稳定存在。而且非常令人惊喜的是,包含所述π-π复合物的分散体即使在转速为10000r/min的离心条件下,亦不会出现明显沉降,因此利于在诸如高温、低温等特殊环境下的应用。
本发明中,石墨烯分散剂与石墨烯形成π-π复合物的机理可能在于:本发明的石墨烯分散剂中包含了芳香环,特别是含有多个苯基团,而苯具有的苯环结构导致它有特殊的芳香性。例如,苯环主链上的碳原子之间并不是由单键和双键排列,每两个碳原子之间的键均相同,是由一个既非双键也非单键的键连接。而且,苯分子是平面分子,12个原子处于同一平面上,6个p轨道相互作用形成6个π分子轨道,其中ψ1、ψ2、ψ3是能量较低的成键轨道,ψ4、ψ5、ψ6是能量较高的反键轨道。ψ2、ψ3和ψ4、ψ5是两对简并轨道。基态时苯的电子云分布是三个成键轨道叠加的结果,故电子云均匀分布于苯环上下及环原子上,形成闭合的电子云。而石墨烯片层中包含有类似于苯环的结构,因此,本发明的石墨烯分散剂中的苯环单元能够与石墨烯中的相应单元结构在不发生化学反应的条件下牢固结合,进而利于石墨烯材料在分散介质中的高效、稳定分散。
本发明的又一个方面还提供了一种石墨烯分散体的制备方法,其包括:将石墨烯及所述的石墨烯分散剂于分散介质中均匀混合形成稳定分散体。
在一些实施例中,一种石墨烯分散方法可以包括:仅仅将所述石墨烯分散剂与石墨烯共同溶于有机溶剂,从而形成稳定的分散液。需要说明的是,此处所述的“溶于”并非是普通技术人员所理解的溶解,而应理解为“掺入”、“分散入”或“混入”等。例如,可以将所述石墨烯分散剂与石墨烯加入有机溶剂,并搅拌或超声分散,例如超声分散1h以上,从而形成稳定的分散液。
较为优选的,所述分散体包含浓度为1mg/ml~10mg/ml的石墨烯。
在所述石墨烯分散方法中,石墨烯与石墨烯分散剂的摩尔比为100:1~1:100,优选为10:1~1:10,尤其优选为2:1~1:2。
本发明的又一个方面还提供了一种石墨烯分散和再分散方法,其包括:
将石墨烯及所述的石墨烯分散剂于分散介质中均匀混合形成稳定分散体,
去除所述分散体中的分散介质而获得石墨烯与所述石墨烯分散剂的复合物,
以及,将所述复合物再次分散于分散介质中,再次形成稳定分散体。
例如,在一些实施例中,一种基于物理方法的石墨烯分散和再分散方法可以包括:
将石墨烯与具有芳香结构的苯胺低聚物衍生物通过强π-π相互作用结合而稳定分散于有机溶剂中,形成石墨烯分散液;
对所述石墨烯分散液进行干燥处理而形成粉体;
以及,将所述粉体再次分散于,特别是直接分散于所述有机溶剂中,再次形成稳定的石墨烯分散液。
另外,本案发明人还惊喜的发现,本发明的所述石墨烯分散剂在用于分散其它纳米碳材料,例如碳纳米管、纳米碳纤维等时,亦有非常优异的表现,因此可以作为一种优良的纳米碳材料分散剂。
相应的,本发明的又一个方面还提供了所述石墨烯分散剂在制备纳米碳材料分散体中的用途。
其中,所述纳米碳材料至少可选自石墨烯、碳纳米管、纳米碳纤维,但不限于此。
在一些实施例中还提供了包含有纳米碳材料与所述石墨烯分散剂的组合物。
在一些实施例中还提供了纳米碳材料与所述石墨烯分散剂的π-π复合物。
在一些实施例中还提供了包含纳米碳材料与所述分散剂的π-π复合物及分散介质的分散体。
下面将结合若干实施例对本发明实施例中的技术方案进行详细的描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的如下一些实施例(例如实施例1-实施例4)中,藉由基于所述含苯胺低聚物单元的电活性高分子的石墨烯分散剂,不需加入任何添加剂和反应剂,就能使石墨烯在有机溶剂(例如EtOH、DMF、THF等)中稳定分散,且分散液经喷雾干燥后得到可再分散石墨烯粉体,该可再分散石墨烯粉体可被再次稳定分散于有机溶剂中。
实施例1聚乙二醇接枝苯胺四聚体及其用于石墨烯的分散
聚乙二醇单甲醚(分子量2000,6g)溶于50mlDMF中,然后加入相同摩尔质量的甲苯异氰酸酯,在60度下反应1小时,加入1.01g苯胺四聚体,继续反应2小时,用500ml乙醚沉淀得到3.1g苯胺四聚体接枝聚乙二醇(结构式如图1所示)。称取等重量的聚乙二醇接枝苯胺四聚体和石墨烯浆料(石墨烯含量4.5%)配置不同浓度的水溶液,超声分散1小时,石墨烯分散效果如表1所示,在石墨烯浓度为3mg/ml以下时能形成稳定的分散液。
表1.苯胺四聚体接枝聚乙二醇在水中分散石墨烯的效果
5mg/10ml | 10mg/10ml | 25mg/10ml | 50mg/10ml | 100mg/10ml |
良好 | 良好 | 良好 | 有少量沉淀 | 不好 |
实施例2苯胺三聚体聚己内酯共聚物及其用于石墨烯的分散
100ml单口烧瓶中加入1.16g苯胺三聚体和50ml干燥的甲苯,然后加入9.2g己内酯,和200mg辛酸亚锡,120度,氮气氛围下反应3小时,用200ml乙醇沉淀,得倒8.2g苯胺三聚体接枝聚己内酯(结构式如图2所示)。称取等重量的苯胺三聚体聚己内酯共聚物和石墨烯浆料(石墨烯含量4.5%)配置不同浓度的水溶液,超声分散1小时,石墨烯分散效果如表2所示,在石墨烯浓度为3mg/ml以下时能形成稳定的分散液。
表2.苯胺三聚体聚己内酯共聚物及其用于石墨烯的分散效果
5mg/10ml | 10mg/10ml | 20mg/10ml | 30mg/10ml | 50mg/10ml |
良好 | 良好 | 良好 | 良好 | 有沉淀 |
实施例3苯胺四聚体接枝聚己内酯的制备及其用于石墨烯的分散
100ml单口烧瓶中加入0.74g1-丁醇,11.4g己内酯,和114mg辛酸亚锡,120度,氮气氛围下反应3小时,用200ml乙醇沉淀,得倒9.5g理论分子量为1200的单端羟基的聚己内酯。然后在100ml单口烧瓶中加入2.4g单端羟基的聚己内酯和50ml干燥的甲苯,当单端羟基的聚己内酯全部溶解后,加入0.3g甲苯2异氰酸酯,和24毫克辛酸亚锡于60度下反应1小时,然后加入720毫克苯胺四聚体继续反应3小时,用500ml乙醇沉淀,得倒1.8g苯胺四聚体接枝聚己内酯(结构式如图3所示)。称取等重量的苯胺四聚体接枝聚己内酯共聚物和石墨烯浆料(石墨烯含量4.5%)配置不同浓度的水溶液,超声分散1小时,石墨烯分散效果如表3所示,在石墨烯浓度为3mg/ml以下时能形成稳定的分散液。
表3.苯胺四聚体接枝聚己内酯分散石墨烯效果
5mg/10ml | 10mg/10ml | 25mg/10ml | 50mg/10ml |
良好 | 良好 | 良好 | 有少量沉淀 |
实施例4苯胺四聚体接枝马来酸酐丙烯酸酯共聚物
100ml圆底烧瓶中,氮气氛围下加入丙烯酰胺接枝苯胺四聚体0.5g和丙烯酸环己酯1.5,马AIBN50mg,80度下聚合3小时,用500ml乙醇沉淀,得到0.9g苯胺四聚体接枝丙烯酸酯共聚物(结构式如图4所示)。称取等重量的苯胺四聚体接枝丙烯酸酯共聚物和石墨烯浆料(石墨烯含量4.5%)配置不同浓度的水溶液,超声分散1小时,石墨烯分散效果如表4所示。
表4.苯胺四聚体接枝马来酸酐丙烯酸酯共聚物分散石墨烯的效果
5mg/10ml | 10mg/10ml | 25mg/10ml | 50mg/10ml |
良好 | 良好 | 良好 | 有沉淀 |
实施例5-7
本案发明人还以参照实施例1-3的操作,以含苯胺五聚体或苯胺六聚体单元的其它导电活性高分子,包含苯胺低聚物封端的聚乙二醇,苯胺三聚体接枝聚己内酯,含苯胺低聚物聚氨酯,含苯胺低聚物聚酰亚胺,苯胺低聚物接枝丙烯酸酯共聚物等作为分散剂,并以水、乙醇、四氢呋喃、二甲基甲酰胺,二甲基亚砜和氯仿等作为溶剂,测试了其对于石墨烯的分散能力,并获得与实施例1-4基本相同之测试结果。
对比例1:
直接将未经处理的石墨烯粉末直接加入乙醇、四氢呋喃(THF)等溶剂中,超声分散1h。
对比例2:
先将石墨烯粉体和硅烷偶联剂在1500rad/min下高速搅拌分散20min,并超声分散20min,得到混合物。将混合物于60℃下真空干燥得到经硅烷偶联剂处理的石墨烯粉体,再将该粉体直接加入乙醇、四氢呋喃(THF)等溶剂中,超声分散1h。
以紫外-可见光谱仪(UV-Vis)对实施例1-7中的石墨烯及石墨烯-分散剂复合物分别进行测试,可以发现,这些石墨烯分散剂本身内部的π-π键使其在307nm和474nm处存在两个明显的吸收峰,而在分散液中,吸收峰的位置发生偏移至311nm和468nm处,说明分散剂与石墨烯之间存在着π-π相互作用,使得特征峰发生位移。
以拉曼光谱仪(Raman)对实施例1-7中的石墨烯及石墨烯-分散剂复合物分别进行测试,可以看到,纯的石墨烯在1345cm-1处存在D峰,在1582cm-1处存在G峰,在2711cm-1处存在2D峰;而在复合物中,石墨烯相应的特征峰都发生了位移,说明这些分散剂与石墨烯之间存在电荷转移,证实分散剂与石墨烯的π-π相互作用。
以XRD对实施例1-7中的石墨烯及石墨烯-分散剂复合物分别进行测试,其结果亦可证实这些分散剂与石墨烯的π-π相互作用(例如可参阅图2)。
再以SEM、AFM、TEM等对实施例1-7所获石墨烯-分散剂复合物进行观察,可以看到,石墨烯系呈良好的分散状态,而基本无团聚(例如可参阅图3)。而且令人非常惊奇的是,在实施例1-7所获石墨烯-分散剂复合物的AFM测试图谱中,可以看到石墨烯呈现出了非常平整舒展的形态(例如可参阅图4),这一现象非常令人惊奇,其可能是因本发明石墨烯分散剂的平面态分子结构而引起的。
再取实施例1-实施例7所获的石墨烯分散液于室温条件下静置3个月以上,以观察其稳定性,可以看到,这些石墨烯分散液中均无沉降现象。而对照例1-对照例2的分散体系中,石墨烯均几乎完全沉降。
另外,参照实施例1-实施例7的方式,但以碳纳米管、纳米碳纤维替代石墨烯进行试验,结果证实,本发明的石墨烯分散剂亦适用于辅助此类纳米碳材料在有机溶剂等分散介质中的高效、稳定的分散。
应用例1:分别取实施例1-4中的石墨烯分散剂与石墨烯按一定比例加入多种市售双酚A环氧树脂中,超声分散1h左右,检验其在双酚A环氧树脂中的分散效果,可以发现,当石墨烯分散剂与石墨烯的摩尔比例在10:1~1:10范围内时,石墨烯在双酚A环氧树脂中呈均匀分散状态,基本无团聚。
再取实施例1的石墨烯分散剂与纳米碳纤维的复合物加入市售双酚A环氧树脂中,超声分散1h左右,之后在紫外光照或合适温度条件下固化。取其中的一种典型固化物以SEM进行观察,可以看到纳米碳纤维离散分布于该固化物中,而无团聚现象,尤其是纳米碳纤维与环氧树脂固化物之间无明晰界面,表明其已经良好结合(例如可参阅图5)。另取同样的纳米碳纤维直接加入同样的环氧树脂内,在同等条件下固化,但在其固化物中,纳米碳纤维与环氧树脂固化物之间存在清楚的界面。
另以实施例2-7的石墨烯分散剂与纳米碳纤维或碳纳米管的复合物加入其它种类的市售环氧树脂中,如酚醛环氧树脂、多官能环氧树脂、改性环氧树脂等,以与前文类似的方式进行分散、固化后,分别对其固化物进行观察,亦可获得基本相似之结论。
应用例2:取实施例1的石墨烯-分散剂复合物加入环氧树脂E44中形成涂料,并将其作为底漆涂覆在钢板表面,固化形成涂层(参阅图7中的“E44+G”)。另取纯环氧树脂E44作为底漆涂覆在相同钢板表面,固化形成涂层。此外,分别取市售环氧富锌防腐底漆(参阅图7中的“环氧富锌”)、市售玻璃鳞片涂料(参阅图7中的“玻璃鳞片”)于相同钢板上形成涂层。再分别对这些涂层的防腐效果进行测试,结果表明,采用所述石墨烯-分散剂复合物制得的防腐底漆比纯环氧树脂E44和市售的环氧富锌防腐底漆、玻璃鳞片涂料,具有更加优异的腐蚀防护效果(参阅图6及图7)。
需要说明的是,如上实施例所采用的石墨烯分散剂、分散介质、各类原料及工艺条件均是较为典型的范例,但经过本案发明人大量试验验证,于上文所列出的其它石墨烯分散剂、分散介质、原料及工艺条件等也均是适用的,并也均可达成本发明所声称的技术效果。
附及,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
1.一种石墨烯分散剂,其特征在于包括含苯胺低聚物单元的电活性高分子,且所述电活性高分子能够与石墨烯形成π-π复合物。
2.根据权利要求1所述的石墨烯分散剂,其特征在于:
所述电活性高分子包括苯胺低聚物封端的聚乙二醇、苯胺低聚物接枝聚己内酯、含苯胺低聚物的聚氨酯,含苯胺低聚物的聚酰亚胺和苯胺低聚物接枝丙烯酸酯共聚物中的至少一种;
进一步的,所述苯胺低聚物包括苯胺三聚体、苯胺四聚体,苯胺五聚体和苯胺六聚体中的任意一种或两种以上的组合。
3.石墨烯与权利要求1-2中任一项所述石墨烯分散剂的π-π复合物。
4.根据权利要求3所述的π-π复合物,其特征在于,其中石墨烯与石墨烯分散剂的摩尔比为100:1~1:100,优选为10:1~1:10,进一步优选为2:1~1:2。
5.一种石墨烯分散体,其特征在于包含:分散介质;以及,分散于所述分散介质中的、如权利要求3-4中任一项所述的π-π复合物。
6.根据权利要求5所述的石墨烯分散体,其特征在于:
所述石墨烯分散体为流体状分散体;
优选的,所述石墨烯分散体为液态分散体或浆料;
和/或,所述分散介质包括水、有机溶剂、树脂中的任意一种或两种以上的组合;优选的,所述分散介质选自有机溶剂;
和/或,优选的,所述石墨烯分散体包含浓度为0.1mg/ml~100mg/ml的石墨烯。
7.一种石墨烯分散体的制备方法,其特征在于包括:将石墨烯及权利要求1-2中任一项所述的石墨烯分散剂于分散介质中均匀混合形成稳定分散体;
优选的,石墨烯与石墨烯分散剂的摩尔比为100:1~1:100,尤其优选为10:1~1:10,进一步优选为2:1~1:2;
优选的,所述分散介质包括水、有机溶剂、高分子聚合物中的任意一种或两种以上的组合;
尤其优选的,所述分散介质选自有机溶剂;
优选的,所述高分子聚合物选自树脂,所述树脂包括醇酸树脂、氨基树脂、环氧树脂、聚酯树脂、丙烯酸树脂、有机硅树脂、呋喃树脂中的任意一种或两种以上的组合;
和/或,优选的,所述分散体包含浓度为0.1mg/ml~100mg/ml的石墨烯。
8.一种石墨烯分散和再分散方法,其特征在于包括:
将石墨烯及权利要求1-2中任一项所述的石墨烯分散剂于分散介质中均匀混合形成稳定分散体,
去除所述分散体中的分散介质而获得石墨烯与所述石墨烯分散剂的复合物,
以及,将所述复合物再次分散于分散介质中,再次形成稳定分散体;
优选的,所述分散介质包括水、有机溶剂、树脂中的任意一种或两种以上的组合;尤其优选的,所述分散介质选自有机溶剂;
和/或,优选的,所述稳定分散体包含0.1mg/ml~100mg/ml的石墨烯。
9.一种纳米碳材料分散剂,其特征在于它的有效成分选自包含有2-8个芳香环,并能够与纳米碳材料形成π-π复合物的化合物,所述化合物选自含苯胺低聚物单元的电活性高分子;
优选的,所述化合物包括苯胺低聚物封端的聚乙二醇、苯胺低聚物接枝聚己内酯、含苯胺低聚物的聚氨酯,含苯胺低聚物的聚酰亚胺和苯胺低聚物接枝丙烯酸酯共聚物中的至少一种;
更进一步的,所述苯胺低聚物包括苯胺三聚体、苯胺四聚体,苯胺五聚体和苯胺六聚体中的任意一种或两种以上的组合。
10.包含有纳米碳材料与权利要求9所述纳米碳材料分散剂的组合物,或者纳米碳材料与权利要求9所述纳米碳材料分散剂的π-π复合物,或者,包含纳米碳材料与权利要求9所述纳米碳材料分散剂的π-π复合物及分散介质的分散体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410722772 | 2014-12-02 | ||
CN2014107227726 | 2014-12-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105642184A true CN105642184A (zh) | 2016-06-08 |
CN105642184B CN105642184B (zh) | 2018-05-04 |
Family
ID=56481776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510770154.3A Active CN105642184B (zh) | 2014-12-02 | 2015-11-12 | 石墨烯分散剂及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105642184B (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106348285A (zh) * | 2016-10-21 | 2017-01-25 | 戚明海 | 一种石墨烯的制备方法 |
CN106436016A (zh) * | 2016-11-23 | 2017-02-22 | 青岛墨金烯碳新材料科技有限公司 | 一种石墨烯纤维阻燃导电无纺布及其制备方法 |
CN106672958A (zh) * | 2017-01-18 | 2017-05-17 | 丽水市知科科技有限公司 | 一种氧化石墨烯的制备方法 |
CN106744888A (zh) * | 2017-01-18 | 2017-05-31 | 丽水市知科科技有限公司 | 一种石墨烯的制备方法 |
CN107385563A (zh) * | 2017-08-23 | 2017-11-24 | 山东圣泉新材料股份有限公司 | 一种石墨烯改性的海藻纤维及其制备方法、应用 |
CN107987720A (zh) * | 2017-11-02 | 2018-05-04 | 广东华材实业股份有限公司 | 一种耐高温有机防腐涂料及其制备方法 |
CN109957154A (zh) * | 2019-04-16 | 2019-07-02 | 江苏碳谷二维世界科技有限公司 | 一种石墨烯改性橡胶复合材料的制备方法及橡胶复合材料 |
WO2020051970A1 (zh) | 2018-09-14 | 2020-03-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种碳纳米管取向薄膜、其制备方法及应用 |
CN111378109A (zh) * | 2018-12-31 | 2020-07-07 | 江苏苏博特新材料股份有限公司 | 一种苯胺基聚醚及其制备方法和其改性脂肪族高效减水剂的应用 |
CN111978841A (zh) * | 2020-08-31 | 2020-11-24 | 东莞狐马商贸有限公司 | 一种基于高弹聚异戊二烯改性的聚氨酯橡胶涂料的制备方法 |
CN112280186A (zh) * | 2020-11-11 | 2021-01-29 | 广西北海精一电力器材有限责任公司 | 一种用于混凝土电杆的保护层垫块及其制备方法 |
CN112457744A (zh) * | 2020-12-01 | 2021-03-09 | 四川科嘉能源科技有限公司 | 一种石墨烯改性防腐涂料及其制备方法 |
CN112538665A (zh) * | 2019-09-20 | 2021-03-23 | 中石化南京化工研究院有限公司 | 一种石墨烯复合材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7923527B1 (en) * | 2009-10-14 | 2011-04-12 | Chung-Shan Institute of Science and Technology Armaments Bureau, Ministry of National Defense | Carbon nanotube compound and method for producing the same |
CN102492296A (zh) * | 2011-11-25 | 2012-06-13 | 江南大学 | 一种水分散聚苯胺/石墨烯复合材料的合成方法 |
US20120211702A1 (en) * | 2009-07-31 | 2012-08-23 | The Ohio State University | Electrically Conducting Polymer And Copolymer Compositions, Methods For Making Same And Applications Therefor |
CN102964582A (zh) * | 2012-12-04 | 2013-03-13 | 中国科学院长春应用化学研究所 | 一种嵌段共聚物、其制备方法及水凝胶 |
CN103086362A (zh) * | 2012-12-11 | 2013-05-08 | 武汉工程大学 | 电活性苯胺齐聚物修饰石墨烯的制备方法 |
-
2015
- 2015-11-12 CN CN201510770154.3A patent/CN105642184B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120211702A1 (en) * | 2009-07-31 | 2012-08-23 | The Ohio State University | Electrically Conducting Polymer And Copolymer Compositions, Methods For Making Same And Applications Therefor |
US7923527B1 (en) * | 2009-10-14 | 2011-04-12 | Chung-Shan Institute of Science and Technology Armaments Bureau, Ministry of National Defense | Carbon nanotube compound and method for producing the same |
CN102492296A (zh) * | 2011-11-25 | 2012-06-13 | 江南大学 | 一种水分散聚苯胺/石墨烯复合材料的合成方法 |
CN102964582A (zh) * | 2012-12-04 | 2013-03-13 | 中国科学院长春应用化学研究所 | 一种嵌段共聚物、其制备方法及水凝胶 |
CN103086362A (zh) * | 2012-12-11 | 2013-05-08 | 武汉工程大学 | 电活性苯胺齐聚物修饰石墨烯的制备方法 |
Non-Patent Citations (1)
Title |
---|
CHIH-WEI PENG ET AL.: ""Preparation and Corrosion Protection Effect of Electroactive Polyurethane Containing Amino-Capped Aniline Trimer"", 《ADVANCED MATERIALS RESEARCH》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106348285A (zh) * | 2016-10-21 | 2017-01-25 | 戚明海 | 一种石墨烯的制备方法 |
CN106436016B (zh) * | 2016-11-23 | 2019-04-02 | 青岛墨金烯碳新材料科技有限公司 | 一种石墨烯纤维阻燃导电无纺布及其制备方法 |
CN106436016A (zh) * | 2016-11-23 | 2017-02-22 | 青岛墨金烯碳新材料科技有限公司 | 一种石墨烯纤维阻燃导电无纺布及其制备方法 |
CN106672958A (zh) * | 2017-01-18 | 2017-05-17 | 丽水市知科科技有限公司 | 一种氧化石墨烯的制备方法 |
CN106744888A (zh) * | 2017-01-18 | 2017-05-31 | 丽水市知科科技有限公司 | 一种石墨烯的制备方法 |
CN107385563B (zh) * | 2017-08-23 | 2020-02-04 | 山东圣泉新材料股份有限公司 | 一种石墨烯改性的海藻纤维及其制备方法、应用 |
CN107385563A (zh) * | 2017-08-23 | 2017-11-24 | 山东圣泉新材料股份有限公司 | 一种石墨烯改性的海藻纤维及其制备方法、应用 |
CN107987720A (zh) * | 2017-11-02 | 2018-05-04 | 广东华材实业股份有限公司 | 一种耐高温有机防腐涂料及其制备方法 |
WO2020051970A1 (zh) | 2018-09-14 | 2020-03-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种碳纳米管取向薄膜、其制备方法及应用 |
US11225581B2 (en) | 2018-09-14 | 2022-01-18 | Suzhou Institute Of Nano-Tech And Nano-Bionics (Sinano), Chinese Academy Of Sciences | Carbon nanotube aligned film as well as preparation method and application thereof |
CN111378109A (zh) * | 2018-12-31 | 2020-07-07 | 江苏苏博特新材料股份有限公司 | 一种苯胺基聚醚及其制备方法和其改性脂肪族高效减水剂的应用 |
CN109957154A (zh) * | 2019-04-16 | 2019-07-02 | 江苏碳谷二维世界科技有限公司 | 一种石墨烯改性橡胶复合材料的制备方法及橡胶复合材料 |
CN112538665A (zh) * | 2019-09-20 | 2021-03-23 | 中石化南京化工研究院有限公司 | 一种石墨烯复合材料的制备方法 |
CN111978841A (zh) * | 2020-08-31 | 2020-11-24 | 东莞狐马商贸有限公司 | 一种基于高弹聚异戊二烯改性的聚氨酯橡胶涂料的制备方法 |
CN112280186A (zh) * | 2020-11-11 | 2021-01-29 | 广西北海精一电力器材有限责任公司 | 一种用于混凝土电杆的保护层垫块及其制备方法 |
CN112280186B (zh) * | 2020-11-11 | 2024-05-24 | 广西北海精一电力器材有限责任公司 | 一种用于混凝土电杆的保护层垫块及其制备方法 |
CN112457744A (zh) * | 2020-12-01 | 2021-03-09 | 四川科嘉能源科技有限公司 | 一种石墨烯改性防腐涂料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105642184B (zh) | 2018-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105642184A (zh) | 石墨烯分散剂及其应用 | |
CN105645388A (zh) | 石墨烯分散剂及其应用 | |
CN105645387A (zh) | 石墨烯分散剂及其应用 | |
Mu et al. | Novel melamine/o-phthalaldehyde covalent organic frameworks nanosheets: enhancement flame retardant and mechanical performances of thermoplastic polyurethanes | |
Gu et al. | Facile preparation of water-dispersible graphene sheets stabilized by carboxylated oligoanilines and their anticorrosion coatings | |
Steurer et al. | Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide | |
Li et al. | Highly effective anti-corrosion epoxy spray coatings containing self-assembled clay in smectic order | |
Ma et al. | Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures | |
Ding et al. | Reversible dispersion of single-walled carbon nanotubes based on a CO2-responsive dispersant | |
US10843153B2 (en) | Two-dimensional nanomaterial dispersant, preparation method of two-dimensional nanomaterial by liquid phase exfoliation, and use thereof | |
US20120164433A1 (en) | Polymer nanocomposite precursors with carbon nanotubes and/or graphene and related thin films and patterning | |
Cui et al. | Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer | |
Miraftab et al. | Complementary experimental and quantum mechanics approaches for exploring the mechanical characteristics of epoxy composites loaded with graphene oxide-polyaniline nanofibers | |
US20170203969A1 (en) | Method for forming a graphene based material and a product | |
Zhang et al. | High-efficiency grafting of halloysite nanotubes by using π-conjugated polyfluorenes via “click” chemistry | |
JP5800678B2 (ja) | ナノカーボン水分散体及びその製造方法並びにナノカーボン含有構造体 | |
Bkakri et al. | Effects of the graphene content on the conversion efficiency of P3HT: Graphene based organic solar cells | |
CN107365259A (zh) | 二硫化钼分散剂、二硫化钼分散体、其制备方法及应用 | |
Abdolmaleki et al. | Tailored functionalization of ZnO nanoparticle via reactive cyclodextrin and its bionanocomposite synthesis | |
Arslan et al. | Poly (epsilon caprolactone)/clay nanocomposites via host–guest chemistry | |
Khaki et al. | Synthesis and identification of new thermostable polyamides containing xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles | |
Doğan et al. | A novel shape-controlled synthesis of bifunctional organic polymeric nanoparticles | |
Yang et al. | Covalent functionalization of multiwalled carbon nanotubes by polyvinylimidazole | |
Assad et al. | Overview and fundamentals of polymer nanocomposites | |
Cui et al. | Using a polyhedral oligomeric silsesquioxane surfactant and click chemistry to exfoliate montmorillonite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |