CN105631083A - Method for establishing high-voltage IGBT module switch transient model suitable for circuit simulation - Google Patents

Method for establishing high-voltage IGBT module switch transient model suitable for circuit simulation Download PDF

Info

Publication number
CN105631083A
CN105631083A CN201510028028.0A CN201510028028A CN105631083A CN 105631083 A CN105631083 A CN 105631083A CN 201510028028 A CN201510028028 A CN 201510028028A CN 105631083 A CN105631083 A CN 105631083A
Authority
CN
China
Prior art keywords
module
voltage
igbt
current
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510028028.0A
Other languages
Chinese (zh)
Inventor
徐延明
许建中
赵成勇
刘启建
徐莹
宋方方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201510028028.0A priority Critical patent/CN105631083A/en
Publication of CN105631083A publication Critical patent/CN105631083A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electronic Switches (AREA)

Abstract

本发明提供了一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法,建模方法包括高压IGBT开关暂态模型和反并联二极管反向恢复模型建立方法。本发明基于机理推导、电气等效、器件手册数据分析、数学拟合等方法,用压控电流源、可变电容等电路元件以及自定义编程模块算法可在PSCAD、SIMULINK、SABER等电路仿真平台建立模型。和现有技术相比,本发明提供的适用于电路仿真的高压IGBT模块开关暂态模型,不仅可以实现电路仿真中IGBT模块各种运行状态,而且可以在纳秒级仿真步长下模拟高压IGBT模块的电压电流尖峰、拖尾电流、米勒平台、二极管反向恢复等开关暂态特性。因此,本发明对于研究高压IGBT模块在柔性直流输电领域的损耗分析、控制保护策略有一定的促进作用。

The invention provides a method for establishing a high-voltage IGBT module switch transient model suitable for circuit simulation. The modeling method includes a high-voltage IGBT switch transient model and an anti-parallel diode reverse recovery model establishment method. Based on methods such as mechanism derivation, electrical equivalence, device manual data analysis, and mathematical fitting, the present invention uses circuit components such as voltage-controlled current sources, variable capacitors, and custom programming module algorithms to be used on circuit simulation platforms such as PSCAD, SIMULINK, and SABER. Modeling. Compared with the prior art, the high-voltage IGBT module switch transient model suitable for circuit simulation provided by the present invention can not only realize various operating states of the IGBT module in the circuit simulation, but also simulate the high-voltage IGBT at a nanosecond-level simulation step Switching transient characteristics such as voltage and current spikes, tail current, Miller platform, and diode reverse recovery of the module. Therefore, the present invention has a certain role in promoting the study of the loss analysis and control and protection strategies of the high-voltage IGBT module in the field of flexible direct current transmission.

Description

一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法A Method for Establishing Transient Model of High-Voltage IGBT Module Switching Suitable for Circuit Simulation

技术领域 technical field

本发明涉及电力电子技术仿真领域,具体涉及一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法。 The invention relates to the field of power electronics technology simulation, in particular to a method for establishing a high-voltage IGBT module switch transient model suitable for circuit simulation.

背景技术 Background technique

绝缘栅双极性晶体管集合了功率MOSFET与双极型器件的双重优点,具有输入阻抗高、耐高压、承受电流容量大、开关速度快等特性,受到了越来越多的关注和研究。在当前电力电子技术领域,高压IGBT与二极管构成开关模块已经广泛应用于各种电压源型电力电子变换装置中,如电压源换流器型直流输电(VSC-HVDC)、静止无功补偿器(STATCON)等,对于其开关暂态过程的研究及建模越来越重要。因此,建立精确且实用的IGBT模块开关暂态模型,对变换器的安全可靠运行和电气性能优化具有重要的指导意义。 Insulated gate bipolar transistors combine the dual advantages of power MOSFETs and bipolar devices, and have the characteristics of high input impedance, high voltage resistance, large current capacity, and fast switching speed, and have received more and more attention and research. In the current field of power electronics technology, high-voltage IGBTs and diodes constitute switching modules that have been widely used in various voltage source power electronic conversion devices, such as voltage source converter type direct current transmission (VSC-HVDC), static var compensator ( STATCON) and so on, it is more and more important for the research and modeling of its switching transient process. Therefore, establishing an accurate and practical IGBT module switching transient model has important guiding significance for the safe and reliable operation of the converter and the optimization of electrical performance.

目前,在电力电子器件的建模研究中,主要采用机理模型和行为模型两大类。机理模型是利用半导体物理学知识对载流子的电学行为进行简化得到解析表达式进而求解物理方程。其典型代表有:Hefner模型,KuangSheng模型和Kraus模型。机理模型的参数获取对于缺少器件物理知识的用户来说非常困难,且模型含有复杂的半导体物理方程,计算量大,仿真时间长,存在计算收敛等问题。行为模型相对仿真速度比较快,但是只考虑器件外特性,物理概念不清楚,参数不易调整,模型通用性相对较差。 At present, in the modeling research of power electronic devices, there are mainly two types of mechanism models and behavior models. The mechanism model is to use the knowledge of semiconductor physics to simplify the electrical behavior of carriers to obtain analytical expressions and then solve the physical equations. Its typical representatives are: Hefner model, KuangSheng model and Kraus model. It is very difficult for users who lack the knowledge of device physics to obtain the parameters of the mechanism model, and the model contains complex semiconductor physics equations, which requires a large amount of calculation, long simulation time, and problems such as calculation convergence. The behavioral model is faster than the simulation speed, but only considers the external characteristics of the device, the physical concept is not clear, the parameters are not easy to adjust, and the model's versatility is relatively poor.

因此,采用机理推导、电气等效、曲线拟合等方法,综合考虑模型准确度和仿真速度以及IGBT的暂态特性与二极管的反向恢复特性相互影响,避免求解复杂的半导体物理方程,基于器件手册数据,建立可模拟高压IGBT模块电压电流尖峰、拖尾电流、米勒平台、二极管反向恢复等开关暂态特性的适用于电路仿真的高压IGBT模块开关暂态模型显得尤为重要。 Therefore, using methods such as mechanism derivation, electrical equivalence, and curve fitting, comprehensively considering the model accuracy and simulation speed, as well as the interaction between the transient characteristics of the IGBT and the reverse recovery characteristics of the diode, to avoid solving complex semiconductor physical equations, based on the device According to the manual data, it is particularly important to establish a high-voltage IGBT module switching transient model suitable for circuit simulation that can simulate switching transient characteristics such as high-voltage IGBT module voltage and current spikes, tail current, Miller platform, and diode reverse recovery.

发明内容 Contents of the invention

为了满足现有技术的需要,针对背景技术中所述的机理模型和行为模型存在的不足,本发明提出了一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法。 In order to meet the needs of the prior art and aim at the shortcomings of the mechanism model and behavior model described in the background art, the present invention proposes a method for establishing a high-voltage IGBT module switching transient model suitable for circuit simulation.

一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法,其特征在于:所述方法包括以下步骤: A method for establishing a high-voltage IGBT module switch transient model suitable for circuit simulation, characterized in that: the method includes the following steps:

步骤1:建立高压IGBT暂态等效模型; Step 1: Establish a high-voltage IGBT transient equivalent model;

步骤2:建立反并联二极管反向恢复模型; Step 2: Establish the reverse recovery model of the anti-parallel diode;

步骤3:根据步骤1和步骤2所得到的IGBT暂态模型和二极管反向恢复模型,将两者按照高压IGBT模块电路结构连接,修改及增加相应参数和模块,从而建立适用于电路仿真的高压IGBT模块开关暂态模型。 Step 3: According to the IGBT transient model and diode reverse recovery model obtained in Step 1 and Step 2, connect the two according to the circuit structure of the high-voltage IGBT module, modify and add corresponding parameters and modules, so as to establish a high-voltage circuit suitable for circuit simulation IGBT module switching transient model.

步骤1中,高压IGBT暂态等效模型包括MOSFET-BJT等效模块、拖尾电流等效模块、寄生电容等效模块,具体对上述三种等效模块进行建模如下: In step 1, the high-voltage IGBT transient equivalent model includes a MOSFET-BJT equivalent module, a trailing current equivalent module, and a parasitic capacitance equivalent module. Specifically, the above three equivalent modules are modeled as follows:

(1)MOSFET-BJT等效模块: (1) MOSFET-BJT equivalent module:

IGBT导通时,内部有两个电流通路:1)电子流动产生的电流通路In,对应于MOSFET结构。2)空穴流动产生的电流通路Ip,对应于BJT结构。 When the IGBT is turned on, there are two internal current paths: 1) The current path In generated by the flow of electrons corresponds to the MOSFET structure. 2) The current path Ip generated by hole flow corresponds to the BJT structure.

IGBT工作于不同状态时,流过MOSFET电流表达式为: When the IGBT works in different states, the expression of the current flowing through the MOSFET is:

(1) (1)

采用电气等效简化,基于电路仿真要求,可根据BJT的特性近似得到如下关系: Using electrical equivalent simplification, based on circuit simulation requirements, the following relationship can be approximated according to the characteristics of BJT:

(2) (2)

由此,MOSFET-BJT等效模块可采用压控电流源来模拟IGBT模块的通态电流Ic,其解析表达式如下: Therefore, the MOSFET-BJT equivalent module can use a voltage-controlled current source to simulate the on-state current Ic of the IGBT module, and its analytical expression is as follows:

(3) (3)

其中,等效跨导K=(1+β)Kp;Vge为栅射极电压;VT为IGBT导通门槛电压;Vce为IGBT集射极电压;Kp为MOSFET跨导;β为BJT电流增益;Imos为流过MOSFET电流;Ic为流过IGBT电流即集电极电流; Among them, the equivalent transconductance K=(1+β)K p ; V ge is the gate-emitter voltage; V T is the IGBT turn-on threshold voltage; V ce is the IGBT collector-emitter voltage; K p is the MOSFET transconductance; is the BJT current gain; I mos is the current flowing through the MOSFET; I c is the collector current flowing through the IGBT current;

(2)拖尾电流等效模块: (2) Tailing current equivalent module:

在IGBT关断暂态过程中,由于IGBT存在BJT,基区大量过剩载流子复合需要时间,使得关断电流会有较长的拖尾时间。 During the turn-off transient process of the IGBT, due to the existence of BJT in the IGBT, it takes time for a large number of excess carriers in the base region to recombine, which makes the turn-off current have a longer tail time.

(4) (4)

其中τ为少数载流子寿命即拖尾时间常数;t0为拖尾电流起始时间;关断过程中当Vge小于阈值电压时开始拖尾,此时集电极电流为拖尾起始电流Itail0。将所述式(4)添加至所述式(3)中,即得完整的MOSFET-BJT等效模块。 Among them, τ is the minority carrier lifetime, that is, the tailing time constant; t 0 is the starting time of the tailing current; during the turn-off process, when V ge is less than the threshold voltage, the tailing starts, and the collector current is the starting current of the tailing at this time I tail0 . Add the formula (4) to the formula (3) to obtain a complete MOSFET-BJT equivalent module.

(3)寄生电容等效模块: (3) Parasitic capacitance equivalent module:

在数据手册中,输入电容Cies、输出电容Coes和反馈电容Cres是应用中常用的参数。它们与极间电容的关系如下: In the data sheet, input capacitance C ies , output capacitance C oes and feedback capacitance C res are parameters commonly used in applications. Their relationship with the interelectrode capacitance is as follows:

(5) (5)

利用所述式(5)结合器件手册数据,得到相应极间寄生电容值,从而完成寄生电容等效模块。 Using the formula (5) combined with the data in the device manual, the corresponding inter-electrode parasitic capacitance value is obtained, so as to complete the parasitic capacitance equivalent module.

步骤2中,反并联二极管反向恢复模型采用宏模型的思路,结合二极管反向恢复特性,基于器件数据手册,建立相应等效模型。所述模型相关参数如式(6)所示。 In step 2, the anti-parallel diode reverse recovery model adopts the idea of a macro model, combined with the diode reverse recovery characteristics, and based on the device data sheet, the corresponding equivalent model is established. The relevant parameters of the model are shown in formula (6).

(6) (6)

其中,τre为反向恢复衰减时间常数;R和L为自由量,根据电路仿真要求及实际器件情况,可取L=100nH,则R根据式(6)取相应值即可;Irm为反向恢复峰值电流;dIf/dt为反向恢复电流斜率;trr为反向恢复时间;Qrr为反向恢复电荷量,Kre为反向恢复比例系数。 Among them, τ re is the reverse recovery decay time constant; R and L are free quantities, according to the circuit simulation requirements and actual device conditions, it is desirable to take L=100nH, then R can take the corresponding value according to formula (6); I rm is the inverse dI f /dt is the reverse recovery current slope; t rr is the reverse recovery time; Q rr is the reverse recovery charge, and K re is the reverse recovery proportional coefficient.

步骤3中,将步骤1和2中两个等效模型,按照高压IGBT模块电路结构连接,由电路结构模块和自定义控制参数模块组成完整高压IGBT模块开关暂态模型电路。 In step 3, the two equivalent models in steps 1 and 2 are connected according to the circuit structure of the high-voltage IGBT module, and a complete switching transient model circuit of the high-voltage IGBT module is composed of the circuit structure module and the custom control parameter module.

高压IGBT模块的电路结构模块,其特征在于,封装后的IGBT电路结构模块对外引出G、C、E三个电极与主电路连接,其内部结构由各极间寄生电容、杂散电阻电感、栅极内阻、MOSFET-BJT等效压控电流源和二极管反向恢复等效电路组成。 The circuit structure module of the high-voltage IGBT module is characterized in that the packaged IGBT circuit structure module leads out to the outside three electrodes G, C, and E to connect with the main circuit, and its internal structure consists of parasitic capacitance between electrodes, stray resistance inductance, gate It is composed of pole internal resistance, MOSFET-BJT equivalent voltage-controlled current source and diode reverse recovery equivalent circuit.

用软件模块采集相应电压电流值输入给模型自定义参数模块,同时接受自定义参数模块的输出作为压控电流源的控制源,由栅极G引入驱动电压信号,实现对IGBT工作状态和各极电压电流的控制。所述电路结构模块和IGBT静态和动态特性紧密对应。 Use the software module to collect the corresponding voltage and current values and input them to the model custom parameter module, and at the same time accept the output of the custom parameter module as the control source of the voltage-controlled current source, and introduce the driving voltage signal from the gate G to realize the control of the IGBT working status and each pole Control of voltage and current. The circuit structure module closely corresponds to the static and dynamic characteristics of the IGBT.

自定义参数模块,其特征在于,主要包括寄生电容参数模块、MOSFET-BJT等效电流源模块以及二极管反向恢复等效电流源模块。该模块接受电路结构模块以及开关暂态模型相关参数,根据所述建模方法,自定义编程模块,输出相应参数给电路结构模块。 The self-defined parameter module is characterized in that it mainly includes a parasitic capacitance parameter module, a MOSFET-BJT equivalent current source module and a diode reverse recovery equivalent current source module. The module accepts parameters related to the circuit structure module and the switch transient model, and according to the modeling method, customizes the programming module and outputs corresponding parameters to the circuit structure module.

与最接近的现有技术相比,本发明的优异效果是: Compared with the closest prior art, the excellent effect of the present invention is:

1、针对高压IGBT模块应用场合,基于现有模型研究,采用机理推导、电气等效、曲线拟合等方法,综合考虑模型准确度和仿真速度,提出了一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法。 1. For the application of high-voltage IGBT modules, based on the existing model research, using methods such as mechanism derivation, electrical equivalence, and curve fitting, and comprehensively considering model accuracy and simulation speed, a high-voltage IGBT module suitable for circuit simulation is proposed A method for establishing a transient model of a switch.

2、本发明由机理推导,物理概念清晰,将IGBT的暂态特性与二极管的反向恢复特性相互影响综合考虑,结果真实可靠;避免了复杂的物理方程,参数显著减少且容易提取,根据器件数据手册即可确定;模型参数易调整,适用于不同IGBT及高压应用场合。 2. The present invention is deduced from the mechanism, the physical concept is clear, and the transient characteristics of the IGBT and the reverse recovery characteristics of the diode are comprehensively considered. The results are true and reliable; complex physical equations are avoided, and the parameters are significantly reduced and easy to extract. The data sheet can be determined; the model parameters are easy to adjust, and are suitable for different IGBT and high-voltage applications.

3、本发明不仅可以实现电路仿真中IGBT模块各种运行状态,而且可以在纳秒级仿真步长下模拟高压IGBT模块的电压电流尖峰、拖尾电流、米勒平台、二极管反向恢复等开关暂态特性。 3. The present invention can not only realize various operating states of the IGBT module in circuit simulation, but also simulate the voltage and current peaks, trailing current, Miller platform, diode reverse recovery and other switches of the high-voltage IGBT module under the simulation step size of nanoseconds transient characteristics.

附图说明 Description of drawings

下面结合附图对本发明进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings.

图1是:本发明提供的一种适用于电路仿真的高压IGBT模块开关暂态模型电路图; Fig. 1 is: a kind of high-voltage IGBT module switch transient model circuit diagram that is suitable for circuit simulation provided by the present invention;

图2是:本发明实施例中(a)MOSFET-BJT等效模块、(b)二极管反向等效模块、(c)极间寄生电容等效模块在PSCAD/EMTDC平台下的实现电路图; Figure 2 is: (a) MOSFET-BJT equivalent module, (b) diode reverse equivalent module, (c) inter-electrode parasitic capacitance equivalent module implementation circuit diagram under the PSCAD/EMTDC platform in the embodiment of the present invention;

图3是:本发明实施例中用于测试及验证模型正确性的二极管箝位的阻感性负载IGBT模块测试电路; Fig. 3 is: the resistance-inductive load IGBT module test circuit of the diode clamp used for testing and verifying the correctness of the model in the embodiment of the present invention;

图4是:本发明实施例中在PSCAD/EMTDC平台下搭建的测试电路与SABER仿真软件下搭建的测试电路仿真波形对比图; Fig. 4 is: in the embodiment of the present invention, the test circuit emulation waveform contrast diagram that builds under the test circuit of PSCAD/EMTDC platform and SABER emulation software;

图5是:本发明实施例中本发明实施例中在PSCAD/EMTDC平台下搭建的测试电路仿真波形与实验实测数据对比图。 Fig. 5 is a comparison diagram of the simulated waveform of the test circuit built under the PSCAD/EMTDC platform in the embodiment of the present invention and the experimentally measured data.

具体实施方式 detailed description

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应该强调的是下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。。 The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present application. It should be emphasized that the following descriptions are only exemplary and not intended to limit the scope of the present invention and its application. .

本发明提供了一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法。 The invention provides a method for establishing a transient state model of a high-voltage IGBT module switch suitable for circuit simulation.

图1是本发明提供的一种适用于电路仿真的高压IGBT模块开关暂态模型电路图。图1中,高压IGBT模块由电路结构模块和自定义参数模块构成。 Fig. 1 is a circuit diagram of a high-voltage IGBT module switching transient model suitable for circuit simulation provided by the present invention. In Figure 1, the high-voltage IGBT module is composed of a circuit structure module and a user-defined parameter module.

封装后的IGBT电路结构模块对外引出G、C、E三个电极与主电路连接,其内部结构由各极间寄生电容、杂散电阻电感、栅极内阻、MOSFET-BJT等效压控电流源和二极管反向恢复等效电路组成。用软件模块采集相应电压电流值输入给模型自定义参数模块,同时接受自定义参数模块的输出作为压控电流源的控制源,由栅极G引入驱动电压信号,实现对IGBT工作状态和各极电压电流的控制。电路结构模块和IGBT静态和动态特性紧密对应。 The encapsulated IGBT circuit structure module externally leads three electrodes G, C, and E to connect with the main circuit. Its internal structure consists of parasitic capacitance between electrodes, stray resistance inductance, gate internal resistance, MOSFET-BJT equivalent voltage control current source and diode reverse recovery equivalent circuit. Use the software module to collect the corresponding voltage and current values and input them to the model custom parameter module, and at the same time accept the output of the custom parameter module as the control source of the voltage-controlled current source, and introduce the driving voltage signal from the gate G to realize the control of the IGBT working status and each pole Control of voltage and current. The circuit structure module closely corresponds to the static and dynamic characteristics of the IGBT.

图2为自定义参数模块,主要包括MOSFET-BJT等效电流源模块、二极管反向恢复电流源等效模块以及寄生电容参数模块。自定义参数模块接受电路结构模块以及开关暂态模型相关参数,根据所述建模方法,自定义编程模块,输出相应参数给电路结构模块。 Figure 2 is a custom parameter module, which mainly includes a MOSFET-BJT equivalent current source module, a diode reverse recovery current source equivalent module, and a parasitic capacitance parameter module. The self-defining parameter module accepts the relevant parameters of the circuit structure module and the switch transient model, and according to the modeling method, customizes the programming module and outputs corresponding parameters to the circuit structure module.

图2(a)为MOSFET-BJT等效电流源模块,其中模块输入为导通门槛电压VT、栅射极电压Vge、集射极电压Vce、集电极电流Ic、仿真时间t以及相关控制参数等,而输出为MOSFET-BJT等效压控电流源的电流值Imos1。通过内部按照所述步骤1内容自定义编程实现,模拟MOSFET与BJT的特性。 Figure 2(a) is a MOSFET-BJT equivalent current source module, where the module inputs are the conduction threshold voltage V T , the gate-emitter voltage V ge , the collector-emitter voltage V ce , the collector current I c , the simulation time t and Related control parameters, etc., and the output is the current value I mos1 of the MOSFET-BJT equivalent voltage-controlled current source. Through the internal self-defined programming according to the content of step 1, the characteristics of MOSFET and BJT are simulated.

图2(b)为二极管反向恢复电流源等效模块,其中模块输入为二极管电流Id、仿真时间t、反向恢复电流峰值Irm、反向恢复电流斜率dif等反向恢复参数,而输出为二极管反向恢复等效电流源的电流值If。通过内部按照所述步骤2内容自定义编程实现,模拟二极管的反向恢复特性。 Figure 2(b) is the equivalent module of diode reverse recovery current source, where the input of the module is diode current I d , simulation time t, reverse recovery current peak value I rm , reverse recovery current slope dif and other reverse recovery parameters, and The output is the current value I f of the diode reverse recovery equivalent current source. Through internal self-defined programming according to the content of step 2, the reverse recovery characteristics of the simulated diode are simulated.

图2(c)为极间寄生电容模块,其中模块输入为集射极电压Vce、仿真时间t,而模块输出为输入电容Cies、输出电容Coes、反馈电容Cres。通过器件手册电容特性曲线自定义编程实现,再按照所述步骤3转化成极间寄生电容Cge、Cgc和CceFigure 2(c) shows the inter-electrode parasitic capacitance module, where the module input is the collector-emitter voltage V ce and the simulation time t, and the module output is the input capacitance C ies , the output capacitance C oes , and the feedback capacitance C res . It is realized through custom programming of the capacitance characteristic curve in the device manual, and then converted into inter-electrode parasitic capacitances C ge , C gc and C ce according to step 3.

图3用二极管箝位的阻感性负载电路作为高压IGBT模块开关暂态模型测试电路。其中,续流二极管用IGBT模块代替,RG为栅极外部电阻取6Ω,LL为感性负载取50uH,RL为负载电阻取2.2Ω,外部电压Vcc为1kV。 Figure 3 uses a diode-clamped resistive-inductive load circuit as a high-voltage IGBT module switch transient model test circuit. Among them, the freewheeling diode is replaced by an IGBT module, R G is 6Ω for the gate external resistance, LL is 50uH for the inductive load, RL is 2.2Ω for the load resistance, and the external voltage V cc is 1kV.

表1IGBT模块开关暂态模型关键参数 参数 数值 参数 数值 Rg/Ω 3.2 R/Ω 0.65 Ls/nH 20 L/nH 100 Rs/ mΩ 0.3 Rf/ mΩ 11.8 K /A·V-2 35.4 Irm/A 113 τ/μs 5 τre/μs 0.065 Table 1 Key parameters of IGBT module switching transient model parameter value parameter value Rg/Ω 3.2 R/Ω 0.65 Ls/nH 20 L/nH 100 Rs/mΩ 0.3 Rf /mΩ 11.8 K /A·V -2 35.4 I rm /A 113 τ/μs 5 τ re /μs 0.065

表1为以三菱公司生产的CM450DXL-34SA型1.7kV/450A-IGBT功率模块为例,IGBT模块开关暂态模型的关键参数。 Table 1 shows the key parameters of the IGBT module switching transient model, taking the CM450DXL-34SA 1.7kV/450A-IGBT power module produced by Mitsubishi Corporation as an example.

两路栅极驱动信号Ug1和Ug2通过输出+15V与0V来分别控制IGBT1模块和IGBT2模块的工作状态。测试电路中,Ug1恒定为0V,即IGBT1保持关断,只起续流二极管作用。通过控制Ug2输出电压+15V与0V先导通IGBT2模块,对负载电感LL充电,将电路电流升至450A,再关断IGBT2模块得到IGBT2模块的关断电流和电压暂态波形,负载电感通过IGBT1模块中二极管续流,再开通IGBT2模块得到相应的开通电压电流暂态波形来测试模型稳态和暂态特性,PSCAD和SABER的仿真波形对比结果如图4所示。 The two gate drive signals U g1 and U g2 respectively control the working states of the IGBT1 module and the IGBT2 module by outputting +15V and 0V. In the test circuit, U g1 is constant at 0V, that is, IGBT1 remains off and only plays the role of a freewheeling diode. By controlling the U g2 output voltage +15V and 0V, turn on the IGBT2 module first, charge the load inductance LL, increase the circuit current to 450A, and then turn off the IGBT2 module to obtain the turn-off current and voltage transient waveform of the IGBT2 module. The load inductance passes through IGBT1 The diode in the module continues to flow, and then the IGBT2 module is turned on to obtain the corresponding turn-on voltage and current transient waveforms to test the model's steady-state and transient characteristics. The comparison results of the simulation waveforms of PSCAD and SABER are shown in Figure 4.

为进一步验证模型正确性,采用IGBT型号为SGH40N60,续流二极管的型号为HFA25TB60,根据相应型号器件手册,提取并修改相关仿真参数,仿真波形与实验实测数据对比结果如图5所示。 In order to further verify the correctness of the model, the model of the IGBT is SGH40N60, and the model of the freewheeling diode is HFA25TB60. According to the corresponding model device manual, the relevant simulation parameters are extracted and modified. The comparison results of the simulation waveform and the experimental data are shown in Figure 5.

通过PSCAD仿真波形与SABER仿真波形以及实验实测数据对比,本发明提出的适用于电路仿真的高压IGBT模块开关暂态模型不仅能够实验高压IGBT的各种工作状态,而且可以模拟电流电压尖峰、米勒平台、拖尾电流、二极管反向恢复电流等开关暂态特性。 By comparing the PSCAD simulation waveform with the SABER simulation waveform and the experimental measured data, the high-voltage IGBT module switching transient model suitable for circuit simulation proposed by the present invention can not only experiment various working states of the high-voltage IGBT, but also simulate current and voltage spikes, Miller Platform, tail current, diode reverse recovery current and other switching transient characteristics.

最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。 Finally, it should be noted that the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.

Claims (7)

1.一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法,其特征在于:所述方法包括以下步骤: 1. A method for establishing a high-voltage IGBT module switch transient model suitable for circuit simulation, characterized in that: the method may further comprise the steps: 步骤1:建立高压IGBT暂态等效模型; Step 1: Establish a high-voltage IGBT transient equivalent model; 步骤2:建立反并联二极管反向恢复模型; Step 2: Establish the reverse recovery model of the anti-parallel diode; 步骤3:根据步骤1和步骤2所得到的IGBT暂态模型和二极管反向恢复模型,将两者按照高压IGBT模块电路结构连接,修改及增加相应参数和模块,从而建立适用于电路仿真的高压IGBT模块开关暂态模型。 Step 3: According to the IGBT transient model and diode reverse recovery model obtained in Step 1 and Step 2, connect the two according to the circuit structure of the high-voltage IGBT module, modify and add corresponding parameters and modules, so as to establish a high-voltage circuit suitable for circuit simulation IGBT module switching transient model. 2.如权利要求1所述一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法,其特征在于,所述步骤1中,高压IGBT暂态等效模型包括MOSFET-BJT等效模块、拖尾电流等效模块、寄生电容等效模块,具体对上述三种等效模块进行建模如下: 2. a kind of high-voltage IGBT module switching transient model establishment method suitable for circuit simulation as claimed in claim 1, is characterized in that, in described step 1, high-voltage IGBT transient equivalent model comprises MOSFET-BJT equivalent module, Tailing current equivalent module and parasitic capacitance equivalent module, the specific modeling of the above three equivalent modules is as follows: (1)MOSFET-BJT等效模块: (1) MOSFET-BJT equivalent module: IGBT导通时,内部有两个电流通路:1)电子流动产生的电流通路In,对应于MOSFET结构; When the IGBT is turned on, there are two current paths inside: 1) The current path In generated by the flow of electrons corresponds to the MOSFET structure; 2)空穴流动产生的电流通路Ip,对应于BJT结构; 2) The current path Ip generated by the hole flow corresponds to the BJT structure; IGBT工作于不同状态时,流过MOSFET电流表达式为: When the IGBT works in different states, the expression of the current flowing through the MOSFET is: (1) (1) 采用电气等效简化,基于电路仿真要求,可根据BJT的特性近似得到如下关系: Using electrical equivalent simplification, based on circuit simulation requirements, the following relationship can be approximated according to the characteristics of BJT: (2) (2) 由此,MOSFET-BJT等效模块可采用压控电流源来模拟IGBT模块的通态电流Ic,其解析表达式如下: Therefore, the MOSFET-BJT equivalent module can use a voltage-controlled current source to simulate the on-state current Ic of the IGBT module, and its analytical expression is as follows: (3) (3) 其中,等效跨导K=(1+β)Kp;Vge为栅射极电压;VT为IGBT导通门槛电压;Vce为IGBT集射极电压;Kp为MOSFET跨导;β为BJT电流增益;Imos为流过MOSFET电流;Ic为流过IGBT电流即集电极电流; Among them, the equivalent transconductance K=(1+β)K p ; V ge is the gate-emitter voltage; V T is the IGBT turn-on threshold voltage; V ce is the IGBT collector-emitter voltage; K p is the MOSFET transconductance; is the BJT current gain; I mos is the current flowing through the MOSFET; I c is the collector current flowing through the IGBT current; (2)拖尾电流等效模块: (2) Tailing current equivalent module: 在IGBT关断暂态过程中,由于IGBT存在BJT,基区大量过剩载流子复合需要时间,使得关断电流会有较长的拖尾时间; During the IGBT turn-off transient process, due to the existence of BJT in the IGBT, it takes time for a large number of excess carriers in the base area to recombine, so that the turn-off current will have a longer tail time; (4) (4) 其中τ为少数载流子寿命即拖尾时间常数;t0为拖尾电流起始时间;关断过程中当Vge小于阈值电压时开始拖尾,此时集电极电流为拖尾起始电流Itail0Among them, τ is the minority carrier lifetime, that is, the tailing time constant; t 0 is the starting time of the tailing current; during the turn-off process, when V ge is less than the threshold voltage, the tailing starts, and the collector current is the starting current of the tailing at this time I tail0 ; 将所述式(4)添加至所述式(3)中,即得完整的MOSFET-BJT等效模块; Add the formula (4) to the formula (3) to obtain a complete MOSFET-BJT equivalent module; (3)寄生电容等效模块: (3) Parasitic capacitance equivalent module: 在数据手册中,输入电容Cies、输出电容Coes和反馈电容Cres是应用中常用的参数; In the data sheet, input capacitance C ies , output capacitance C oes and feedback capacitance C res are commonly used parameters in applications; 它们与极间电容的关系如下: Their relationship with the interelectrode capacitance is as follows: (5) (5) 利用所述式(5)结合器件手册数据,得到相应极间寄生电容值,从而完成寄生电容等效模块。 Using the formula (5) combined with the data in the device manual, the corresponding inter-electrode parasitic capacitance value is obtained, so as to complete the parasitic capacitance equivalent module. 3.如权利要求1所述一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法,其特征在于,所述步骤2中,反并联二极管反向恢复模型采用宏模型的思路,结合二极管反向恢复特性,基于器件数据手册,建立相应等效模型; 3. A kind of high-voltage IGBT module switching transient model establishment method suitable for circuit simulation as claimed in claim 1, it is characterized in that, in described step 2, antiparallel diode reverse recovery model adopts the thinking of macro model, in conjunction with diode Reverse recovery characteristics, based on the device data sheet, establish a corresponding equivalent model; 所述模型相关参数如式(6)所示; The relevant parameters of the model are shown in formula (6); (6) (6) 其中,τre为反向恢复衰减时间常数;R和L为自由量,根据电路仿真要求及实际器件情况,可取L=100nH,则R根据式(6)取相应值即可;Irm为反向恢复峰值电流;dIf/dt为反向恢复电流斜率;trr为反向恢复时间;Qrr为反向恢复电荷量,Kre为反向恢复比例系数。 Among them, τ re is the reverse recovery decay time constant; R and L are free quantities, according to the circuit simulation requirements and actual device conditions, it is desirable to take L=100nH, then R can take the corresponding value according to formula (6); I rm is the inverse dI f /dt is the reverse recovery current slope; t rr is the reverse recovery time; Q rr is the reverse recovery charge, and K re is the reverse recovery proportional coefficient. 4.如权利要求1所述一种适用于电路仿真的高压IGBT模块开关暂态模型建立方法,其特征在于,所述步骤3中,将所述步骤1和2中两个等效模型,按照高压IGBT模块电路结构连接,由电路结构模块和定义控制参数模块组成完整高压IGBT模块开关暂态模型电路。 4. a kind of high-voltage IGBT module switching transient model establishment method suitable for circuit simulation as claimed in claim 1, is characterized in that, in described step 3, two equivalent models in described step 1 and 2, according to The circuit structure connection of the high voltage IGBT module is composed of the circuit structure module and the control parameter definition module to form a complete high voltage IGBT module switching transient model circuit. 5.如权利要求4所述高压IGBT模块的电路结构模块,其特征在于,封装后的IGBT电路结构模块对外引出G、C、E三个电极与主电路连接,其内部结构由各极间寄生电容、杂散电阻电感、栅极内阻、MOSFET-BJT等效压控电流源和二极管反向恢复等效电路组成。 5. The circuit structure module of the high voltage IGBT module as claimed in claim 4, characterized in that, the encapsulated IGBT circuit structure module externally draws three electrodes G, C, and E to connect with the main circuit, and its internal structure is formed by parasitic electrodes between the poles. Capacitance, stray resistance inductance, gate internal resistance, MOSFET-BJT equivalent voltage-controlled current source and diode reverse recovery equivalent circuit. 6.如权利要求4所述高压IGBT模块开关暂态模型电路,其特征在于,用软件模块采集相应电压电流值输入给模型自定义参数模块,同时接受自定义参数模块的输出作为压控电流源的控制源,由栅极G引入驱动电压信号,实现对IGBT工作状态和各极电压电流的控制; 6. high voltage IGBT module switch transient model circuit as claimed in claim 4, is characterized in that, gathers corresponding voltage and current value input to model self-defining parameter module with software module, accepts the output of self-defining parameter module simultaneously as voltage control current source The control source of the gate G introduces the driving voltage signal to realize the control of the working state of the IGBT and the voltage and current of each pole; 所述电路结构模块和IGBT静态和动态特性紧密对应。 The circuit structure module closely corresponds to the static and dynamic characteristics of the IGBT. 7.如权利要求5所述模型自定义参数模块,其特征在于,主要包括寄生电容参数模块、MOSFET-BJT等效电流源模块以及二极管反向恢复等效电流源模块; 7. model self-defined parameter module as claimed in claim 5, is characterized in that, mainly comprises parasitic capacitance parameter module, MOSFET-BJT equivalent current source module and diode reverse recovery equivalent current source module; 该模块接受电路结构模块以及开关暂态模型相关参数,根据权利要求2所述建模方法,自定义编程模块,输出相应参数给电路结构模块。 The module accepts parameters related to the circuit structure module and the switch transient model, and according to the modeling method described in claim 2, customizes the programming module and outputs corresponding parameters to the circuit structure module.
CN201510028028.0A 2015-03-20 2015-03-20 Method for establishing high-voltage IGBT module switch transient model suitable for circuit simulation Pending CN105631083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510028028.0A CN105631083A (en) 2015-03-20 2015-03-20 Method for establishing high-voltage IGBT module switch transient model suitable for circuit simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510028028.0A CN105631083A (en) 2015-03-20 2015-03-20 Method for establishing high-voltage IGBT module switch transient model suitable for circuit simulation

Publications (1)

Publication Number Publication Date
CN105631083A true CN105631083A (en) 2016-06-01

Family

ID=56046014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510028028.0A Pending CN105631083A (en) 2015-03-20 2015-03-20 Method for establishing high-voltage IGBT module switch transient model suitable for circuit simulation

Country Status (1)

Country Link
CN (1) CN105631083A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295013A (en) * 2016-08-12 2017-01-04 全球能源互联网研究院 A kind of modeling method of high-voltage semi-conductor device short term failure model
CN106991221A (en) * 2017-03-24 2017-07-28 清华大学 A kind of sectional broken line model based on IGBT device transient physical process
CN107832561A (en) * 2017-11-29 2018-03-23 中国南方电网有限责任公司超高压输电公司广州局 The analysis method that a kind of HVDC transmission line influences on communication line
CN108763696A (en) * 2018-05-18 2018-11-06 中国人民解放军海军工程大学 A kind of wide base area lumped charge modeling method of high-power bipolar semiconductor
CN109557828A (en) * 2018-10-31 2019-04-02 西安理工大学 A kind of SiCMOSFET simulation circuit model parameters precision bearing calibration
CN111767634A (en) * 2020-05-19 2020-10-13 中国人民解放军海军工程大学 Method for establishing IGBT switch transient model
CN112906327A (en) * 2021-01-19 2021-06-04 中国电力科学研究院有限公司 Simulation model device suitable for MOSFET device
CN114239221A (en) * 2021-11-18 2022-03-25 华南理工大学 Modeling method, system, device and medium for lightning transient process of diode assembly
CN114548014A (en) * 2022-01-05 2022-05-27 西安电子科技大学 IGBT off-state current tailing degradation evaluation method
CN118627450A (en) * 2024-08-13 2024-09-10 西北工业大学 A multi-piecewise linear modeling solution method for switching transients in power electronic converters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211567B1 (en) * 1998-01-20 2001-04-03 International Rectifier Corp. Top heatsink for IGBT
CN102323967B (en) * 2011-09-07 2014-05-14 中国人民解放军海军工程大学 Method for establishing transient model of FS (Field Stop)-type IGBT (Insulated Gate Bipolar Transistor) switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211567B1 (en) * 1998-01-20 2001-04-03 International Rectifier Corp. Top heatsink for IGBT
CN102323967B (en) * 2011-09-07 2014-05-14 中国人民解放军海军工程大学 Method for establishing transient model of FS (Field Stop)-type IGBT (Insulated Gate Bipolar Transistor) switch

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHAHROOD等: "A New Macro-Model for Power Diodes Reverse Recovery", 《PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON POWER SYSTEMS》 *
唐勇等: "高温下的IGBT可靠性与在线评估", 《电工技术学报》 *
姬世奇等: "高压IGBT暂态机理模型分析", 《清华大学学报(自然科学版)》 *
张宇等: "IGBT 的Hammerstein 结构宏模型研究", 《电工电能新技术》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295013B (en) * 2016-08-12 2019-09-27 全球能源互联网研究院有限公司 A Modeling Method for Short-term Failure Model of High-Voltage Semiconductor Devices
CN106295013A (en) * 2016-08-12 2017-01-04 全球能源互联网研究院 A kind of modeling method of high-voltage semi-conductor device short term failure model
CN106991221A (en) * 2017-03-24 2017-07-28 清华大学 A kind of sectional broken line model based on IGBT device transient physical process
CN106991221B (en) * 2017-03-24 2020-04-24 清华大学 Segmented broken line modeling method based on transient physical process of IGBT device
CN107832561A (en) * 2017-11-29 2018-03-23 中国南方电网有限责任公司超高压输电公司广州局 The analysis method that a kind of HVDC transmission line influences on communication line
CN108763696B (en) * 2018-05-18 2022-04-22 中国人民解放军海军工程大学 Large-power bipolar semiconductor device wide-base-area lumped charge modeling method
CN108763696A (en) * 2018-05-18 2018-11-06 中国人民解放军海军工程大学 A kind of wide base area lumped charge modeling method of high-power bipolar semiconductor
CN109557828A (en) * 2018-10-31 2019-04-02 西安理工大学 A kind of SiCMOSFET simulation circuit model parameters precision bearing calibration
CN109557828B (en) * 2018-10-31 2022-03-25 西安理工大学 SiCMOS MOSFET simulation circuit model parameter precision correction method
CN111767634A (en) * 2020-05-19 2020-10-13 中国人民解放军海军工程大学 Method for establishing IGBT switch transient model
CN111767634B (en) * 2020-05-19 2022-09-27 中国人民解放军海军工程大学 The Establishment Method of IGBT Switching Transient Model
CN112906327A (en) * 2021-01-19 2021-06-04 中国电力科学研究院有限公司 Simulation model device suitable for MOSFET device
CN114239221A (en) * 2021-11-18 2022-03-25 华南理工大学 Modeling method, system, device and medium for lightning transient process of diode assembly
CN114239221B (en) * 2021-11-18 2025-01-14 华南理工大学 Modeling method, system, device and medium for lightning transient process of diode assembly
CN114548014A (en) * 2022-01-05 2022-05-27 西安电子科技大学 IGBT off-state current tailing degradation evaluation method
CN118627450A (en) * 2024-08-13 2024-09-10 西北工业大学 A multi-piecewise linear modeling solution method for switching transients in power electronic converters

Similar Documents

Publication Publication Date Title
CN105631083A (en) Method for establishing high-voltage IGBT module switch transient model suitable for circuit simulation
CN106156379B (en) A Method for Establishing Transient Model of Thermoelectric Coupled IGBT Module
CN109344419B (en) Transient sectional analysis model for IGBT and PIN diode commutation units
CN106156378A (en) A kind of can the IGBT Building of Simulation Model method of real time implementation
CN102780384A (en) High-performance low-cost IGBT (Insulated Gate Bipolar Translator) negative pressure bootstrap drive circuit
JP5619673B2 (en) Switching circuit and semiconductor module
CN106202590B (en) IGBT module switching transient model parameter acquisition method and model establishment method
Rødal et al. Capacitance variations and gate voltage hysteresis effects on the Turn-ON switching transients modeling of high-voltage SiC MOSFETs
Song et al. A dynamic measurement method for parasitic capacitances of high voltage SiC MOSFETs
CN104092363B (en) Z-source inverter topological circuit containing Z-source inverter RCD buffer circuit
CN106407542A (en) Modeling method for gate pole current conversion thyristor physical model used for circuit simulation
CN103905018A (en) Dynamic current sharing circuit of IGBT module parallel unsymmetrical circuit
CN107257205B (en) A kind of MMC power module nonlinear characteristic simulation model
Xu et al. A behavioral transient model of IGBT for switching cell power loss estimation in electromagnetic transient simulation
Lee et al. 4H-SiC 15kV n-IGBT physics-based sub-circuit model implemented in Simulink/Matlab
JP2013062965A (en) Semiconductor module
Wang et al. An insight into the voltage rising behavior during turn-off process of series connected SiC MOSFETs on circuit level
CN116760298A (en) Parallel MOS tube current sharing circuit and test circuit based on source pole differential mode inductance
Wu et al. Investigation into the switching transient of SiC MOSFET using voltage/current source gate driver
Ke et al. Modeling and simulation of SiC MOSFET turn-off oscillation under influence of parasitic parameter
CN111273149B (en) IGBT module modeling method for electromagnetic compatibility simulation
Bao et al. Voltage-Balanced Behavioral Model Considering Carrier Extraction Effect for Series-Connected Trench Gate FS-IGBTs
CN101741361A (en) A Slope and Peak Integrated Control Circuit for Insulated Gate Bipolar Transistors
CN205725442U (en) Current equalization circuit and test circuit for IGBT module
Liu et al. Active gate driver for current overshoot suppression of SiC+ Si hybrid switches with dynamic gate current regulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160601

WD01 Invention patent application deemed withdrawn after publication