CN105623076A - 一种高熔体强度的抗冲聚丙烯材料 - Google Patents

一种高熔体强度的抗冲聚丙烯材料 Download PDF

Info

Publication number
CN105623076A
CN105623076A CN201410602676.8A CN201410602676A CN105623076A CN 105623076 A CN105623076 A CN 105623076A CN 201410602676 A CN201410602676 A CN 201410602676A CN 105623076 A CN105623076 A CN 105623076A
Authority
CN
China
Prior art keywords
equal
noblen
ethylene
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410602676.8A
Other languages
English (en)
Other versions
CN105623076B (zh
Inventor
郭梅芳
黄红红
殷建军
宋文波
张师军
乔金樑
刘宣伯
侯莉萍
李娟�
邹发生
尹华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN201410602676.8A priority Critical patent/CN105623076B/zh
Publication of CN105623076A publication Critical patent/CN105623076A/zh
Application granted granted Critical
Publication of CN105623076B publication Critical patent/CN105623076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种高熔体强度的抗冲聚丙烯材料及其制备方法,所述聚丙烯材料包括丙烯均聚物组分和乙烯-1-丁烯共聚物组分;乙烯-1-丁烯共聚物组分与丙烯均聚物组分的重量比为11-80:100,乙烯-1-丁烯共聚物中的丁烯含量大于或等于20重量%,且小于或等于45重量%;所述材料的室温三氯苯可溶物的Mw与室温三氯苯不溶物的Mw之比大于0.5,小于或等于1。根据本发明提供的聚丙烯材料具有高的熔体强度,还具有高刚性和高韧性特点,应用广泛,例如适用于汽车部件、医疗器械、家居用品等领域。

Description

一种高熔体强度的抗冲聚丙烯材料
技术领域
本发明涉及一种聚丙烯材料,具体涉及一种高熔体强度的抗冲聚丙烯材料及其制备方法。
背景技术
抗冲聚丙烯具有优异的高低温抗冲击强度、较高的拉伸强度、弯曲模量等刚性以及较高的耐热温度,在很多领域已广泛应用,如模塑或挤出成型的汽车部件、家电部件、容器和家居用品等。抗冲聚丙烯由于其熔体强度较低,通常用于注射加工,而用于吹塑成型时,存在模胚尺寸不稳定,制品厚度不均甚至无法成型等问题。
提高聚丙烯熔体强度的常用的做法是降低熔融指数、即提高聚丙烯分子量,但这会带来材料熔融及挤出困难。还有一种方法是加宽分子量分布,如US7365136和US6875826报道了一种制备宽分子量分布、高熔体强度均聚和无规共聚聚丙烯的方法,其选择烷氧基硅烷为外给电子体(如二环戊基二甲氧基硅烷),在多个串联的反应器中通过调节氢气浓度,来调控分子量大小及分布,实现提高聚丙烯熔体强度的效果。WO9426794公开了多个串联的反应器制备高熔体强度均聚和无规聚丙烯的方法,其通过调节不同反应器中氢气的浓度来制备宽分子量分布或双峰分布的高熔体强度聚丙烯,催化剂的性质在各个反应器未做调整,因而制备过程需要大量氢气。
CN102134290和CN102134291公开了一种宽分子量分布、高熔体强度均聚聚丙烯的制备方法,其采用多个串联反应器通过控制外给电子体组分在不同反应阶段的种类和比例,再结合分子量调节剂氢气用量的控制,制备了宽分子量分布、高熔体强度均聚聚丙烯或无规共聚聚丙烯。
中国申请专利201210422726.5还报道了通过硅烷类和二醚类两种不同类型的外给电子体的合理搭配来实现对催化剂在不同反应器间的等规指数和氢调敏感性的调控,得到具有宽分子量分布、高熔体强度均聚聚丙烯或无规共聚聚丙烯的制备方法。
上述专利报道的是高熔体强度均聚聚丙烯或无规共聚聚丙烯的制备方法,也就是说,通过这些方法制备得到的均聚聚丙烯或无规共聚聚丙烯尽管具备较高的熔体强度,但是刚性、韧性或抗冲性能不足,从而限制了所得到的聚丙烯的应用。因此,提供具有橡胶组分以及橡胶分散相结构的高熔体强度、高刚性和韧性的抗冲聚丙烯及其制备方法将具有重大意义。
发明内容
本发明的发明人经过深入研究,提供了一种高熔体的强度抗冲聚丙烯材料,该聚丙烯材料同时还具有高刚性和高韧性特点。该聚丙烯材料是适用于汽车部件、医疗器械、家居用品等领域的优良材料。
本发明还提供了一种制备高熔体强度的抗冲聚丙烯材料的方法。通过本发明的方法获得的聚丙烯材料还具有高刚性和高韧性的特点。
根据本发明,提供了一种高熔体强度的抗冲聚丙烯材料,包括丙烯均聚物组分和乙烯-1-丁烯共聚物(乙烯/1-丁烯共聚物)组分,其中所述丙烯均聚物组分至少包括第一丙烯均聚物和第二丙烯均聚物;所述乙烯-1-丁烯共聚物组分与丙烯均聚物组分的重量比为11-80:100;所述乙烯-1-丁烯共聚物中的丁烯含量大于或等于20重量%,且小于或等于45重量%;所述材料的室温三氯苯可溶物的Mw与室温三氯苯不溶物的Mw之比大于0.5,小于或等于1,例如大于0.5,且小于0.8。在此,容易理解,所谓“乙烯-1-丁烯共聚物中的丁烯含量”可以理解为在由乙烯单体和1-丁烯单体共聚形成的乙烯-1-丁烯共聚物中,由1-丁烯单体构成的部分的重量含量。
在本发明中,为表征方便,橡胶相的分子量以室温三氯苯可溶物的分子量计。
在本发明提供的聚丙烯材料中,丙烯均聚物组分作为连续相,为聚丙烯材料提供一定的刚性,乙烯-1-丁烯共聚物组分作为橡胶相、即分散相,能够提高聚丙烯材料的韧性。为了保证本发明的产品具有较好的刚韧平衡性,本发明采用乙烯-1-丁烯无规共聚物作为橡胶组分,并且,本发明的发明人经过大量试验发现,在本发明的抗冲聚丙烯材料中,使用乙烯-1-丁烯共聚物组分与丙烯均聚物组分的重量比为11-80:100,效果较好;进一步地,当使乙烯-1-丁烯共聚物中的丁烯含量大于或等于20重量%,且小于或等于45重量%时,例如20重量%、30重量%、40重量%、45重量%等,获得刚性和韧性较好的抗冲聚丙烯材料。
为了进一步优化聚丙烯材料的刚性和韧性,同时保证具备较高的熔体强度,根据本发明的抗冲聚丙烯材料的室温二甲苯可溶物含量优选大于10重量%,且小于30重量%。在本发明中,橡胶相的含量以室温二甲苯可溶物含量计,可以按照ASTMD5492所述方法测定。本发明的抗冲聚丙烯材料的熔融指数范围优选控制在0.1-15g/10min,还优选0.1-6.0g/10min。所述熔融指数在230℃,2.16kg的载荷下测定。对于高熔体强度抗冲聚丙烯,由于是多相结构的材料,影响熔体强度的因素就变得较为复杂。本发明人发现,为了保证产品的高熔体强度,所述抗冲聚丙烯材料的分子量分布Mw/Mn(重均分子量/数均分子量)优选小于或等于10,且大于或等于4,例如为4、5、6、7、8、9或10;Mz+1/Mw大于或等于10,并优选小于或等于20,例如大于10,且小于15。
在一些优选的实施方案中,本发明的抗冲聚丙烯材料的丁烯含量为5-20重量%。
根据本发明的抗冲聚丙烯材料,分子量多分散指数(PI)为4-8,优选4.5-6。
在本发明的优选实施方式中,所述第一丙烯均聚物的熔融指数小于第二丙烯均聚物的熔融指数。
在本发明的优选实施方案中,第一丙烯均聚物在230℃,2.16kg的载荷下测定的熔融指数为0.001-0.4g/10min;包括第一丙烯均聚物和第二丙烯均聚物的丙烯均聚物组分在230℃,2.16kg的载荷下测定的熔融指数为0.1-15g/10min,优选0.1-10g/10min,还优选0.1-6g/10min。优选地,所述第一丙烯均聚物和第二丙烯均聚物的重量比为40:60-60:40。
通过将本发明的抗冲聚丙烯材料的丙烯均聚物组分设置为包括具有不同熔融指数,以及具有特定比例关系的至少两种丙烯均聚物的组合,尤其在第一丙烯均聚物和丙烯均聚物分别具有特定的不同的分子量和分子量分布的条件下,使构成本发明的聚丙烯材料具有特定的连续相,在该连续相与特定的分散相即橡胶相的进一步组合下,产生既具有高的熔体强度,同时具有良好的刚性和韧性的抗冲聚丙烯材料。
根据本发明的优选实施方案,构成本发明的抗冲聚丙烯材料的丙烯均聚物组分具有如下特征:
分子量分布Mw/Mn=6-20,优选Mw/Mn=10-16;
分子量大于500万级分的含量大于或等于1.5重量%,且小于或等于5重量%;
分子量小于5万级分的含量大于或等于15.0重量%,且小于或等于40重量%;
Mz+1/Mn大于或等于70,且小于150。
根据本发明提供的抗冲聚丙烯材料,其通过在第一丙烯均聚物的存在下进行丙烯均聚反应得到包含第一丙烯均聚物和第二丙烯均聚物的丙烯均聚物组分,然后在所述丙烯均聚物组分的存在下进行乙烯-1-丁烯共聚反应得到包含乙烯-1-丁烯共聚物的材料来制备。由此可见,本发明的抗冲聚丙烯材料并不是丙烯均聚物组分乙烯-1-丁烯共聚物组分的简单混合,而是在特定的丙烯均聚物组分的基础上进一步进行特定的乙烯-1-丁烯共聚反应之后得到的包含丙烯均聚物和乙烯-1-丁烯共聚物的整体性聚丙烯材料。
本发明的聚丙烯材料还具有较好的耐热性能,采用DSC测定的最终聚丙烯树脂的熔融峰温Tm大于或等于158℃。
根据本发明,还提供了一种制备如上所述的高熔体强度抗冲聚丙烯材料的方法,包括:
第一步:丙烯均聚反应,包括:
第一阶段:在包含第一外给电子体的Ziegler-Natta催化剂的作用下,在氢气存在或不存在下进行丙烯均聚反应,得到包含第一丙烯均聚物的反应料流;
第二阶段:加入第二外给电子体与所述反应料流中的催化剂进行络合反应,然后在第一丙烯均聚物和氢气的存在下进行丙烯均聚反应,产生第二丙烯均聚物,得到包含第一丙烯均聚物和第二丙烯均聚物的丙烯均聚物组分;其中,
所述第一丙烯均聚物和所述丙烯均聚物组分在230℃,2.16kg的载荷下测定的熔融指数分别为0.001-0.4g/10min和0.1-15g/10min;
第二步:乙烯-1-丁烯共聚反应,在所述丙烯均聚物组分和氢气的存在下进行乙烯-1-丁烯气相共聚反应,产生乙烯-1-丁烯共聚物组分,得到包含所述丙烯均聚物组分和乙烯-1-丁烯共聚物组分的聚丙烯材料。
优选地,经第一步得到的丙烯均聚物组分的熔融指数与第二步得到的包括所述丙烯均聚物组分和乙烯-1-丁烯共聚物组分的聚丙烯材料的熔融指数比大于或等于0.6,且小于1。
在第一阶段中,氢气的用量例如可以是0-200ppm。在第二阶段中,氢气的用量为2000-20000ppm。本发明提供的方法优选在两个或两个以上串联操作的反应器中进行。
根据本发明的方法为Ziegler-Natta催化剂直接催化聚合的方法。通过采用在串联的多个反应器内分别使用两种或多种不同类型的外给电子体,选择适宜的外给电子体用量,结合反应中不同的链转移剂氢气的用量,制备具有特定熔融指数的、含有大量超高分子量组分的极宽分子量分布的均聚聚丙烯连续相,并在此基础上进一步进行乙烯与1-丁烯的共聚合,得到分散于连续相中的橡胶相,通过控制共聚反应的反应条件来控制橡胶相的组成、结构及含量等,优选所述聚丙烯材料的分子量分布Mw/Mn小于或等于10,且大于或等于4;Mz+1/Mw大于10,且小于20,优选大于10,且小于15;优选所述聚丙烯材料的室温二甲苯可溶物含量大于10重量%,且小于30重量%;并且室温三氯苯可溶物的Mw与室温三氯苯不溶物的Mw之比大于0.5,且小于1,优选大于0.5,小于0.8,获得具有高熔体强度效果的抗冲聚丙烯材料。
在本发明提供的方法中,所使用的催化剂为Ziegler-Natta催化剂,优选具有高立构选择性的催化剂。此处所述的高立构选择性的Ziegler-Natta催化剂是指可以用于制备全同立构指数大于95%的丙烯均聚物的催化剂。这类催化剂通常含有(1)含钛的固体催化剂活性组分,其主要成分为镁、钛、卤素和内给电子体;(2)有机铝化合物助催化剂组分;(3)外给电子体组分。
本发明的方法中使用的Ziegler-Natta催化剂中的固体催化剂活性组分(又可称主催化剂)可以是本领域中所公知的。可供使用的这类含有活性固体催化剂组分(1)的具体实例例如可参见专利文献CN85100997、CN98126383.6、CN98111780.5、CN98126385.2、CN93102795.0、CN00109216.2、CN99125566.6、CN99125567.4和CN02100900.7中。这些专利文献的全部内容通过引用而并入本发明中。
本发明的方法中使用的Ziegler-Natta催化剂中的有机铝化合物优选烷基铝化合物,更优选为三烷基铝,例如为三乙基铝、三异丁基铝、三正丁基铝和三己基铝等中的至少一种。
本发明的方法中使用的Ziegler-Natta催化剂中的含钛的活性固体催化剂组分和有机铝化合物的摩尔比以铝/钛计为10:1~500:1,优选25:1~100:1。
根据本发明,所述第一外给电子体优选选自通式为R1R2Si(OR3)2的化合物中的至少一种;其中,R2与R1各自独立地选自C1-C6直链或支链烷基、C3-C8环烷基和C5-C12的杂芳基,R3为C1-C3直链脂族基团。具体实例包括但不仅限于二环戊基二甲氧基硅烷、异丙基环戊基二甲氧基硅烷、异丙基异丁基二甲氧基硅烷、二吡啶基二甲氧基硅烷、二异丙基二甲氧基硅烷等。
所述有机铝化合物与第一外给电子体的摩尔比以铝/硅计为1:1~100:1,优选为10:1~60:1。
在根据本发明的方法中,包含第一外给电子体的催化剂可以直接加入到均聚反应器中,也可以经过业界共知的预接触和/或预聚合之后,再加入到均聚反应器中。所述预聚合是指催化剂在较低温度下进行一定倍率的预聚合,以得到理想的粒子形态和动力学行为控制。所述预聚合可以是液相本体连续预聚合,还可以是在惰性溶剂存在下的间歇预聚合。预聚合温度通常为-10~50℃,优选为5~30℃。在预聚合工艺之前可任选地设置预接触步骤。所述预接触步骤是指催化剂体系中助催化剂、外给电子体和主催化剂(固体活性中心组分)进行催化剂体系的络合反应,以获得具有聚合活性的催化剂体系。预接触步骤的温度通常控制为-10~50℃,优选为5~30℃。
根据本发明,所述第二外给电子体选自如化学通式(I)、(II)和(III)所示的化合物中的至少一种;
其中R1和R2各自独立地选自C1-C20直链的、支化的或环状的脂族基团中的一种,R3、R4、R5、R6、R7和R8各自独立地选自氢原子、卤原子、C1-C20的直链或支链烷基、C3-C20环烷基、C6-C20芳基、C7-C20烷芳基和C7-C20芳烷基中的一种,且R3、R4、R5、R6、R7和R8中的任意两个之间任选地键连成环;R9、R10和R11各自独立地为C1-C3直链脂族基团,R12为C1-C6直链或支链烷基或C3-C8环烷基团。第二外给电子体的具体实例包括但不仅限于2,2-二异丁基-1,3-二甲氧基丙烷、2,2-苯基-1,3-二甲氧基丙烷、2,2-苯甲基-1,3-二甲氧基丙烷、2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2,2-双(环己甲基)-1,3-二甲氧基丙烷、2-异丙基-2-3,7-二甲辛基-二甲氧基丙烷、2,2-异丙基-1,3-二甲氧基丙烷、2-异丙基-2-环己甲基-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二乙氧基丙烷、2,2-二异丁基-1,3-二丙氧基丙烷、2-异丙基-2-异戊基-1,3-二乙氧基丙烷、2-异丙基-2-异戊基-1,3-二丙氧基丙烷、2,2-双(环己甲基)-1,3-二乙氧基丙烷,异丁基三甲氧基硅烷、异丁基三乙氧基硅烷、异丙基三乙氧基硅烷、四乙氧基硅烷硅烷等。
所述有机铝化合物与第二外给电子体的摩尔比以铝/硅或以铝/氧计为1:1~60:1,优选为5:1~30:1。
根据本发明的一些实施方案,所述第二外给电子体与第一外给电子体的摩尔比为1-30,还优选为5-30。
在本发明的方法中,优选在第二阶段的均聚反应之前,使第二外给电子与第一阶段反应产物中的催化剂组分充分接触。在一些优选的实施方案中,第二外电子体可以加入在第一阶段反应器之后第二阶段反应器之前的进料管线上,或者在第二阶段反应器的进料管前端,其目的是在第二阶段反应之前首先与第一阶段的反应产物中的催化剂进行预接触反应。
优选地,在第二步中,1-丁烯的用量为1-丁烯占1-丁烯和乙烯的总体积的20-80%。在第二步中,氢气与乙烯和1-丁烯的总量的体积比为0.02-1。在本发明中,为了获得具备高熔体强度,同时具备较高的刚性和韧性的抗冲聚丙烯材料,分散相和连续相的组成、结构或性能的控制十分重要。本发明通过这些优选的条件可以制备具有有利于实现本发明的目的的分子量分布、乙烯含量的橡胶相,从而获得具有更好性能的抗冲聚丙烯材料。
在本发明的优选实施方案中,第一丙烯均聚物和第二丙烯均聚物的产率为40:60-60:40。乙烯-1-丁烯共聚物组分和丙烯均聚物组分的产率比为11-80:100。第一步的聚合反应可以在液相-液相中,或在气相-气相中进行,或采用液-气组合技术进行。在进行液相聚合时,聚合温度为0~150℃,以60~100℃为好;聚合压力应高于丙烯在相应聚合温度下的饱和蒸汽压力。在气相聚合时聚合温度为0~150℃,以60~100℃为好;聚合压力可以是常压或更高,优选压力为1.0~3.0MPa(表压,下同)。
第二步的聚合反应在气相中进行。该气相反应器可以是气相流化床、气相移动床,或气相搅拌床反应器。聚合的温度为0~150℃,以60~100℃为好。聚合压力为低于丙烯分压下液化的任何压力。
根据本发明的优选实施方案,第一阶段的反应温度为50-100℃,优选60-85℃;第二阶段的反应温度为55-100℃,优选60-85℃;第二步的反应温度为55-100℃,优选60-85℃。
在本发明的一个优选实施方案中,本发明的方法还包括采用α或β晶成核剂对所制备得到的抗冲聚丙烯材料进一步改性,以进一步提高聚丙烯树脂材料的刚性或韧性。适用的α晶及β晶成核剂改性,是业内共知的技术。通常成核剂的重量和聚丙烯总重量的比为(0.005~3):100。
根据本发明的方法,聚合反应可以连续进行,也可以间歇进行。
在本发明的抗冲聚丙烯材料的制备方法中,加入的第二外给电子体可以与第一阶段均聚产物物料中的催化活性中心发生反应,生成新的催化活性中心,在第二阶段继续引发丙烯聚合成与第一阶段所得产品分子量相差悬殊的均聚聚合物。第二外给电子体比第一外给电子体具有更高氢调敏感性,可以在少量的氢气存在下,制备高熔融指数聚合物。因此,可以通过调整加入串联的两反应器或间歇操作时不同阶段的外给电子体用量、种类以及氢气的加入量,不需用特殊催化剂,本发明便可以在很少氢气用量的情况下,得到含有大量超高分子量级分,较宽分子量分布的均聚聚丙烯组分。然后通过选择合适的1-丁烯/(1-丁烯+乙烯)、氢气/(1-丁烯+乙烯)以及温度和压力,在均聚聚丙烯组分的基础上进一步发生乙烯-1-丁烯共聚反应,得到含有一定含量的具有特定性能的橡胶组分的高熔体强度抗冲聚丙烯。橡胶相组分的组成和结构控制保证了其具备高熔体强度,橡胶组分的特定含量保证了其较高抗冲击性能,此外合适的分子量分布还使得聚合物有良好的加工性能。也就是说,本发明通过设置多个丙烯均聚反应阶段,并选择各个均聚反应和共聚反应的合适的反应参数和反应条件,从而产生合适的连续相和橡胶分散相以及它们的组合关系,在此基础上获得具有优良性能的聚丙烯材料。
本发明提供的抗冲聚丙烯材料由于具有高的熔体强度,还具有高刚性和高韧性特点,因而是适用于汽车部件、医疗器械、家居用品等领域的优良材料。本发明提供的高熔体强度抗冲聚丙烯材料的制备方法简单有效,易于操作。
具体实施方式
下面将通过具体的实施例对本发明进行进一步描述,但不构成对本发明的任何限制。
实施例中聚合物有关数据按以下测试方法获得:
①聚合物室温二甲苯可溶物含量(即表征橡胶相含量):按照ASTMD5492所述方法测定。
②树脂拉伸强度按GB/T1040.2方法测量。
③熔体质量流动速率(又称熔融指数,MFR):按照ASTMD1238所述方法,用CEAST公司7026型熔融指数仪,在230℃,2.16kg载荷下测定。
④弯曲模量:按照GB/T9341所述方法测定。
⑤简支梁缺口冲击强度:按照GB/T1043.1所述方法测定。
⑥乙烯含量和丁烯含量:采用核磁共振方法测定。采用瑞士Bruker公司AVANCEIII400MHz核磁共振波谱仪(NMR),10毫米探头测定。溶剂为氘代邻二氯苯,约250mg样品置于2.5ml氘代溶剂中,于140℃油浴加热溶解试样形成均匀溶液。采集13C-NMR,探头温度125℃,采用90°脉冲,采样时间AQ为5秒,延迟时间D1为10秒,扫描次数5000次以上。其他操作、谱峰认定等执行常用的NMR实验要求,参考文献包括EricT.Hsieh,andJamesC.Randall,Ethylene-1-ButeneCopolymers.1.ComonomerSequenceDistribution,Macromolecules,15,353-360(1982)。
⑦熔体强度:采用德国GeottfertWerkstoffPruefmaschinen公司生产的Rheotens熔体强度仪测定。聚合物经单螺杆挤出机熔融塑化后,再经装有30/2长径比口模的90o转向机头向下挤出熔体料条,该料条被夹持在一组以恒定加速度相向旋转的两辊之间进行单轴拉伸,通过与拉伸辊相连的测力单元测量并记录熔体拉伸过程的力,将拉伸至熔体断裂时测得的最大力值定义为熔体强度。
⑧分子量多分散指数(PI):将树脂样品在200℃模压成2mm的薄片,采用美国RheometricScientificInc的ARES(高级流变仪扩展系统)流变仪,在190℃及氮气保护下对样品进行动态频率扫描,选用平行板夹具,确定适当的应变振幅以保证实验在线性区进行,测定样品的储能模量(G’)、耗能模量(G”)等随频率的变化。分子量多分散指数PI=105/Gc,其中Gc(单位:Pa)为G’—频率曲线与G”—频率曲线交点处的模量值。
⑨分子量(Mw,Mn)及分子量分布(Mw/Mn,Mz+1/Mw):采用英国PolymerLaboratories公司生产的PL-GPC220凝胶渗透色谱仪或西班牙PolymerChar公司生产的GPCIR仪(IR5浓度检测器)测定样品的分子量及分子量分布,色谱柱为3根串联PLgel13umOlexis柱,溶剂及流动相为1,2,4-三氯苯(含250ppm的抗氧剂2,6-二丁基对甲酚),柱温150℃,流速1.0ml/min,采用PL公司EasiCalPS-1窄分布聚苯乙烯标准品进行普适标定。其中室温三氯苯可溶物的制备过程如下:准确称量样品和三氯苯溶剂,在150℃下溶解5小时,在25℃下静置15小时后采用定量玻纤滤纸过滤,得到室温三氯苯可溶物的溶液用于测定。采用已知浓度的聚丙烯对GPC曲线面积进行校正,确定室温三氯苯可溶物的含量,室温三氯苯不溶物的分子量数据采用原样品的GPC数据和室温三氯苯可溶物的GPC数据计算得到。
实施例1
丙烯聚合反应在聚丙烯装置上进行,该装置的主要设备包括预聚反应器、第一环管反应器、第二环管反应器和第三气相反应器。聚合方法及步骤如下。
(1)预聚合反应
主催化剂(DQC-401催化剂,中石化催化剂公司北京奥达分公司提供)、助催化剂(三乙基铝)、第一外给电子体(异丙基环戊基二甲氧基硅烷,IPCPMS)经6℃、20min预接触后,连续地加入连续搅拌釜式预聚反应器进行预聚合反应器。进入预聚反应器的三乙基铝(TEA)流量为6.33g/hr,异丙基环戊基二甲氧基硅烷流量为0.3g/hr,主催化剂流量为0.6g/hr,TEA/IPCPMS比为50(mol/mol)。预聚合在丙烯液相本体环境下进行,温度为15℃,停留时间为约4min,此条件下催化剂的预聚倍数为约80~120倍。
(2)第一步:丙烯均聚合反应
第一阶段:预聚后催化剂连续地进入第一环管反应器中完成第一阶段丙烯均聚合反应,第一环管反应器的聚合反应温度70℃,反应压力4.0MPa;第一环管反应器的进料中不加氢气,在线色谱检测的氢气浓度﹤10ppm,得到第一丙烯均聚物A。
第二阶段:随与第一环管反应器串联的第二环管反应器的丙烯加入0.63g/hr的异丁基三乙氧基硅烷(IBTES)与来自第一环管反应器的反应物流混合,TEA/IBTES比为5(mol/mol),其中IBTES即为第二外给电子体。第二环管反应器的聚合反应温度70℃,反应压力4.0MPa;随丙烯进料还加入一定量氢气,在线色谱检测进料中氢气浓度为3300ppm,在第二环管反应器中产生第二丙烯均聚物B,得到包含第一丙烯均聚物和第二丙烯均聚物的丙烯均聚物组分。
(3)第二步:乙丁共聚合反应
在第三反应器内加入一定量氢气,H2/(C2+C4)=0.06(v/v),C4/(C2+C4)=0.35(v/v)(C2和C4分别指代乙烯和1-丁烯),在第三反应器继续引发乙烯/1-丁烯共聚合反应,反应温度75℃,产生乙烯-1-丁烯共聚物组分C。
最终产物包含了第一丙烯均聚物、第二丙烯均聚物和乙烯-1-丁烯共聚物组分,经湿氮气去除未反应催化剂的活性并加热干燥,得到聚合物粉料。将聚合得到的粉料中加入0.1wt%的IRGAFOS168添加剂、0.1wt%的IRGANOX1010添加剂和0.05wt%的硬脂酸钙,用双螺杆挤出机造粒。所得聚合物分析结果和聚合物物理性能列于表1和表2。
实施例2
实施例2所使用的催化剂、预络合、聚合工艺条件和助剂配方及加入量与实施例1相同。与实施例1不同之处在于:第二阶段中第二反应器内的氢气量变为7000ppm,第二步气相反应器内H2/(C2+C4)调为0.20(v/v)。所得聚合物分析结果和聚合物物理性能列于表1和表2。
实施例3
实施例3所使用的催化剂、预络合、聚合工艺条件和助剂配方及加入量与实施例1相同。与实施例1不同之处在于:第二阶段中第二反应器内的氢气量变为10000ppm,第二步气相反应器内H2/(C2+C4)调为0.51(v/v)。所得聚合物分析结果和聚合物物理性能列于表1和表2。
实施例4
实施例4所使用的催化剂、预络合、聚合工艺条件和助剂配方及加入量与实施例1相同。与实施例1不同之处在于:第二外给电子体换为2,-异丙基-2-异戊基-1,3-二甲氧基丙烷(IPPMP),加入量不变,第二阶段中第二反应器内的氢气量调为4000ppm。所得聚合物分析结果和聚合物物理性能列于表1和表2。
实施例5
实施例5所使用的催化剂、预络合、聚合工艺条件和助剂配方及加入量与实施例3相同。与实施例3不同之处在于:第一外给电子体换为异丙基-2-异丁基-二甲氧基硅烷(IPBMS),加入量不变。所得聚合物分析结果和聚合物物理性能列于表1和表2。
实施例6
实施例6所使用的催化剂、预络合、聚合工艺条件和助剂配方及加入量与实施例1相同。与实施例1不同之处在于:第二阶段中第二反应器内的氢气量变为6000ppm,第二步气相反应器内H2/(C2+C4)调为0.15(v/v),C4/(C2+C4)调为0.25(v/v)。所得聚合物分析结果和聚合物物理性能列于表1和表2。
从表1和表2所示的结果可以看出,根据本发明的方法制备得到的聚丙烯材料具有较高的熔体强度,同时具有较高的拉伸强度、弯曲模量、缺口冲击强度。因此,通过本发明提供的方法可以制备高熔体强度、高刚性和高韧性的抗冲聚丙烯材料。这种具备优良性能的聚丙烯材料具有广泛的应用价值。
虽然本发明已作了详细描述,但对本领域技术人员来说,在本发明精神和范围内的修改将是显而易见的。此外,应当理解的是,本发明记载的各方面、不同具体实施方式(方案)的各部分、和列举的各种特征可被组合或全部或部分互换。在上述的各个具体实施方式中,那些参考另一个具体实施方式的实施方式可适当地与其它实施方式组合,这是将由本领域技术人员所能理解的。此外,本领域技术人员将会理解,前面的描述仅是示例的方式,并不旨在限制本发明。

Claims (10)

1.一种高熔体强度抗冲聚丙烯材料,包括丙烯均聚物组分和乙烯-1-丁烯共聚物组分,其中所述丙烯均聚物组分至少包括第一丙烯均聚物和第二丙烯均聚物;
所述乙烯-1-丁烯共聚物组分与丙烯均聚物组分的重量比为11-80:100;
所述乙烯-1-丁烯共聚物中的丁烯含量大于或等于20重量%,且小于或等于45重量%;
所述材料的室温三氯苯可溶物的Mw与室温三氯苯不溶物的Mw之比大于0.5,小于或等于1。
2.根据权利要求1所述的材料,其特征在于,所述材料的室温二甲苯可溶物含量大于10重量%,且小于30重量%。
3.根据权利要求1或2所述的材料,其特征在于,所述材料在230℃,2.16kg的载荷下测定的熔融指数为0.1-15g/10min,优选0.1-6g/10min。
4.根据权利要求1-3中任意一项所述的材料,其特征在于,所述材料的分子量分布Mw/Mn小于或等于10,且大于或等于4;Mz+1/Mw大于或等于10,小于或等于20。
5.根据权利要求1-4中任意一项所述的材料,其特征在于,所述第一丙烯均聚物的熔融指数小于第二丙烯均聚物的熔融指数。
6.根据权利要求1-5中任意一项所述的材料,其特征在于,所述第一丙烯均聚物在230℃,2.16kg的载荷下测定的熔融指数为0.001-0.4g/10min;所述丙烯均聚物组分的熔融指数为0.1-15g/10min;优选0.1-6g/10min;并且所述第一丙烯均聚物和第二丙烯均聚物的重量比为40:60-60:40。
7.根据权利要求1-6中任意一项所述的材料,其特征在于,所述丙烯均聚物组分与包括丙烯均聚物组分和乙烯-1-丁烯共聚物组分的所述材料的熔融指数比大于或等于0.6,且小于1。
8.根据权利要求1-7中任意一项所述的材料,所述材料的丁烯含量为5-20重量%。
9.根据权利要求1-8中任意一项所述的材料,其特征在于,所述丙烯均聚物组分具有如下特征:
分子量分布Mw/Mn=6-20,优选Mw/Mn=10-16;
分子量大于500万级分的含量大于或等于1.5重量%,且小于或等于5重量%;
分子量小于5万级分的含量大于或等于15.0重量%,且小于或等于40重量%;
Mz+1/Mn大于或等于70,且小于150。
10.根据权利要求1-9中任意一项所述的材料,其特征在于,所述材料通过在第一丙烯均聚物的存在下进行丙烯均聚反应得到包含第一丙烯均聚物和第二丙烯均聚物的丙烯均聚物组分,然后在所述丙烯均聚物组分的存在下进行乙烯-1-丁烯共聚反应得到包含乙烯-1-丁烯共聚物的材料来制备。
CN201410602676.8A 2014-10-31 2014-10-31 一种高熔体强度的抗冲聚丙烯材料 Active CN105623076B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410602676.8A CN105623076B (zh) 2014-10-31 2014-10-31 一种高熔体强度的抗冲聚丙烯材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410602676.8A CN105623076B (zh) 2014-10-31 2014-10-31 一种高熔体强度的抗冲聚丙烯材料

Publications (2)

Publication Number Publication Date
CN105623076A true CN105623076A (zh) 2016-06-01
CN105623076B CN105623076B (zh) 2018-10-16

Family

ID=56038449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410602676.8A Active CN105623076B (zh) 2014-10-31 2014-10-31 一种高熔体强度的抗冲聚丙烯材料

Country Status (1)

Country Link
CN (1) CN105623076B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317611A (zh) * 2015-06-25 2017-01-11 中国石油化工股份有限公司 用于制备聚丙烯发泡材料的组合物及其制备的发泡成型体
CN106674719A (zh) * 2015-11-06 2017-05-17 中国石油化工股份有限公司 一种聚丙烯吹塑膜及其制备方法
CN107805340A (zh) * 2016-09-09 2018-03-16 中国石油化工股份有限公司 一种聚烯烃组合物和聚烯烃材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891850A (zh) * 2009-05-19 2010-11-24 中国科学院化学研究所 聚丙烯组合物的制备方法及聚丙烯组合物
CN102134290A (zh) * 2010-01-22 2011-07-27 中国石油化工股份有限公司 具有高熔体强度的聚丙烯及其制品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891850A (zh) * 2009-05-19 2010-11-24 中国科学院化学研究所 聚丙烯组合物的制备方法及聚丙烯组合物
CN102134290A (zh) * 2010-01-22 2011-07-27 中国石油化工股份有限公司 具有高熔体强度的聚丙烯及其制品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.布劳恩等著: "《聚合物合成和表征技术》", 31 August 1981, 科学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317611A (zh) * 2015-06-25 2017-01-11 中国石油化工股份有限公司 用于制备聚丙烯发泡材料的组合物及其制备的发泡成型体
CN106317611B (zh) * 2015-06-25 2019-02-19 中国石油化工股份有限公司 用于制备聚丙烯发泡材料的组合物及其制备的发泡成型体
CN106674719A (zh) * 2015-11-06 2017-05-17 中国石油化工股份有限公司 一种聚丙烯吹塑膜及其制备方法
CN106674719B (zh) * 2015-11-06 2020-04-07 中国石油化工股份有限公司 一种聚丙烯吹塑膜及其制备方法
CN107805340A (zh) * 2016-09-09 2018-03-16 中国石油化工股份有限公司 一种聚烯烃组合物和聚烯烃材料

Also Published As

Publication number Publication date
CN105623076B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN105622819A (zh) 一种高熔体强度的抗冲聚丙烯材料的制备方法
CN106255718B (zh) 聚丙烯复合物
CN103788256B (zh) 一种高熔体流动性高刚性抗冲聚丙烯的制备方法
CN102134291B (zh) 一种高熔体强度聚丙烯的制备方法
CN103788265B (zh) 一种具有高熔体强度的聚丙烯的制备方法
CN102816271B (zh) 一种高熔体强度丙烯/乙烯/丁烯共聚物及其制备方法
CN102816269B (zh) 一种高熔体强度丙烯/乙烯共聚物及其制备方法
CN102884093A (zh) 一种具有高熔体强度的丙烯均聚物及其制备方法
EP3567061B1 (en) Polypropylene pipe composition
CN105623077A (zh) 一种高熔体强度的抗冲聚丙烯材料及其制备方法
CN106674721B (zh) 一种高熔体强度抗冲聚丙烯发泡珠粒及其制备方法
Gote et al. Judicious reduction of supported Ti catalyst enables access to disentangled ultrahigh molecular weight polyethylene
CN106280018B (zh) 一种高熔体强度抗冲聚丙烯发泡材料、制备及其应用
CN102816270B (zh) 一种高熔体强度丙烯/丁烯共聚物及其制备方法
FI111955B (fi) Propeenipolymeerit, joilla on erittäin korkea sulavirta
US10273319B2 (en) High performance Ziegler-Natta catalyst systems, processes for producing such catalyst systems, and use thereof
CN105623075A (zh) 一种高熔体强度的抗冲聚丙烯材料的制备方法
CN106674722B (zh) 一种聚丙烯吹塑膜及其制备方法
CN107849317A (zh) 具有高机械性能和可加工性的聚乙烯组合物
CN104981486B (zh) 高性能齐格勒‑纳塔催化剂体系、这种MgCl2基催化剂的生产方法及其用途
CN106674584A (zh) 一种高熔体强度抗冲聚丙烯发泡珠粒及其制备方法
CN105623076A (zh) 一种高熔体强度的抗冲聚丙烯材料
CN106674749B (zh) 一种聚丙烯吹塑膜及其制备方法
CN107325394A (zh) 一种聚丙烯组合物和高性能阻燃抗静电聚丙烯管材
CN105623103B (zh) 一种高熔体强度的抗冲聚丙烯材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant