CN105622560B - 一种δ‑内酯的制备方法 - Google Patents

一种δ‑内酯的制备方法 Download PDF

Info

Publication number
CN105622560B
CN105622560B CN201610031079.3A CN201610031079A CN105622560B CN 105622560 B CN105622560 B CN 105622560B CN 201610031079 A CN201610031079 A CN 201610031079A CN 105622560 B CN105622560 B CN 105622560B
Authority
CN
China
Prior art keywords
palladium
lactone
butadiene
delta
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610031079.3A
Other languages
English (en)
Other versions
CN105622560A (zh
Inventor
冯秀娟
宋吉亮
包明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610031079.3A priority Critical patent/CN105622560B/zh
Publication of CN105622560A publication Critical patent/CN105622560A/zh
Application granted granted Critical
Publication of CN105622560B publication Critical patent/CN105622560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/32Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及CO2的活化转化及相关化学技术领域,涉及到一种δ‑内酯[(E)‑3‑亚乙基‑6‑乙烯基四氢‑2H‑吡喃‑2‑酮]的制备方法。特别是一种基于1,3‑丁二烯和CO2为原料合成δ‑内酯的方法。其特征在于:在添加剂存在下,实现了无配体的钯催化1,3‑丁二烯和CO2选择性生成δ‑内酯。本发明主要是提供一种新的简单的催化体系,该催化体系具有反应条件温和、实验操作简单、易实现工业化等优点。由于此反应的原料1,3‑丁二烯和CO2比较容易得到,因此本发明具有较大的应用价值和社会经济效益。

Description

一种δ-内酯的制备方法
技术领域
本发明属于CO2的活化转化技术领域,涉及到一种δ-内酯的制备方法,也就是一种(E)-3-亚乙基-6-乙烯基四氢-2H-吡喃-2-酮的制备方法。
背景技术
二氧化碳是储量丰富、廉价易得且可再生的C1源,将其催化转化生成高附加值的精细化学品的研究已经引起了人们的广泛关注。在过去的几十年中人们报道了很多关于二氧化碳的化学转化及固定的方法[参见:(a)Carbon Dioxide as a Chemical Feedstock,ed.Aresta,M.Wiley-VHC,Weinheim,2010.(b)Sakakura,T.;Choi,J.-C.;Yasuda,H.Chem.Rev.2007,107,2365.]。1,3-丁二烯是石油炼制过程中的重要C4馏分,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。随着1,3-丁二烯生产技术的不断完善和发展,世界上1,3-丁二烯的生产获得了很大的进展,生产能力不断在增加。
在上世纪70年代末,意大利的Musco等人利用钯催化的1,3-丁二烯与CO2的调聚反应得到了一种高度官能团化的化合物δ-内酯[参见:Sasaki,Y.;Inoue,Y.;Hashimoto,H.J.Chem.Soc.,Chem.Commun.1976,605.]。δ-内酯是一种高度官能团化合物,其含有一个羧基、一个内烯及一个端烯,可以发生多种反应,如加氢甲酰化、加氢胺化、加氢氨甲基化以及加氢等反应,含有双键也可以发生聚合,或者直接开环聚合,生成一种可降解的高分子物质。Behr研究组对其应用做了系统的分析[参见:Bher,A.;Henze,G.;Green Chem.2011,13,25.]。但是,目前选择性合成δ-内酯通常要使用配体。例如,具有大位阻、富电子性或者半配位性质的P,N-双齿配体。由于这些配体对空气敏感或者合成步骤复杂,使实验及工业化应用操作变得复杂[参见:(a)Dai,Y.;Feng,X.;Wang,B.;He,R.;Bao,M.J.Organomet.Chem.2012,696,4309.(b)Buchemuller,K.;Dahmen,N.;Dinjus,E.;Neumann,D.;Powietzka,B.;Pitter,S.;J.Green Chem.2003,5,218.(c)Pitter,S.;Dinjus,E.J.Mol.Catal.A:Chem.1997,125,39.(d)Behr,A.;He,J.;Jusyak,K.D.Chem.Ber.1986,119,991.(e)Behr,A.;Juszak,K.D.;Keim,W.Synthesis 1983,7,574.(f)Behr,A.;Juszak,K.D.J.Organomet.Chem.1983,255,263.(g)Musco,A.;Perego,C.;Tartiari,V.Inorg.Chim.Acta.1978,28,L147.]。在已报道的这些方法中,还未见无配体选择性生成δ-内酯方法的报道。因而,开发一种无配体的催化体系选择性生成δ-内酯具有重要的研究意义。
发明内容
本发明提供了一种应用无配体的催化体系选择性生成δ-内酯的方法,该方法具有反应条件温和、实验操作简单、易实现工业化等优点,因而本发明具有较大的应用价值和社会经济效益。
本发明是一种以1,3-丁二烯和CO2为原料,通过合适的添加剂和钯催化剂来实现选择性生成δ-内酯,反应方程式如下:
该方法采用的技术方案如下:
一种δ-内酯的制备方法:将催化剂、添加剂和溶剂依次加入到高压釜后,将高压釜冷却至-25℃,加入一定量的1,3-丁二烯后充入CO2至0.5MPa~10.0MPa,封闭高压釜,放入油浴锅中开始反应。
溶剂包括甲苯、正己烷、四氢呋喃、1,4-二氧六环、N,N-二甲基甲酰胺、二甲基亚砜、二氯甲烷、三氯甲烷、N-甲基吡咯烷酮、乙腈。优先N-甲基吡咯烷酮、乙腈、1,4-二氧六环,是单一溶剂或混合溶剂;所述的溶剂与1,3-丁二烯的摩尔比为0.1:1~100:1。
反应温度范围为50~150℃,优选60~100℃。
反应时间范围为12h~48h,优选15h~45h。
钯催化剂选自三(二亚苄基丙酮)二钯、氯化钯、醋酸钯、乙酰丙酮钯、二乙腈二氯化钯等。优选三(二亚苄基丙酮)二钯、醋酸钯、乙酰丙酮钯,1,3-丁二烯与钯催化剂的摩尔比为1:1.0×10–4~1:1.0×10–3
添加剂选自四甲基醋酸铵、四丁基氯化铵、四丁基溴化铵、四丁基碘化铵、四丁基醋酸铵、四正辛基溴化铵、十六烷基三甲基溴化铵、十烷基三甲基溴化铵等。优选四丁基氯化铵、四丁基溴化铵、四丁基醋酸铵,钯催化剂与添加剂的摩尔比为1:10~1:40。
反应结束后冷却至室温,放出剩余气体,剩余反应液经柱分离得到δ-内酯。
本发明提供了一种无配体的催化体系选择性生成δ-内酯的方法,该方法反应条件温和、操作简单、易于工业化。
附图说明
图1为化合物δ-内酯的1H-NMR。
图2为化合物δ-内酯的13C-NMR。
具体实施方式
下面结合具体实施例,进一步阐述本发明。
实施例1:δ-内酯的合成
准确称取三(二亚苄基丙酮)二钯(15.1mg,0.016mmol,0.033mol%)、四丁基溴化铵(225.7mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的乙腈(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(2MPa)。封闭反应釜,置于100℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.78g,收率为47%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd forC9H12O2:152.0837[M]+;found:152.0840。
实施例2:δ-内酯的合成
准确称取三(二亚苄基丙酮)二钯(15.1mg,0.016mmol,0.033mol%)、四丁基溴化铵(225.7mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的N-甲基吡咯烷酮(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(1MPa)。封闭反应釜,置于90℃油浴中反应28h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.63g,收率为43%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd forC9H12O2:152.0837[M]+;found:152.0840。
实施例3:δ-内酯的合成
准确称取三(二亚苄基丙酮)二钯(15.1mg,0.016mmol,0.033mol%)、四丁基溴化铵(225.7mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的甲苯(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(3MPa)。封闭反应釜,置于100℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.97g,收率为52%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd forC9H12O2:152.0837[M]+;found:152.0840。
实施例4:δ-内酯的合成
准确称取三(二亚苄基丙酮)二钯(15.1mg,0.016mmol,0.033mol%)、四丁基醋酸铵(199.0mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的N-甲基吡咯烷酮(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(6MPa)。封闭反应釜,置于70℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.40g,收率为37%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd forC9H12O2:152.0837[M]+;found:152.0840。
实施例5:δ-内酯的合成
准确称取乙酰丙酮钯(5.1mg,0.016mmol,0.033mol%)、四丁基溴化铵(225.7mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的N-甲基吡咯烷酮(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(4MPa)。封闭反应釜,置于80℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.68g,收率为44%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd forC9H12O2:152.0837[M]+;found:152.0840。
实施例6:δ-内酯的合成
准确称取醋酸钯(3.7mg,0.016mmol,0.033mol%)、四甲基溴化铵(101.7mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的二甲基亚砜(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(3.5MPa)。封闭反应釜,置于70℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.27g,收率为33%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd for C9H12O2:152.0837[M]+;found:152.0840。
实施例7:δ-内酯的合成
准确称取三(二亚苄基丙酮)二钯(15.1mg,0.016mmol,0.033mol%)、四丁基氯化铵(183.4mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的二甲基亚砜(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(5.5MPa)。封闭反应釜,置于70℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.45g,收率为38%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd forC9H12O2:152.0837[M]+;found:152.0840。
实施例8:δ-内酯的合成
准确称取三(二亚苄基丙酮)二钯(15.1mg,0.016mmol,0.033mol%)、四丁基碘化铵(243.8mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的1,4-二氧六环(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(8MPa)。封闭反应釜,置于70℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.98g,收率为52%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd forC9H12O2:152.0837[M]+;found:152.0840。
实施例9:δ-内酯的合成
准确称取氯化钯(2.9mg,0.016mmol,0.033mol%)、四丁基溴化铵(225.7mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,并依次加入到25mL的反应釜中,将精制过的正己烷(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(1MPa)。封闭反应釜,置于50℃油浴中反应24h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.02g,收率为27%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcdfor C9H12O2:152.0837[M]+;found:152.0840。
实施例10:δ-内酯的合成
准确称取氯化钯(2.9mg,0.016mmol,0.033mol%)、四丁基碘化铵(243.8mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,并依次加入到25mL的反应釜中,将精制过的二甲基亚砜(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(2MPa)。封闭反应釜,置于120℃油浴中反应36h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯2.08g,收率为55%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd for C9H12O2:152.0837[M]+;found:152.0840。
实施例11:δ-内酯的合成
准确称取三(二亚苄基丙酮)二钯(15.1mg,0.016mmol,0.033mol%)、四正辛基溴化铵(360.9mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的N-甲基吡咯烷酮(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(2MPa)。封闭反应釜,置于110℃油浴中反应28h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.87g,收率为49%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcdfor C9H12O2:152.0837[M]+;found:152.0840。
实施例12:δ-内酯的合成
准确称取醋酸钯(3.7mg,0.016mmol,0.033mol%)、四正辛基溴化铵(360.9mg,0.66mmol,1.32mol%)并依次加入到25mL的反应釜中,将精制过的四氢呋喃(5.0mL)加入高压釜密闭并冷却至-25℃后,再依次加入1,3-丁二烯(2.70g,50mmol),CO2(2.5MPa)。封闭反应釜,置于70℃油浴中反应20h。反应结束后,将反应釜缓慢冷却至室温,然后缓慢放出剩余的气体。反应釜中剩余的反应液转移至单口瓶,旋蒸除去溶剂后,经硅胶柱分离(洗脱剂:石油醚/乙酸乙酯=5/1)得到δ-内酯1.93g,收率为51%。1H NMR(400MHz,CDCl3)δ7.18–7.13(m,1H),5.99–5.72(m,1H),5.37(d,J=17.2Hz,1H),5.25(d,J=10.6Hz,1H),4.76–4.82(m,1H),2.63–2.45(m,2H),2.14–1.99(m,1H),1.83–1.76(m,4H);13C NMR(100MHz,CDCl3)δ166.3,141.3,135.8,125.9,117.0,79.0,27.7,22.0,14.2;IR(neat)2924,2854,1713,1636,1379,1257,1209,1147,1066,988,723cm–1;HRMS(EI)calcd for C9H12O2:152.0837[M]+;found:152.0840。

Claims (8)

1.一种δ-内酯的制备方法,以1,3-丁二烯和CO2为原料,通过添加剂和钯催化剂来实现选择性生成δ-内酯;其特征合成路线如下:
将钯催化剂、添加剂和溶剂依次加入到高压釜后,将高压釜冷却至-25℃;加入1,3-丁二烯后充入CO2至0.5MPa~10.0MPa,封闭高压釜;然后将高压釜置于50~150℃油浴中反应12h~48h,反应结束后冷却至室温,放出剩余气体,剩余反应液经柱分离得到δ-内酯;
所述的添加剂选自四甲基醋酸铵、四丁基氯化铵、四丁基溴化铵、四丁基碘化铵、四丁基醋酸铵、四正辛基溴化铵、十烷基三甲基溴化铵、十六烷基三甲基溴化铵,钯催化剂与添加剂的摩尔比为1:10~1:40。
2.根据权利要求-1所述的方法,其特征在于,所述的钯催化剂选自三(二亚苄基丙酮)二钯、氯化钯、醋酸钯、乙酰丙酮钯、二乙腈二氯化钯,1,3-丁二烯与钯催化剂的摩尔比为1:1.0×10–4~1:1.0×10–3
3.根据权利要求-1或2所述的方法,其特征在于,所述的溶剂选自甲苯、正己烷、四氢呋喃、1,4-二氧六环、N,N-二甲基甲酰胺、二甲基亚砜、二氯甲烷、三氯甲烷、N-甲基吡咯烷酮、乙腈,是单一溶剂或混合溶剂;所述的溶剂与1,3-丁二烯的摩尔比为0.1:1~100:1。
4.根据权利要求-1或2所述的方法,其特征在于,反应温度为60~100℃。
5.根据权利要求-3所述的方法,其特征在于,反应温度为60~100℃。
6.根据权利要求-1或2或5所述的方法,其特征在于,反应时间为15h~45h。
7.根据权利要求-3所述的方法,其特征在于,反应时间为15h~45h。
8.根据权利要求-4所述的方法,其特征在于,反应时间为15h~45h。
CN201610031079.3A 2016-01-18 2016-01-18 一种δ‑内酯的制备方法 Active CN105622560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610031079.3A CN105622560B (zh) 2016-01-18 2016-01-18 一种δ‑内酯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610031079.3A CN105622560B (zh) 2016-01-18 2016-01-18 一种δ‑内酯的制备方法

Publications (2)

Publication Number Publication Date
CN105622560A CN105622560A (zh) 2016-06-01
CN105622560B true CN105622560B (zh) 2018-02-16

Family

ID=56037944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610031079.3A Active CN105622560B (zh) 2016-01-18 2016-01-18 一种δ‑内酯的制备方法

Country Status (1)

Country Link
CN (1) CN105622560B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6960998B2 (ja) 2016-12-28 2021-11-05 ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド 二酸化炭素及び1,3−ブタジエンからのδ−ラクトンの製造方法のための触媒組成物
US11312677B2 (en) 2017-06-12 2022-04-26 Qatar Foundation For Education, Science And Community Development Synthesis of building blocks and feedstocks for manufacturing renewable polymers
CN112876665B (zh) * 2021-02-04 2022-03-18 浙江大学 以稀土催化剂合成含多不饱和侧基聚酯或聚醚酯及其后修饰的方法
CN112961329B (zh) * 2021-02-08 2022-03-18 浙江大学 通过多取代六元环内酯共聚合制备功能化聚酯和聚碳酸酯及其后修饰的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI332953B (en) * 2002-02-08 2010-11-11 Mitsubishi Rayon Co Method for preparing lactone

Also Published As

Publication number Publication date
CN105622560A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
Wu et al. Reactions of ruthenium carbenes of the type (PPh3) 2 (X) 2Ru: CH-CH: CPh2 (X= Cl and CF3COO) with strained acyclic olefins and functionalized olefins
CN105622560B (zh) 一种δ‑内酯的制备方法
Okamoto et al. Synthesis and catalysis of novel mono-and bis (diene) complexes of niobium and x-ray structures of binuclear [Nb (. mu.-Cl)(C5H5)(s-cis-butadiene)] 2 and mononuclear Nb (C5H5)(s-cis-2, 3-dimethylbutadiene) 2
EP2506972B1 (en) Supported olefin metathesis catalysts
Ilg et al. Vinylidene Compounds from the Reactions of Me3SiC⋮ CSiMe3 with TpMe2Ir Precursors. Protonation to Alkylidene and Iridabenzene Structures
Nishibayashi et al. Ruthenium-and platinum-catalyzed sequential reactions: Selective synthesis of fused polycyclic compounds from propargylic alcohols and alkenes
van Laren et al. Palladium (0) complexes with unsymmetric bidentate nitrogen ligands for the stereoselective hydrogenation of 1-phenyl-1-propyne to (Z)-1-phenyl-1-propene
Campos et al. Cyclometalated iridium complexes of Bis (aryl) phosphine ligands: catalytic C–H/C–D exchanges and C–C coupling reactions
Goliaszewski et al. Interception of bis (. eta. 3-allylic) palladium intermediates by maleic anhydride: a change in an overall carbon-carbon bond forming scheme using organotin reagents
JP2001187345A (ja) エチレンの三量化触媒成分、三量化触媒及びそれを用いたエチレンの三量化方法
EP2639219B1 (en) Ruthenium-based metathesis catalysts and precursors for their preparation
CN109422620A (zh) 一种炔烃高选择性还原成z-型烯烃的方法
Pelagatti et al. Chemoselective homogeneous hydrogenation of phenylacetylene using thiosemicarbazone and thiobenzoylhydrazone palladium (II) complexes as catalysts
Santos et al. C–H bond activation reactions by Tp Me2 Ir (iii) centres. Generation of Fischer-type carbenes and development of a catalytic system for H/D exchange
Ng et al. Nickel-catalyzed coupling of terminal allenes, aldehydes, and silanes
CN110330591A (zh) 一类含有膦配体的多孔有机聚合物及其制备方法和应用
Barluenga et al. Chromium (0)–rhodium (I) metal exchange: Synthesis and X-ray structure of new Fischer (NHC) carbene complexes of rhodium (I)
Álvarez et al. Activation of Aliphatic Ethers by TpMe2Ir Compounds: Multiple C− H Bond Activation and C− C Bond Formation
Tsutsumi et al. Cross-coupling reactions proceeding through η1-and η3-propargyl/allenyl–palladium (II) intermediates
Medrano-Castillo et al. Base-free transfer hydrogenation of aryl-ketones, alkyl-ketones and alkenones catalyzed by an IrIIICp* complex bearing a triazenide ligand functionalized with pyrazole
Fikes et al. Di-and tetraosmium carbonyl complexes with dicarboxylato ligands serving as intramolecular rings and intermolecular bridges
Alburquerque et al. Reactivity of bis (cyanomethanide) nickel and palladium complexes
Lee et al. Pd-catalyzed substitution reactions with organoindium reagents in situ generated from indium and allyl or propargyl halides
Gilbert et al. Ligand–Metal Cooperation Enables Net Ring-Opening C–C Activation/Difunctionalization of Cyclopropyl Ketones
Tang et al. POxAP Precatalysts and the Negishi Cross-Coupling Reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant