CN105610198B - 基于群体经验人工蜂群算法的电力系统静态经济调度方法 - Google Patents

基于群体经验人工蜂群算法的电力系统静态经济调度方法 Download PDF

Info

Publication number
CN105610198B
CN105610198B CN201610036583.2A CN201610036583A CN105610198B CN 105610198 B CN105610198 B CN 105610198B CN 201610036583 A CN201610036583 A CN 201610036583A CN 105610198 B CN105610198 B CN 105610198B
Authority
CN
China
Prior art keywords
msub
mrow
unit
power system
colony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610036583.2A
Other languages
English (en)
Other versions
CN105610198A (zh
Inventor
岳东
高�浩
师玉娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201610036583.2A priority Critical patent/CN105610198B/zh
Publication of CN105610198A publication Critical patent/CN105610198A/zh
Application granted granted Critical
Publication of CN105610198B publication Critical patent/CN105610198B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提出一种基于群体经验人工蜂群算法的电力系统静态经济调度方法,针对雇佣蜂和观察蜂本身的特点设计合理的搜索策略,根据不断更新的选择概率采用不同的搜索策略来对当前食物源进行更新,实现平衡全局搜索和局部寻优。采用本方法对电力系统静态经济调度进行求解,能够在满足相关约束的条件下,获得优化后的各机组各时段的出力水平和最小发电成本。

Description

基于群体经验人工蜂群算法的电力系统静态经济调度方法
技术领域
本发明属于电力系统优化运行的经济调度方法领域,尤其是涉及一种基于群体经验人工蜂群算法的电力系统静态经济调度方法。
背景技术
电力市场的迅速发展对电力系统的运行和管理提出了新的要求,为提高发电厂的生产效率和电力系统的经济效益,电力系统的经济调度问题成为了重点研究问题之一。
一个良好的电力系统,需要以保证安全可靠运行为前提,追求系统的经济效益最大化为目的。电力系统的经济调度分为动态经济调度和静态经济调度。动态经济调度是指电力系统中,在于一定周期内,优化各机组的出力,以获得最优的出力水平,使成本最小;而静态经济调度是指在一个周期内的某一时段内,优化各机组的出力,使得成本最小。不同的机组,其优化成本函数不同,包括热耗量,煤耗量,有害气体排放量,供电成本及发电成本等。除此之外,静态经济调度还需要处理多个约束问题,如机组前后时段的出力爬坡约束,出力上下限约束,发电与损耗平衡约束及禁止操作区约束等,因此,寻找一个高效的优化算法来出力电力系统的动态经济调度问题十分必要。
电力系统的静态经济调度问题的约束条件严格,根据发电机组数目的不同其复杂性也不同,是一个十分困难的优化问题。粒子群算法和差分进化算法已被广泛应用于电力系统的静态经济调度问题中,但由于其收敛速度较快,全局搜索能力不强的特点,容易陷入局部最优。为了克服这一缺点,本专利采用更擅长全局搜索的人工蜂群算法,但是,由于其全局搜索能力过强而导致局部寻优能力较弱的缺陷,从而优化过程中收敛速度较慢。
发明内容
本发明所解决的技术问题在于提供一种基于群体经验人工蜂群算法的电力系统静态经济调度方法,雇佣蜂和观察蜂根据不断更新的选择概率来采用不同的搜索策略,平衡全局搜索和局部寻优能力,采用本方法对电力系统静态经济调度进行求解,能够在满足相关约束的条件下,获得优化后的各机组各时段的出力水平。
实现本发明目的的技术解决方案为:
基于群体经验人工蜂群算法的电力系统静态经济调度方法,包括以下步骤:
步骤1:设置人工蜂群的参数,包括控制因子F、选择概率P、物源规模NP、最大迭代次数Gmax,根据电力系统静态经济调度的约束构造目标函数,所述约束包括:机组功率平衡约束、机组出力上下限约束、机组爬坡约束、机组禁止操作区约束;
步骤2:生成初始食物源,并计算其目标函数值和适应值;
步骤3:更新选择概率,雇佣蜂根据选择概率来选择第一搜索策略或第二搜索策略,产生新的食物源位置,其中,第一搜索策略为:Vi,j=Pr1,j+F(Pr2,j-Pr3,j),第二搜索策略为:Vi,j表示新的食物源位置,Pi,j表示当前的食物源位置,为随机产生,Pr1,j、Pr2,j、Pr3,j为三个随机选择的食物源,且r1≠r2≠r3≠i,i=1,2,…,NP,j表示当前列数;
步骤4:采用贪婪原则对当前食物源位置进行更新;
步骤5:观察蜂根据轮盘赌原则所确定的概率选择食物源并在其附近精细搜索,搜索策略为:其中,Vi,j表示新的食物源位置,Pr4,j、Pr5,j为两个随机选择的食物源,且r4≠r5≠i,i=1,2,…,NP,j表示当前列数,gbest为适应值最大的食物源,为随机产生;
步骤6:采用贪婪原则对当前食物源位置进行更新;
步骤7:判断迭代次数是否达到最大迭代次数,若是,则停止迭代,输出最优食物源的位置和目标函数值,所述最优食物源的位置即为电力系统各机组的出力水平,目标函数值即为对应的最小发电成本;若否,则转到步骤3。
进一步的,本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法,步骤1中控制因子F=0.5、选择概率P=0.5、物源规模NP=40、最大迭代次数Gmax=500。
进一步的,本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法,步骤1中电力系统静态经济调度的目标函数为:
其中,为发电成本,ai、bi、ci分别表示成本系统的系数,|ei sin(fi(Pi min-Pi))|为加载阀点效应,ei、fi为耗量系数,λ1PPB、λ2PCL、λ3PRL、λ4Ppoz分别为机组功率平衡约束、机组出力上下限约束、机组爬坡约束、机组禁止操作区约束的惩罚项,λ1、λ2、λ3、λ4为相应的惩罚因子,Pi min为第i台机组出力的下限,Pi为第i台机组的出力,NG为机组数,i=1,2,…NG。
进一步的,本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法,λ1=103、λ2=103、λ3=105、λ4=105
进一步的,本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法,步骤2中第m个初始食物源为:Qm=[P1,P2,...Pi,...,PNG],其中,Pi表示第i个机组的出力,NG为机组数。
进一步的,本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法,步骤2中适应值Fit为:
其中,f为目标函数值。
进一步的,本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法,步骤3中选择概率P的更新方法为:
其中,g为当前迭代次数,divg表示当前食物源群体的多样性,定义为:prob1和prob2分别表示第一搜索策略和第二搜索策略的成功率,定义为:succk表示选择第一搜索策略或第二搜索策略成功的次数,failk表示选择第一搜索策略或第二搜索策略失败的次数。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、本发明的方法针对雇佣蜂和观察蜂各自本身的特点,对其搜索策略进行了改进,使得雇佣蜂可以更好的平衡全局搜索和局部寻优的能力,同时观察蜂采用基于全局最优引导的搜索策略,可以加快算法的精度寻优能力和收敛速度;
2、本发明的方法在调度初期在搜索空间中进行广泛搜索,后期在小范围搜索,实现在电力系统静态经济调度中进行寻优,在满足相关约束和考虑网损的情况下,实现发电机组的最小出力和发电总费用最小化。
附图说明
图1是本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法的流程图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本发明的基于群体经验人工蜂群算法的电力系统静态经济调度方法流程如图1所示,具体包括如下步骤:
步骤1:设置人工蜂群的参数,包括控制因子F、选择概率P、物源规模NP、最大迭代次数Gmax,根据电力系统静态经济调度的约束构造目标函数,所述约束包括:机组功率平衡约束、机组出力上下限约束、机组爬坡约束、机组禁止操作区约束;
步骤2:生成初始食物源,并计算其目标函数值和适应值;
步骤3:更新选择概率,雇佣蜂根据选择概率来选择第一搜索策略或第二搜索策略,产生新的食物源位置;
步骤4:采用贪婪原则对当前食物源位置进行更新;
步骤5:观察蜂根据轮盘赌原则所确定的概率选择食物源并在其附近精细搜索;
步骤6:采用贪婪原则对当前食物源位置进行更新;
步骤7:判断迭代次数是否达到最大迭代次数,若是,则停止迭代,输出最优食物源的位置和目标函数值;若否,则转到步骤3。
下面根据步骤进行详细分析。
步骤1中,控制因子F=0.5、选择概率P=0.5、物源规模NP=40、最大迭代次数Gmax=500。
电力系统静态经济调度的约束包括:机组功率平衡约束、机组出力上下限约束、机组爬坡约束、机组禁止操作区约束。
其中,机组功率平衡约束为:
其中,Pi为第i台机组的出力,PD为负荷大小,Ploss为网损大小,NG为发电机组数。
网损大小Ploss采用B系数法计算,表达式如下:
其中,Bij、B0、B00均为B系数。
机组出力上下限约束为:
Pi min<Pi<Pi max (3)
其中,Pi min和Pi max分别表示第i台机组出力的下限和上限。
机组爬坡约束为:
其中,为向下爬坡速度;为向上爬坡速度;Pi,0为初始出力。
机组禁止操作区约束为:
其中,分别表示禁止操作区的下限和上限。
电力系统静态经济调度的目标函数为:
其中,为发电成本,ai、bi、ci分别表示成本系统的系数,|ei sin(fi(Pi min-Pi))|为加载阀点效应,ei、fi为耗量系数,λ1PPB、λ2PCL、λ3PRL、λ4Ppoz分别为机组功率平衡约束、机组出力上下限约束、机组爬坡约束、机组禁止操作区约束的惩罚项,λ1、λ2、λ3、λ4为相应的惩罚因子,λ1=103、λ2=103、λ3=105、λ4=105,Pi min为第i台机组出力的下限,Pi为第i台机组的出力,NG为机组数,i=1,2,…NG。
机组功率平衡约束的惩罚项表示为:
机组出力上下限约束的惩罚项表示为:
机组爬坡约束的惩罚项表示为:
机组禁止操作区约束的惩罚项表示为:
其中,当时,h=1;否则,h=0;N为禁区的个数。
步骤2中,根据各个机组的出力水平,按照食物源规模数初始化食物源,第m个初始食物源为:
Qm=[P1,P2,...Pi,...,PNG] (11)
其中,Pi表示第i个机组的出力,NG为机组数。
目标函数的适应值Fit为:
其中,f为目标函数值。
然后计算各个食物源的适应值并进行比较,找到适应值最大的食物源,记录其对应的位置和目标函数值。
步骤3中,选择概率P的更新方法为:
其中,g为当前迭代次数,divg表示当前食物源群体的多样性,定义为:prob1和prob2分别表示第一搜索策略和第二搜索策略的成功率,定义为:succk表示选择第一搜索策略或第二搜索策略成功的次数,failk表示选择第一搜索策略或第二搜索策略失败的次数。
雇佣蜂的第一搜索策略为:
Vi,j=Pr1,j+F(Pr2,j-Pr3,j) (14)
雇佣蜂的第二搜索策略为:
其中,控制因子F=0.5为一个固定的值;为随机产生,Vi,j表示新的食物源位置,Pi,j表示当前的食物源位置,Pr1,j、Pr2,j、Pr3,j为三个随机选择的食物源,且r1≠r2≠r3≠i,i=1,2,…,NP,j表示当前列数。
如果rand<P,选择第一搜索策略进行更新,否则选择第二搜索策略进行更新,rand为0~1之间产生的随机数。
当前食物源群体多样性越大,算法有精力进行局部寻优,选择第一搜索策略的概率越大;否则,为保证群体的多样性,更大概率的选择第二搜索策略进行全局搜索,避免陷入局部最优。同时,每个公式的成功率也影响更新策略的选择,成功率越大,被选择的概率也就越大。
步骤4与步骤6相同,采用贪婪原则对当前食物源位置进行更新的方法为:
其中,f(Vi)为新产生位置的目标函数值,f(Pi)为当前食物源的目标函数值,当且仅当新产生位置的目标函数值比原食物源位置的目标函数值小时,食物源的位置才进行更新。
步骤5中,每个食物源被选择的概率计算如下:
其中,i、j表示食物源。
观察蜂根据上式所确定的概率,利用轮盘赌原则选择食物源并在其附近进行精细搜索,搜索策略为:
其中,Vi,j表示新的食物源位置,Pr4,j、Pr5,j为两个随机选择的食物源,且r4≠r5≠i,i=1,2,…,NP,j表示当前列数,gbesti,j为适应值最大的食物源,为随机产生;有gbest引导的观察蜂搜索策略,可以加强算法的局部寻优能力,加快收敛速度。
步骤7中,根据步骤1中已设定的迭代算法,判定迭代次数是否达到:若达到迭代次数Gmax=500,则停止计算,得到最优食物源的位置和目标函数值,该食物源位置即为各机组在该时段的出力水平,从而计算出目标函数值,目标函数值即为对应的最小发电成本,最终结果包括各机组各时段的出力水平以及计算该时段内的机组运行总费用;若没有达到迭代次数,则返回步骤3,继续计算。
实施例1
本实施例共采用140个火力发电机组,总负荷为49342,电源参数见http://www3.ntu.edu.sg/home/epnsugan/,EA Benchmarks/CEC Competitions/CEC11Competition on Testing Evolutionary Algorithms on Real-world NumericalOptimization Problems/Software in Matlab/Matlab/CEC_2011_Matlab/CEC_2011_Spl_Session/Probs_11_ELD_Package/ELD Codes/fn_ELD_140,本实施例中的网损忽略不计。
下表为粒子群算法、人工蜂群算法和基于群体经验人工蜂群算法3种算法的优化结果比较:
本发明对人工蜂群算法中雇佣蜂和观察蜂的搜索策略进行了改进,让雇佣蜂可以更好的平衡全局搜索和局部寻优,观察蜂可以更专注的进行精细搜索。其与标准的粒子群算法或人工蜂群算法相比,基于群体经验人工蜂群算法对电力系统的静态经济调度进行求解,可以更好的平衡全局搜索能力和局部寻优能力,同时加快收敛速度,可以取得更好的优化效果。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进应视为本发明的保护范围。

Claims (6)

1.基于群体经验人工蜂群算法的电力系统静态经济调度方法,其特征在于,包括以下步骤:
步骤1:设置人工蜂群的参数,包括控制因子F、选择概率P、物源规模NP、最大迭代次数Gmax,根据电力系统静态经济调度的约束构造目标函数,所述约束包括:机组功率平衡约束、机组出力上下限约束、机组爬坡约束、机组禁止操作区约束;
电力系统静态经济调度的约束构造目标函数为:
<mrow> <mi>f</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mi>G</mi> </mrow> </munderover> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>|</mo> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>B</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <msub> <mi>P</mi> <mrow> <mi>R</mi> <mi>L</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>z</mi> </mrow> </msub> </mrow>
其中,为发电成本,ai、bi、ci分别表示成本系统的系数,|eisin(fi(Pi min-Pi))|为加载阀点效应,ei、fi为耗量系数,λ1PPB、λ2PCL、λ3PRL、λ4Ppoz分别为机组功率平衡约束、机组出力上下限约束、机组爬坡约束、机组禁止操作区约束的惩罚项,λ1、λ2、λ3、λ4为相应的惩罚因子,Pi min为第i台机组出力的下限,Pi为第i台机组的出力,NG为机组数,i=1,2,...NG;
步骤2:生成初始食物源,并计算其目标函数值和适应值;
步骤3:更新选择概率,雇佣蜂根据选择概率来选择第一搜索策略或第二搜索策略,产生新的食物源位置,其中,第一搜索策略为:Vi,j=Pr1,j+F(Pr2,j-Pr3,j),第二搜索策略为:Vi,j表示新的食物源位置,Pi,j表示当前的食物源位置,为随机产生,Pr1,j、Pr2,j、Pr3,j为三个随机选择的食物源,且r1≠r2≠r3≠i,i=1,2,…,NP,j表示当前列数;
步骤4:采用贪婪原则对当前食物源位置进行更新;
步骤5:观察蜂根据轮盘赌原则所确定的概率选择食物源并在其附近精细搜索,搜索策略为:其中,Pr4,j、Pr5,j为两个随机选择的食物源,且r4≠r5≠i,gbesti,j为适应值最大的食物源;
步骤6:采用贪婪原则对当前食物源位置进行更新;
步骤7:判断迭代次数是否达到最大迭代次数,若是,则停止迭代,输出最优食物源的位置和目标函数值,所述最优食物源的位置即为电力系统各机组的出力水平,目标函数值即为对应的最小发电成本;若否,则转到步骤3。
2.根据权利要求1所述的基于群体经验人工蜂群算法的电力系统静态经济调度方法,其特征在于,步骤1中控制因子F=0.5、选择概率P=0.5、物源规模NP=40、最大迭代次数Gmax=500。
3.根据权利要求1所述的基于群体经验人工蜂群算法的电力系统静态经济调度方法,其特征在于,λ1=103、λ2=103、λ3=105、λ4=105
4.根据权利要求1所述的基于群体经验人工蜂群算法的电力系统静态经济调度方法,其特征在于,步骤2中第m个初始食物源为:Qm=[P1,P2,...Pi,...,PNG],其中,Pi表示第i个机组的出力,NG为机组数。
5.根据权利要求1所述的基于群体经验人工蜂群算法的电力系统静态经济调度方法,其特征在于,步骤2中适应值Fit为:
<mrow> <mi>F</mi> <mi>i</mi> <mi>t</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>f</mi> </mrow> </mfrac> </mtd> <mtd> <mrow> <mi>f</mi> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <mo>|</mo> <mi>f</mi> <mo>|</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>f</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,f为目标函数值。
6.根据权利要求1所述的基于群体经验人工蜂群算法的电力系统静态经济调度方法,其特征在于,步骤3中选择概率P的更新方法为:
<mrow> <mi>P</mi> <mo>=</mo> <mn>0.5</mn> <mfrac> <mrow> <msub> <mi>div</mi> <mi>g</mi> </msub> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>div</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>div</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>div</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mn>0.5</mn> <mfrac> <mrow> <msub> <mi>prob</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>prob</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>prob</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow>
其中,g为当前迭代次数,divg表示当前食物源群体的多样性,定义为: prob1和prob2分别表示第一搜索策略和第二搜索策略的成功率,定义为:succk表示选择第一搜索策略或第二搜索策略成功的次数,failk表示选择第一搜索策略或第二搜索策略失败的次数。
CN201610036583.2A 2016-01-20 2016-01-20 基于群体经验人工蜂群算法的电力系统静态经济调度方法 Active CN105610198B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610036583.2A CN105610198B (zh) 2016-01-20 2016-01-20 基于群体经验人工蜂群算法的电力系统静态经济调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610036583.2A CN105610198B (zh) 2016-01-20 2016-01-20 基于群体经验人工蜂群算法的电力系统静态经济调度方法

Publications (2)

Publication Number Publication Date
CN105610198A CN105610198A (zh) 2016-05-25
CN105610198B true CN105610198B (zh) 2017-11-17

Family

ID=55989827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610036583.2A Active CN105610198B (zh) 2016-01-20 2016-01-20 基于群体经验人工蜂群算法的电力系统静态经济调度方法

Country Status (1)

Country Link
CN (1) CN105610198B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951988B (zh) * 2017-03-14 2021-01-29 湘潭大学 一种用于求解电力系统经济调度问题的人工记忆分子动理论优化方法
CN110942175B (zh) * 2019-10-23 2023-04-18 江苏大学 基于烟花爆炸人工蜂群算法的大规模电力系统经济调度问题优化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773627B2 (ja) * 2010-11-30 2015-09-02 京セラ株式会社 複数の分散電源の出力制御システムおよび複数の分散電源の出力制御方法
CN104779611B (zh) * 2015-03-23 2017-09-29 南京邮电大学 基于集中式和分布式双层优化策略的微电网经济调度方法

Also Published As

Publication number Publication date
CN105610198A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
Nazari-Heris et al. A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives
CN103426032B (zh) 一种热电联产机组的经济优化调度方法
CN107067121A (zh) 一种基于多目标的改进灰狼优化算法
CN104181900B (zh) 一种多能源介质分层动态调控方法
CN106773704A (zh) 多系统联合优化调度方法及装置
CN111881540A (zh) 一种能量枢纽中热泵容量和各能源设备功率的优化方法
CN112906292B (zh) 热电联产机组厂级热电负荷在线优化分配的方法、系统、设备及存储介质
CN104268712B (zh) 基于改进的混合多种群进化算法的能源平衡与调度方法
CN108122079A (zh) 火电厂负荷分配的计算方法、系统及存储介质
CN106130079A (zh) 一种风水火短期联合优化调度方法
CN104036334A (zh) 一种耦合调峰和通航需求的梯级水电站多目标优化调度混合搜索方法
CN106372756A (zh) 一种基于繁殖粒子群算法的火电厂负荷优化分配方法
Chen et al. Design of intelligent control system for agricultural greenhouses based on adaptive improved genetic algorithm for multi-energy supply system
CN106505633A (zh) 一种风光接入容量确定方法及装置
CN105610198B (zh) 基于群体经验人工蜂群算法的电力系统静态经济调度方法
CN114204550A (zh) 一种含多类型新能源的电力系统绿色调度方法
CN104037755A (zh) 一种求解风蓄火联合运行系统多时段Pareto解集的优化方法
CN105719081A (zh) 一种基于改进人工蜂群算法的电力系统动态经济调度方法
Yin et al. Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems
Shang et al. Production scheduling optimization method based on hybrid particle swarm optimization algorithm
CN104966156B (zh) 一种钢铁企业能源综合调度问题的双层寻优方法
CN103761385A (zh) 一种多热源环状管网的优化设计方法
Farhat et al. Multi-objective economic-emission optimal load dispatch using bacterial foraging algorithm
Shayeghi et al. Optimal thermal generating unit commitment with wind power impact: a PSO-IIW procedure
CN111767621A (zh) 一种基于知识迁移q学习算法的多能源系统优化调度方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant