CN105607185A - 提高亚微米硅波导与普通单模光纤耦合效率的结构 - Google Patents

提高亚微米硅波导与普通单模光纤耦合效率的结构 Download PDF

Info

Publication number
CN105607185A
CN105607185A CN201610159366.2A CN201610159366A CN105607185A CN 105607185 A CN105607185 A CN 105607185A CN 201610159366 A CN201610159366 A CN 201610159366A CN 105607185 A CN105607185 A CN 105607185A
Authority
CN
China
Prior art keywords
silicon
waveguide
mode fiber
silica
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610159366.2A
Other languages
English (en)
Other versions
CN105607185B (zh
Inventor
杨林
贾浩
张磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongxin Technology (Quanzhou) Co.,Ltd.
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201610159366.2A priority Critical patent/CN105607185B/zh
Publication of CN105607185A publication Critical patent/CN105607185A/zh
Application granted granted Critical
Publication of CN105607185B publication Critical patent/CN105607185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种提高亚微米硅波导与普通单模光纤耦合效率的结构。在该结构中,制作亚微米硅波导的基底材料为绝缘衬底上的硅晶片,其由下往上包含三层材料:衬底硅,埋氧层,顶层硅,其中埋氧层为掺杂的二氧化硅。在该晶片的顶层硅上通过光刻与刻蚀形成亚微米硅波导后,第一层掺杂的二氧化硅被淀积在该硅波导上方,将其完全包覆。该层掺杂的二氧化硅经过光刻与刻蚀后,在其上方再淀积第二层掺杂的二氧化硅。这样形成的二氧化硅波导作为与普通单模光纤的连接通道,可以减小亚微米硅波导与普通单模光纤耦合时的模场失配损耗和反射损耗,提高二者的耦合效率。

Description

提高亚微米硅波导与普通单模光纤耦合效率的结构
技术领域
本发明涉及光纤通信与集成光学技术领域,尤其涉及一种提高亚微米硅波导与普通单模光纤耦合效率的结构。
背景技术
传统的硅基大截面波导由于其弯曲半径大(几百微米至毫米量级),难以在单个晶片上集成多个光学功能器件,限制了大规模集成光路的发展。随着半导体平面加工工艺的进步,截面尺寸为亚微米的硅波导开始出现,其半径可以小至数微米而不带来显著的损耗。亚微米硅波导因其具有潜在的高集成度的特点而引起人们的广泛重视。
由于亚微米硅波导的截面面积在0.1平方微米量级,而单模光纤的芯径为100平方微米量级。二者直接对接耦合的耦合损耗在10dB以上,这在实际应用中是无法接受的。
为了解决亚微米硅波导与单模光纤的耦合问题,目前常用的结构是:将亚微米硅波导的端头制成倒锥型结构,即在波导端头区波导宽度逐渐缩小,以将其模场发散来增大模场面积,使其与光纤之间的模场尺寸尽可能的匹配来提高耦合效率。但是这种做法增大硅波导模场的程度有限,仍需要采用具有小模场的锥型光纤与波导倒锥结构耦合,成本高且耦合容差小,难以用于实际器件的封装中。
发明内容
有鉴于此,本发明的主要目的在于提供一种提高亚微米硅波导与普通单模光纤耦合效率的结构。
为达到上述目的,本发明提供了一种提高亚微米硅波导与普通单模光纤耦合效率的结构,自下往上包括以下结构:
衬底硅结构,其为绝缘衬底上的硅晶片三层结构的最下层,材料组分为硅,其起到支撑整个晶片的作用;
埋氧层结构,其为绝缘衬底上的硅晶片三层结构的中间层,材料组分为进行了掺杂的二氧化硅,掺杂的目的是将纯净二氧化硅的折射率降低,用于形成二氧化硅波导的下包层;
顶层硅结构,其为绝缘衬底上的硅晶片三层结构的最上层,材料组分为硅,它经过光刻与刻蚀工艺形成波导结构,波导两端为倒锥型结构,即两端为宽度逐渐缩小的硅波导;
第一层二氧化硅覆盖层结构,其为通过淀积工艺形成的掺杂二氧化硅,覆盖在顶层硅波导之上,在其淀积后通过化学机械抛光进行平整化处理,然后通过光刻与刻蚀形成二氧化硅波导的芯层;
第二层二氧化硅覆盖层结构,其为通过淀积工艺形成的掺杂二氧化硅,覆盖在第一层二氧化硅之上,作为二氧化硅波导的上包层;
上述方案中,衬底硅结构可以是纯净的硅材料,也可以是掺杂硅材料;
上述方案中,埋氧层为掺杂的二氧化硅,其材料折射率比纯净的二氧化硅的材料折射率低,可以通过掺入硼或氟等元素来实现;
上述方案中,顶层硅结构可以是纯净的硅材料,也可以是掺杂硅材料;
上述方案中,第一层二氧化硅覆盖层结构由掺杂的二氧化硅构成,其材料折射率比纯净的二氧化硅的材料折射率高,可以通过掺入锗或磷等元素来实现;
上述方案中,第一层二氧化硅覆盖层结构,其在光传输方向的延伸长度要大于顶层硅波导,即它完全包覆了两个倒锥型硅波导之间的区域,并在两端继续向前延伸;
上述方案中,第二层二氧化硅覆盖层结构由掺杂的二氧化硅构成,其材料折射率比纯净的二氧化硅的材料折射率低,可以通过掺入硼或氟等元素来实现;
上述方案中的第二层二氧化硅覆盖层结构,其在光传输方向的延伸长度与第一层二氧化硅覆盖层结构相同;
上述方案中的提高亚微米硅波导与普通单模光纤耦合效率的结构,其中,单模光纤与波导之间的连接通过粘合剂连接;
上述方案中的粘合剂连接,所选用的粘合剂固化后的材料折射率与二氧化硅相近,以降低两个连接界面处的菲涅尔反射损耗。
由上述技术方案可以看出,本发明提出的结构的有益效果是:光首先从亚微米硅波导器件缓慢地过渡到二氧化硅波导中,该二氧化硅波导具有与普通单模光纤接近的几何尺寸及芯区-包层折射率差,而后光从二氧化硅波导传输到普通单模光纤中,二者由折射率与二氧化硅材料折射率相近的粘合剂相连。这样既可以降低由于模式突变带来的模式失配损耗,又可以降低由于折射率突变带来的菲涅尔反射损耗。
附图说明
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体施例,并参照附图,对本发明进一步详细说明,其中:
图1(a)为绝缘衬底上的硅晶片;
图1(b)为经过光刻与刻蚀后的亚微米硅波导侧视图;
图1(c)为包含倒锥结构的亚微米硅波导顶视图;
图2(a)为淀积第一层二氧化硅覆盖层并经过化学机械抛光后的结构;
图2(b)为经过光刻与刻蚀后的二氧化硅波导结构侧视图;
图2(c)为经过光刻与刻蚀后的二氧化硅波导结构顶视图;
图3(a)为淀积第二层二氧化硅覆盖层后的结构;
图3(b)为亚微米硅波导与普通单模光纤耦合的结构图。
附图标记说明:
图1中101、104:衬底硅;102、105:掺杂的二氧化硅埋氧层;103:顶层硅;106、107:顶层硅刻蚀形成的波导;108:硅波导两端的倒锥型结构;
图2中201、205:衬底硅;202、206、209:掺杂的二氧化硅埋氧层;203、207、211:顶层硅刻蚀形成的波导;204:掺杂的二氧化硅覆盖层;208,210:204刻蚀形成的二氧化硅波导;211:硅波导两端的倒锥型结构;
图3中301:衬底硅;302:掺杂的二氧化硅埋氧层;303:顶层硅;304、309:第一层二氧化硅覆盖层;305,308:第二层二氧化硅覆盖层;306、313:普通单模光纤;307、312:粘合剂;310:顶层硅;311:硅波导两端的倒锥型结构;
具体实施方式
图1(a)为绝缘衬底上的硅晶片,其自下往上包括以下结构:
101为衬底硅结构,其为绝缘衬底上的硅晶片三层结构的最下层,材料组分为硅,可以是纯净的硅材料,也可以是掺杂硅材料,它其起到支撑整个晶片的作用;102为埋氧层结构,其为绝缘衬底上的硅晶片三层结构的中间层,埋氧层为掺杂的二氧化硅,其材料折射率比纯净的二氧化硅的材料折射率低,可以通过掺入硼或氟等元素来实现,用于形成二氧化硅波导的下包层;103为顶层硅结构,其为绝缘衬底上的硅晶片三层结构的最上层,材料组分为硅,顶层硅结构可以是纯净的硅材料,也可以是掺杂硅材料。
图1(b)为经过光刻与刻蚀后的亚微米硅波导侧视图,106为硅波导的截面,为保证单模式传输,其横向尺寸及高度一般均在1微米以下。
图1(c)为经过光刻与刻蚀后的亚微米硅波导顶视图,108为硅波导两端的倒锥型结构,往端头方向波导宽度越来越小。受制于工艺精度,该端头的宽度一般不会收窄至零。该宽度越小,对提高耦合效率越有利。可以通过采用更高精度的半导体加工技术来实现窄的端头,还可以通过热氧化的方式,将端头的硅材料氧化成二氧化硅,从而降低其宽度。倒锥型结构108在光传输方向上的长度需要尽量长,一般应该大于200微米,以使得光场可以缓慢地从硅波导中过渡到后面将要形成的二氧化硅波导中。
图2(a)为淀积第一层二氧化硅覆盖层并经过化学机械抛光后的结构侧视图。可以采用等离子体增强化学气相淀积(PECVD)工艺方法来淀积二氧化硅。利用硅烷与一氧化二氮在350摄氏度左右反应生成二氧化硅,反应方程式如下:
SiH4(气态)+2N2O(气态)→SiO2(固态)+2N2(气态)+2H2(气态)
204为第一层二氧化硅覆盖层,其材料折射率比纯净的二氧化硅的材料折射率高,可以通过在上述化学方应中加入锗或磷等元素来实现。为了使得二氧化硅波导的模场与普通单模光纤的模场尽量匹配,这一层二氧化硅覆盖层的厚度应该在10微米左右。
图2(a)为淀积第一层二氧化硅覆盖层并经过化学机械抛光,并经过光刻与刻蚀后的结构侧视图。208为第一层二氧化硅覆盖层所形成的二氧化硅波导截面,为了使得二氧化硅波导的模场与普通单模光纤的模场尽量匹配,这一层二氧化硅覆盖层的宽度应该在10微米左右。
图2(a)为淀积第一层二氧化硅覆盖层并经过化学机械抛光,并经过光刻与刻蚀后的结构顶视图。210为第一层二氧化硅覆盖层所形成的二氧化硅波导,它将硅波导211及倒锥型结构212完全包覆。在光的传输方向延伸得比倒锥型结构212更远。
图3(a)为一种提高亚微米硅波导与普通单模光纤耦合效率的结构。在该结构中,制作亚微米硅波导的基底材料为绝缘衬底上的硅晶片,其由下往上包含三层材料:衬底硅301,埋氧层302,顶层硅303,其中埋氧层302为掺杂的二氧化硅。在该晶片的顶层硅上通过光刻与刻蚀形成亚微米硅波导后,第一层掺杂的二氧化硅304被淀积在该硅波导上方,将其完全包覆。该层掺杂的二氧化硅经过光刻与刻蚀后,在其上方再淀积第二层掺杂的二氧化硅305。淀积第二层二氧化硅覆盖层后的结构,可以采用等离子体增强化学气相淀积(PECVD)工艺方法来淀积二氧化硅。利用硅烷与一氧化二氮在350摄氏度左右反应生成二氧化硅,反应方程式如下:
SiH4(气态)+2N2O(气态)→SiO2(固态)+2N2(气态)+2H2(气态)
第二层二氧化硅覆盖层结构305由掺杂的二氧化硅构成,其材料折射率比纯净的二氧化硅的材料折射率低,可以通过在上述化学方应中加入硼或氟等元素来实现。第二层二氧化硅覆盖层结构在光传输方向的延伸长度与第一层二氧化硅覆盖层结构相同。
图3(b)为亚微米硅波导与普通单模光纤耦合的结构图,307与312为连接普通单模光纤306、313与二氧化硅波导309的粘合剂,其固化后的材料折射率与二氧化硅相近,以降低两个连接界面处的菲涅尔反射损耗。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种提高亚微米硅波导与普通单模光纤耦合效率的结构,其自下往上包括:
衬底硅(301),其为绝缘衬底上的硅晶片三层结构的最下层,材料组分为硅;
埋氧层(302),其为绝缘衬底上的硅晶片三层结构的中间层,材料组分为进行了掺杂的二氧化硅;
顶层硅(303),其为绝缘衬底上的硅晶片三层结构的最上层,材料组分为硅,经过光刻与刻蚀工艺形成波导结构,波导两端为倒锥型结构;
第一层二氧化硅覆盖层(304),其为通过淀积工艺形成的掺杂二氧化硅,覆盖在顶层硅波导之上,在其淀积后通过化学机械抛光进行平整化处理,然后通过光刻与刻蚀形成二氧化硅波导的芯层;
第二层二氧化硅覆盖层(305),其为通过淀积工艺形成的掺杂二氧化硅,覆盖在第一层二氧化硅之上,作为二氧化硅波导的上包层。
2.根据权利要求1所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,衬底硅(301)是纯净的硅材料或掺杂硅材料。
3.根据权利要求1所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,埋氧层(302)为掺杂的二氧化硅,掺杂元素为硼或氟。
4.根据权利要求1所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,顶层硅(303)是纯净的硅材料或掺杂硅材料。
5.根据权利要求1所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,第一层二氧化硅覆盖层(304)由掺杂的二氧化硅构成,掺杂元素为锗或磷。
6.根据权利要求5所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,第一层二氧化硅覆盖层结构在光传输方向的延伸长度要大于顶层硅波导,完全包覆了两个倒锥型硅波导之间的区域,并在两端继续向前延伸。
7.根据权利要求1所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其中,第二层二氧化硅覆盖层(305)由掺杂的二氧化硅构成,掺杂元素为硼或氟。
8.根据权利要求7所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,第二层二氧化硅覆盖层结构在光传输方向的延伸长度与第一层二氧化硅覆盖层结构相同。
9.根据权利要求1所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,单模光纤与波导之间的连接通过粘合剂连接。
10.根据权利要求9所述的提高亚微米硅波导与普通单模光纤耦合效率的结构,其特征在于,粘合剂连接选用的粘合剂固化后的材料折射率与二氧化硅相近,以降低两个连接界面处的菲涅尔反射损耗。
CN201610159366.2A 2016-03-21 2016-03-21 提高亚微米硅波导与普通单模光纤耦合效率的结构 Active CN105607185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610159366.2A CN105607185B (zh) 2016-03-21 2016-03-21 提高亚微米硅波导与普通单模光纤耦合效率的结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610159366.2A CN105607185B (zh) 2016-03-21 2016-03-21 提高亚微米硅波导与普通单模光纤耦合效率的结构

Publications (2)

Publication Number Publication Date
CN105607185A true CN105607185A (zh) 2016-05-25
CN105607185B CN105607185B (zh) 2019-01-08

Family

ID=55987256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610159366.2A Active CN105607185B (zh) 2016-03-21 2016-03-21 提高亚微米硅波导与普通单模光纤耦合效率的结构

Country Status (1)

Country Link
CN (1) CN105607185B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561640A (zh) * 2017-08-18 2018-01-09 中国科学院半导体研究所 硅纳米线波导与光纤耦合结构及其制作方法
CN108873167A (zh) * 2017-05-15 2018-11-23 上海新微科技服务有限公司 硅基光波导结构及其制作方法
CN108873161A (zh) * 2017-05-15 2018-11-23 上海新微科技服务有限公司 硅基光波导结构及其制作方法
CN109407208A (zh) * 2018-12-13 2019-03-01 中国科学院半导体研究所 光耦合结构、系统及光耦合结构的制备方法
CN109642986A (zh) * 2016-09-06 2019-04-16 Agc株式会社 树脂光波导以及复合光波导
WO2020118625A1 (zh) * 2018-12-13 2020-06-18 中国科学院半导体研究所 光耦合结构、系统及光耦合结构的制备方法
CN111679363A (zh) * 2020-06-01 2020-09-18 清华大学 硅波导端面耦合结构及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495447A (zh) * 2002-09-20 2004-05-12 日本电信电话株式会社 光学模块及其制造方法
JP3543121B2 (ja) * 2000-10-18 2004-07-14 日本電信電話株式会社 光導波路接続構造
CN101710195A (zh) * 2009-12-09 2010-05-19 中国科学院半导体研究所 Soi亚微米脊型光波导倒锥耦合器免刻蚀氧化制作方法
CN101881861A (zh) * 2010-06-13 2010-11-10 中国科学院半导体研究所 非直线锥形倒锥耦合器结构
CN203241564U (zh) * 2013-05-30 2013-10-16 青岛海信宽带多媒体技术有限公司 光纤波导模斑转换器及光耦合器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543121B2 (ja) * 2000-10-18 2004-07-14 日本電信電話株式会社 光導波路接続構造
CN1495447A (zh) * 2002-09-20 2004-05-12 日本电信电话株式会社 光学模块及其制造方法
CN101710195A (zh) * 2009-12-09 2010-05-19 中国科学院半导体研究所 Soi亚微米脊型光波导倒锥耦合器免刻蚀氧化制作方法
CN101881861A (zh) * 2010-06-13 2010-11-10 中国科学院半导体研究所 非直线锥形倒锥耦合器结构
CN203241564U (zh) * 2013-05-30 2013-10-16 青岛海信宽带多媒体技术有限公司 光纤波导模斑转换器及光耦合器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642986B (zh) * 2016-09-06 2020-12-01 Agc株式会社 树脂光波导以及复合光波导
CN109642986A (zh) * 2016-09-06 2019-04-16 Agc株式会社 树脂光波导以及复合光波导
CN108873167A (zh) * 2017-05-15 2018-11-23 上海新微科技服务有限公司 硅基光波导结构及其制作方法
CN108873161A (zh) * 2017-05-15 2018-11-23 上海新微科技服务有限公司 硅基光波导结构及其制作方法
CN108873161B (zh) * 2017-05-15 2020-06-05 上海新微科技服务有限公司 硅基光波导结构及其制作方法
CN107561640A (zh) * 2017-08-18 2018-01-09 中国科学院半导体研究所 硅纳米线波导与光纤耦合结构及其制作方法
WO2020118625A1 (zh) * 2018-12-13 2020-06-18 中国科学院半导体研究所 光耦合结构、系统及光耦合结构的制备方法
CN109407208A (zh) * 2018-12-13 2019-03-01 中国科学院半导体研究所 光耦合结构、系统及光耦合结构的制备方法
JP2022510466A (ja) * 2018-12-13 2022-01-26 中国科学院半▲導▼体研究所 光結合構造、システム及び光結合構造の製造方法
EP3896504A4 (en) * 2018-12-13 2022-07-27 Institute of Semiconductors, Chinese Academy Of Sciences OPTICAL COUPLING STRUCTURE AND SYSTEM AND METHOD OF MAKING OPTICAL COUPLING STRUCTURE
JP7163502B2 (ja) 2018-12-13 2022-10-31 中国科学院半▲導▼体研究所 光結合構造、システム及び光結合構造の製造方法
US11513295B2 (en) * 2018-12-13 2022-11-29 Institute Of Semiconductors, Chinese Academy Of Sciences Optical coupling structure, system and method for preparing optical coupling structure
CN111679363A (zh) * 2020-06-01 2020-09-18 清华大学 硅波导端面耦合结构及其制作方法
CN111679363B (zh) * 2020-06-01 2021-06-15 清华大学 硅波导端面耦合结构及其制作方法

Also Published As

Publication number Publication date
CN105607185B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN105607185A (zh) 提高亚微米硅波导与普通单模光纤耦合效率的结构
US10317623B2 (en) Back end of line process integrated optical device fabrication
US5408569A (en) Optical channel waveguide having a high germania cladding content
CN111679363B (zh) 硅波导端面耦合结构及其制作方法
US20100166361A1 (en) Buried dual taper waveguide for passive alignment and photonic integration
CN108983352B (zh) 一种端面耦合器及其制备方法
CN108535807A (zh) 具有倾斜波导端面的光纤-硅光芯片耦合器及制备方法
CN113568105B (zh) 一种波导层间耦合结构及其制备方法
CN109031518A (zh) 一种悬臂型端面耦合器
CN102692682B (zh) 一种光栅耦合器及其制作方法
US20030052082A1 (en) Method of forming optical waveguides in a semiconductor substrate
CN105785508A (zh) 基于bcb键合工艺的耦合器结构及其制作方法
EP0484011B1 (en) Packaging of silicon optical components
CN106371173B (zh) 十字缝隙波导的交叉波导结构及其制备方法
CN105223646B (zh) 低损耗三维硅波导交叉结构及其制作方法
WO2020118625A1 (zh) 光耦合结构、系统及光耦合结构的制备方法
CN113917613A (zh) 一种硅波导端面耦合结构及其制备方法
CN101587207B (zh) 一种提高波导与光纤耦合效率的方法
JP3911271B2 (ja) 光導波路及びその製造方法
CN206193282U (zh) 一种基于soi材料的交叉波导
JP7401823B2 (ja) 光導波路部品およびその製造方法
CN111077607B (zh) 硅基光波导器件的制造方法
CN115616703A (zh) 基于双层氮化硅结构的光栅耦合器及其制作方法
CN110749955A (zh) 光波模式转换装置及其制造方法
CN111538119A (zh) 一种三维光电互联基板的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210224

Address after: 18 / F, Quanzhou software park complex building, 300 Xiaxian Road, Xiamei community, Beifeng street, Fengze District, Quanzhou City, Fujian Province, 362000

Patentee after: Hongxin Technology (Quanzhou) Co.,Ltd.

Address before: 100083 No. 35, Qinghua East Road, Beijing, Haidian District

Patentee before: Institute of Semiconductors, Chinese Academy of Sciences