CN105607118A - Co2地质封存中四维多分量地震监测的转换波avo计算方法 - Google Patents

Co2地质封存中四维多分量地震监测的转换波avo计算方法 Download PDF

Info

Publication number
CN105607118A
CN105607118A CN201510607222.4A CN201510607222A CN105607118A CN 105607118 A CN105607118 A CN 105607118A CN 201510607222 A CN201510607222 A CN 201510607222A CN 105607118 A CN105607118 A CN 105607118A
Authority
CN
China
Prior art keywords
pressure
rock
reservoir
wave
avo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510607222.4A
Other languages
English (en)
Other versions
CN105607118B (zh
Inventor
杨扬
马劲风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest University
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN201510607222.4A priority Critical patent/CN105607118B/zh
Publication of CN105607118A publication Critical patent/CN105607118A/zh
Application granted granted Critical
Publication of CN105607118B publication Critical patent/CN105607118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

CO2地质封存中四维多分量地震监测的转换波AVO计算方法,模拟CO2注入与地质封存的不同阶段,储层孔隙压力、CO2饱和度及裂缝密度变化情况下,不同入射角和不同方位所对应的PS1转换波和PS2转换波AVO;针对储层为各向同性介质与各向异性介质,在注入CO2的不同阶段,在储层孔隙压力和混合流体饱和度变化情况下,储层弹性参数变化及AVO变化;针对HTI介质模型,模拟注入井压力增大可能导致的裂缝张开,及生产井压力减小导致的裂缝闭合,针对孔隙度与裂缝密度变化;分析裂缝密度变化导致的注入CO2前后各向异性介质中,四维转换波AVO及方位AVO的变化;有助于标定和解释四维转换波地震资料,确定CO2驱油效果、CO2在地下的封存状态与分布范围和评价CO2地质封存的安全性。

Description

CO2地质封存中四维多分量地震监测的转换波AVO计算方法
技术领域
本发明专利涉及CO2驱油、地质封存中四维多分量地震监测技术领域,具体涉及CO2地质封存中四维多分量地震监测的转换波AVO计算方法,用于模拟CO2注入地下不同阶段,四维多分量地震监测中转换波AVO地震响应及四维转换波差异响应。
背景技术
自从挪威科技大学的Landro等(2003)开展四维地震的PP与PS波AVO联合反演砂岩储层压力与流体饱和度研究取得成功后,四维多分量转换波地震在国际上的油气勘探中得到越来越多的应用。这主要是因为单独利用常规纵波进行四维地震监测,难以区别储层流体饱和度变化与压力变化产生的振幅差异,因此难以通过地震振幅差异判断那些振幅差异异常是流体饱和度产生的、那些是压力变化产生的?由于转换横波对于流体不敏感,所以四维转换波的差异主要是压力产生的。这样,通过PP与PS的联合解释,我们可以有效区别压力变化与饱和度变化在储层的分布范围。
国际上在CO2-EOR(CO2EnhancedOilRecovery)与地质封存领域,利用四维多分量地震资料来监测压力、流体饱和度或裂缝变化已成为一种趋势。加拿大Weyburn油田CO2地质封存项目开展了世界上第一次完善的四维多分量地震监测,到目前为止在其Phase1A工区采集了5次三维三分量(3D3C)地震资料。在Weyburn油田的CO2注入区Phase1B工区,科罗拉多矿院的ThomasL.Davis(2003)教授采集了三次开展四维3D9C地震,用于监测CO2地质封存过程中的裂缝分布,及CO2泄漏风险评估。此前,ThomasL.Davis(2002)教授在美国新墨西哥州VacuumField开展了四维3D9C监测注水驱油的研究,在科罗拉多州非常规气田RulisonField进行盖层的四维多分量监测,和进行四维多分量谱分解研究。并在Louisiana的DelhiField运用四维多分量技术开展残余油饱和度与盖层完整性研究,特别是CO2注入过程中横波分裂如何用于监测盖层应力状态。Bale(2005,2013)等在EOR监测重油过程中,采用四维多分量中横波分裂研究应力状态,Grossman(2013)研究了加拿大Alberta省西北PouceCoupeField油田,非常规油气藏多分量四维地震中横波分裂与油气产量之间的关系。研究表明岩石(包括储层)所受水平最大应力方向对应产生的裂缝方向。我们知道一般顺裂缝方向速度快而垂直裂缝方向速度慢,横波遇到裂缝可以发生分裂。Dillen(2000)发现了应力各向异性也可以导致横波分裂。而国内目前还没有开展四维多分量地震资料的实际监测。
目前,国际上的四维多分量相关研究大多考虑是基于油、水两相介质,并且不考虑储层开发过程中注入井、生产井压力的变化。即便在CO2地质封存与CO2-EOR四维多分量监测中,也没有分析压力变化对储层弹性参数的影响。即对于各向同性介质,无论注入CO2压力和生产井压力多大,储层弹性参数在注入CO2的不同阶段都是相同的。对于各向异性HTI介质,则不考虑注入压力及生产井压力变化对于裂缝密度的影响。
本发明考虑了注入CO2过程中,注入井压力孔隙高和生产井孔隙压力低导致的各向同性介质储层弹性参数变化。同时考虑了注入井压与生产井压力变化对于垂向裂隙介质(HTI)的影响,即裂缝密度在不同压力下的变化。并分别依据各向同性介质和各向异性介质(HTI)理论,进行注入CO2不同阶段四维转换波地震AVO响应的模拟,使得模拟结果更符合实际注入状况。为准确的四维多分量地震解释奠定基础。
AVO为AmplitudeVersusOffset的简写。
发明内容
为克服上述现有技术的不足,本发明的目的在于提供,CO2地质封存中四维多分量地震监测的转换波AVO计算方法,CO2注入地下进行驱油和地质封存的不同阶段,模拟四维多分量转换波地震响应的方法。可以从转换波地震资料正演的角度解释四维转换波差异产生的原因,本方法分别考虑储层为各向同性均匀介质和各向异性HTI介质两种情况,针对各向同性的孔隙介质,本方法基于Gassman流体替换理论,在流体替换过程中同时考虑孔隙压力和CO2饱和度变化;运用岩石物理测试获得的干岩石弹性模量与切变模量随压力变化关系,对干岩石体变模量和剪切模量做校正。
对于各向异性HTI介质,在流体替换过程中加入储层裂缝密度随CO2注入压力变化的关系,即考虑流体替换过程中储层裂缝随压力变化的张开或闭合;然后,引入Thomson弱各向异性理论,量化CO2注入不同阶段各向异性参数变化规律;最后,采用Rüger(1998)对平面波入射条件下各向异性HTI介质中的简化公式,计算CO2注入不同阶段,及不同入射角和方位角下PS1波和PS2波AVO的变化。
为了实现上述目的,本发明采用的技术方案是:CO2地质封存中四维多分量地震监测的转换波AVO计算方法,包括以下步骤:
1)从测井曲线中,得到CO2注入前的纵波速度、横波速度、密度、孔隙度参数的测井曲线,结合阿尔奇公式得到含水饱和度和含油饱和度,从岩心的岩石物理实验中获取干岩石弹性模量随压力变化关系;
2)以储层岩石物理参数和测井曲线为基础,运用Batzle-Wang公式计算未发生流体替换时,未注入CO2,储层条件下油气水混合流体的体变模量和密度,然后通过Gassmann方程,求取出储层段干岩石随深度变化的岩石物理参数曲线;
3)将岩心干岩石的岩石物理测试数据,对步骤2)通过测井曲线求出的干岩石随深度变化的岩石物理参数曲线,进行校正,并带入干岩石弹性模量随压力变化关系,获得储层段随压力变化的干岩石弹性模量曲线,即干岩石弹性模量随深度变化曲线;
4)对于各向同性的孔隙介质,以Gassmann流体替换理论为基础对储层做注入CO2后的流体替换,并将随压力变化的干岩石体变模量和剪切模量带入Gassmann方程,计算孔隙压力和油气、水、CO2混合流体饱和度变化,及不同温度、矿化度、气油比、API值条件下的储层弹性参数;
5)对于各向同性介质,在上述流体替换的基础上,以精确的Zoeppritz方程或者Zoeppritz近似公式计算转换波AVO;
6)对于各向异性介质,采用Tod理论计算压力变化造成的裂缝密度变化及岩石孔隙度变化,及模拟注入CO2前原始储层压力、注入CO2过程中,注入CO2饱和度增大、压力增大及生产井压力小条件下的压力变化导致的裂缝密度及孔隙度变化,再将孔隙度变化带入Gassmann公式,加入混合流体饱和度变化参数后,计算CO2注入前、后注入井及生产井的储层弹性物性参数;
7)以Thomsen弱各向异性理论为基础,求取储层各向异性参数以及沿着裂缝方向的纵、横波速度;
对于各向异性HTI介质,以Rüger简化的方位AVO理论为基础,在Thomson各向异性参数的基础上计算方位AVO下的各向异性参数,以新的各向异性参数为基础,求取不同入射角、方位角下的PS1波和PS2波两层介质模型AVO曲线,模拟不同CO2注入压力和混合流体饱和度下的PS1波和PS2波AVO曲线;
8)求取不同注入压力条件下、CO2流体替换前、后井模型AVO反射系数,并以褶积模型为基础分别制作井模型的各向同性介质和各向异性(HTI)介质转换波人工合成地震记录;对于各向同性介质模型,将测井资料的深度域采样间隔如0.1米或0.125米看作各向同性介质,从测井曲线起点开始,以Zoeppritz方程计算不同入射角度的平面波反射系数,然后与子波褶积获得转换波人工合成地震记录;对于各向异性HTI介质,在储层顶面按照Rüger简化的方位AVO计算公式,计算不同方位的AVO反射系数;在储层之外,仍然采样各向同性介质方法计算转换波AVO反射系数,并计算注入CO2前后转换波人工合成地震记录的差异;进而模拟不同注入CO2阶段的转换波地震响应及四维地震转换波差异地震响应,为准确解释CO2地质封存中四维转换波信息奠定基础。
本发明建立的计算四维多分量转换波反射系数与AVO方法,其关键在于分别建立了四维转换波AVO响应与孔隙压力、流体饱和度、裂缝等的联系,使得模拟的转换波地震响应更符合实际。
本发明的有益效果是:
对于各向同性介质,这里指孔隙介质,本发明通过对Gassman流体替换理论的改进,模拟CO2注入地下进行EOR和地质封存过程中,储层孔隙压力和混合流体饱和度变化条件下的四维地震转换波AVO响应。
对于各向异性HTI介质,通过模拟CO2注入地下进行EOR和地质封存过程中,除了储层流体变化外,储层裂缝的张开和闭合造成的裂缝密度变化产生的不同方位、不同注入阶段转换波AVO的变化,为利用四维转换波地震资料解释和评价CO2-EOR效果与地质封存的安全性提供依据。
附图说明
图1加拿大Weyburn油田CO2封存区1020423井储层部分原始测井曲线。
图2岩石物理实验结果,岩心干岩石物性参数随压力的变化趋势。
图3储层段干岩石随深度变化的岩石物理参数曲线。
图4运用岩心校正后储层段干岩石随深度变化的岩石物理参数曲线。
图5为各向同性均匀介质下,一定孔隙压力时,不同CO2饱和度(SCO2)的PS转换波AVA曲线图;其中图5(a)为孔隙压力为9MPa时,不同CO2饱和度时转换波的AVA曲线图;图5(b)为孔隙压力为15MPa时,不同CO2饱和度时转换波的AVA曲线图;图5(c)为孔隙压力为21MPa时,不同CO2饱和度时转换波的AVA曲线图。
图6为各向同性均匀介质下,一定CO2饱和度(SCO2)时,不同孔隙压力的PS转换波AVA曲线;其中图6(a)为CO2饱和度为0时,不同孔隙压力时的AVA曲线图;其中图6(b)为CO2饱和度为20%时,不同孔隙压力时的AVA曲线图;其中图6(c)为CO2饱和度为40%时,不同孔隙压力时的AVA曲线图。
图7为随孔隙压力和CO2饱和度变化时裂缝密度的等值线图。
图8(a)为裂缝密度随孔隙压力的变化曲线图;图8(b)为储层总孔隙度随孔隙压力的变化图;图8(c)为储层总孔隙度随裂缝密度的变化关系图。
图9为各向异性(HTI)介质模型中,随孔隙压力和CO2饱和度变化时饱和岩石体变模量(单位GPa)的等值线图。
图10为各向异性(HTI)介质模型中,随孔隙压力和CO2饱和度变化时饱和岩石剪切模量(单位GPa)的等值线图。
图11为各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随方位角变换的PS1转换波的AVA曲线图;其中图11(a)为孔隙压力为9MPa,CO2饱和度为0%时,方位角分别为0°、30°、60°、90°时PS1波的AVA曲线图;图11(b)为孔隙压力为15MPa,CO2饱和度为20%时,方位角分别为0°、30°、60°、90°时PS1波的AVA曲线图;图11(c)为孔隙压力为21MPa,CO2饱和度为40%时,方位角分别为0°、30°、60°、90°时PS1波的AVA曲线图。
图12为各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随入射角和方位角变化时PS1转换波反射系数的等值线图;其中图12(a)为孔隙压力为9MPa,CO2饱和度为0%时,PS1波反射系数随方位角和入射角的变化图;图12(b)为孔隙压力为15MPa,CO2饱和度为20%时,PS1波反射系数随方位角和入射角的变化图;图12(c)为孔隙压力为21MPa,CO2饱和度为40%时,PS1波反射系数随方位角和入射角的变化图。
图13为各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随方位角变换的PS2转换波的AVA曲线图;其中图13(a)为孔隙压力为9MPa,CO2饱和度为0%时,方位角分别为0°、30°、60°、90°时PS2波的AVA曲线图;图13(b)为孔隙压力为15MPa,CO2饱和度为20%时,方位角分别为0°、30°、60°、90°时PS2波的AVA曲线图;图13(c)为孔隙压力为21MPa,CO2饱和度为40%时,方位角分别为0°、30°、60°、90°时PS2波的AVA曲线图。
图14为各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随入射角和方位角变化时PS2转换波反射系数的等值线图;其中图14(a)为孔隙压力为9MPa,CO2饱和度为0%时,PS2波反射系数随方位角和入射角的变化图;图14(b)为孔隙压力为15MPa,CO2饱和度为20%时,
PS2波反射系数随方位角和入射角的变化图;图14(c)为孔隙压力为21MPa,CO2饱和度为40%时,PS2波反射系数随方位角和入射角的变化图。
图15为各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度下,随孔隙压力和CO2饱和度变化时PS1转换波反射系数等值线图。
图16为各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度下,随孔隙压力和CO2饱和度变化时PS2转换波反射系数的等值线图。
图17为各向异性(HTI)介质模型中,一定孔隙压力下,不同CO2饱和度(SCO2)时PS1转换波和PS2转换波的AVA曲线图;其中图17(a)为孔隙压力为9MPa时,不同CO2饱和度时PS1波和PS2波反射系数的AVA曲线图;图17(b)为孔隙压力为15MPa时,不同CO2饱和度时PS1波和PS2波反射系数的AVA曲线图;图17(c)为孔隙压力为21MPa时,不同CO2饱和度时PS1波和PS2波反射系数的AVA曲线图。
图18为各向异性(HTI)介质模型中,一定CO2饱和度(SCO2)下,不同孔隙压力时PS1转换波和PS2转换波的AVA曲线图;其中图18(a)为CO2饱和度为0%时,不同孔隙压力下PS1波和PS2波反射系数的AVA曲线图;图18(b)为CO2饱和度为20%时,不同孔隙压力下PS1波和PS2波反射系数的AVA曲线图;图18(c)为CO2饱和度为40%时,不同孔隙压力下PS1波和PS2波反射系数的AVA曲线图。
图19为各向同性均匀介质下,CO2饱和度为0%时,不同孔隙压力下入射角度道集转换波人工合成地震记录及其差异。
图20为各向同性均匀介质下,孔隙压力为15MPa,不同CO2饱和度下入射角度道集转换波人工合成地震记录及其差异。
图21为各向异性(HTI)介质模型中,方位角为30°时,CO2饱和度为0%时,不同孔隙压力下入射角度道集PS1波人工合成地震记录及其差异。
图22为各向异性(HTI)介质模型中,方位角为30°时,孔隙压力为15MPa,不同CO2饱和度下入射角度道集的PS1波人工合成地震记录及其差异。
图23为各向异性(HTI)介质转换波人工合成地震记录与Weyburn油田实际径向转换波叠加偏移资料的对比。
具体实施方式
下面结合附图对本发明作进一步详细说明。
CO2地质封存的四维地震监测中转换波AVO的计算方法,包括下列步骤:
第一,对工区测井曲线进行整理,得到CO2注入前的纵波速度、横波速度、密度、孔隙度等参数的测井曲线,结合阿尔奇公式得到含水饱和度曲线,如图1是加拿大Weyburn油田1020423井整理后储层部位测井曲线。通过对储层进行岩心采样,并对岩心做岩石物理实验,获得岩心干岩石的岩石物理参数,表1和表2分别为Weyburn油田储层岩心的岩石物理参数,图2是岩石物理实验过程中岩心干岩石物性参数随压力的变化情况;
图1加拿大Weyburn油田1020423井整理后储层部位测井曲线,从左到右分别为纵波速度、横波速度、密度、孔隙度、密度曲线。储层段深度为1398m~1423m,储层段可以分别为Marly层和Vuggy层,其中Marly层的深度为1398m~1405m,Vuggy层深度为1405m~1423m。
图2岩心岩石物理实验结果,测试了岩心的岩石物理参数随着压力变化的情况,从左到右分别为纵波速度、横波速度、体变模量、剪切模量、泊松比、扬氏模量随着孔隙压力从7MPa~24MPa变化时的变化规律。
表1为两层介质模型原始参数(孔隙压力=15MPa,上覆压力32MPa)。
表1
表2为储层原始物性参数。
表2
名称 物性参数数值
温度T(℃) 56
含盐度(%) 8.5
原始裂缝密度Yc 0.03
原始裂缝孔隙度fic 0.000041448
孔喉比ar 0.00033
储层岩石骨架的体变模量Km 83GPa
储层岩石骨架的剪切模量μm 48GPa
储层岩石颗粒密度dengrain 2.87g/cm3
表3为Weyburn油田干岩石物性参数。
表3
名称 干岩石物性参数数值
纵波速度(Vpdry) 3.531519km/s
横波速度(Vsdry) 2.130550km/s
密度(dendry) 2.035582g/cm3
体变模量(Kdry) 13.037017GPa
剪切模量(μdry) 9.24GPa
表4为计算的随孔隙压力、流体饱和度变化的储层物性参数。
表4
第二,以第一步获得的储层岩石物性参数和测井曲线为基础,包括纵波、横波、密度、孔隙度、含水饱和度,运用Batzle-Wang公式计算未发生流体替换时(未注入CO2时),储层条件下油气水混合流体的体变模量和密度,然后通过Gassmann方程,获得储层段干岩石随深度变化的岩石物理参数曲线,岩石物理参数包括纵波速度、横波速度、密度、体变模量、剪切模量;
在此引入科罗拉多矿院Brown(2002)在Weyburn油田岩石物理测试获得的,关于体变模量剪切模量与孔隙压力之间的关系:
KDRY=1.731*10-4*(Pd-Pf)2-1.325*10-2*(Pd-Pf)2+0.3542×(Pd-Pf)+13.11(1)
μDRY-1.157*10-4*(Pd-Pf)3-9.828*10-2*(Pd-Pf)2+0.2989*(Pd-Pf)+8.78(2)
式中KDRY为压力校正后干岩石的体变模量,μDRY为压力校正后的干岩石剪切模量,Pd是储层围压,Pf是孔隙压力,运用式(1)和(2)校正干岩石体变模量和切变模量。图3描述了测井曲线求出的干岩石物理参数随深度变化的曲线;
图3描述了由测井曲线求出的储层段干岩石物理参数随深度变化的曲线,从左到右分别为储层段干岩石的纵波速度、横波速度、体变模量、剪切模量、泊松比、扬氏模量曲线。
第三,将第一步岩心求取干岩石的岩石物理参数,对第二步通过测井曲线求出的干岩石随深度变化的岩石物理参数曲线进行校正(如图4),并带入干岩石弹性模量随压力变化关系,获得储层段随压力变化的干岩石弹性模量曲线,即干岩石弹性模量随深度变化曲线;图4左边两列为饱和岩石纵横波速度,其中虚线为原始测井数据经流体替换后所得的新的测井数据,实线为岩石物理测试数据校正后的饱和岩石的纵横波速度,右侧四列岩石物理参数曲线中虚线为从测井数据干岩石弹性模量随深度变化曲线,实线为运用岩心求取干岩石的岩石物理测试数据校正后的干岩石弹性模量以及饱和岩石纵横波速度随深度变化曲线;
第四,在各向同性的孔隙介质中,不考虑流体替换过程中储层孔隙度的变化,在上述计算结果的基础上,重复运用Batzle-Wang公式和Gassman方程,求取流体替换过程随孔隙压力和流体饱和度变化的混合流体体变模量,混合流体密度,进而求取饱和岩石的体变模量、剪切模量,求取饱和岩石的纵波速度、横波速度、密度、体变模量、剪切模量等新的岩石物理参数,具体计算过程见式(3)~(7)。
K s u b = K D R Y + ( 1 - K D R Y K m ) 2 p o r o s i t y K f m i x + 1 - p o r o s i t y K m - K D R Y K m 2 - - - ( 3 )
densub=dengrain*(1-porosity)+denfmix*porosity(4)
musub=μDRY(5)
Vp s u b = K s u b + 4 3 mu s u b den s u b - - - ( 6 )
Vs s u b = mu s u b den s u b - - - ( 7 )
在式(3)~(7)中,Ksub是饱和岩石的体变模量,KDRY是压力校正后干岩石的体变模量,Km是储层岩石骨架的体变模量,porosity是储层总孔隙度,Kfmix是混合流体体变模量,densub是饱和岩石密度,dengrain是储层岩石颗粒密度,denfmix是储层流体密度,musub是饱和岩石的剪切模量,μDRY是压力校正后干岩石的剪切模量,Vpsub是饱和岩石纵波速度,Vsub是饱和岩石横波速度。
同时,计算孔隙压力和油气、水、CO2混合流体饱和度变化,及不同温度、矿化度、气油比、API值条件下的储层弹性参数;
第五,以精确的Zoeppritz方程为理论基础,利用第四步所计算的储层岩石物理参数,在此基础上计算流体替换过程中不同储层孔隙压力和储层CO2饱和度下的转换波AVA曲线,如图5和图6;
如图5所示,模拟了当孔隙压力分别为9、15、21MPa时,即对应Weyburn油田CO2注入区生产井、原始地层和注入井压力,CO2饱和度为0%、20%、40%时孔隙介质中PS转换波的AVA曲线。图5(a)为孔隙压力为9MPa时,不同CO2饱和度时转换波的AVA曲线图;图5(b)为孔隙压力为15MPa时,不同CO2饱和度时转换波的AVA曲线图;图5(c)为孔隙压力为21MPa时,不同CO2饱和度时转换波的AVA曲线图。从图5中可以看到,不同孔隙压力和CO2饱和度构成的流体模型所对应的AVA曲线的变化趋势一致。在入射角较小时,PS转换波反射系数随着入射角的增加而增加,当入射角达到一定值后,反射系数达到最大值,并且所有模型的PS转换波反射系数在相同的入射角达到最大值。比较相同压力下不同CO2饱和度时的PS转换波AVA曲线,我们可以看到当压力一定时,在相同的入射角下,PS转换波的反射系数基本不随CO2饱和度的变化而变化,即在孔隙介质模型中,CO2饱和度对于PS转换波反射系数影响很小;
如图6,描述了在CO2饱和度一定时,不同孔隙压力下的PS转换波的AVA曲线。其中图6(a)为CO2饱和度为0时,不同孔隙压力时的AVA曲线图;其中图6(b)为CO2饱和度为20%时,不同孔隙压力时的AVA曲线图;其中图6(c)为CO2饱和度为40%时,不同孔隙压力时的AVA曲线图。横向比较图6中3幅图,在相同CO2饱和度下和一定入射角时,PS转换波反射系数随着孔隙压力的增加而增加,孔隙压力越大,反射系数增加越快;但对与不同CO2饱和度下PS转换波反射系数变化趋势大致相同(见图5),这表明在孔隙介质的两层模型中,CO2饱和度的变化对于PS转换波的反射系数影响有限,孔隙压力的变化在PS转换波的反射系数的变化过程中占主导地位;
第六,对于各向异性介质,采用Tod理论计算压力变化造成的裂缝密度变化及岩石孔隙度变化,及模拟注入CO2前原始储层压力、注入CO2过程中,注入CO2饱和度增大、压力增大及生产井压力小条件下的压力变化导致的裂缝密度及孔隙度变化,再将孔隙度变化带入Gassmann公式,加入混合流体饱和度变化参数后,计算CO2注入前、后注入井及生产井的储层弹性物性参数;
各向异性(HTI)介质模型是在各向同性介质模型的基础上构建的,最主要的区别在于在第三步计算干岩石物性参数后,在流体替换过程中,引入Tod关于裂缝密度随压力变化关系的理论,考虑流体替换过程中随着储层孔隙压力的变化而导致裂缝的张开和闭合。图7描述流体替换过程中裂缝密度随孔隙压力和CO2饱和度的变化情况,图8描述了流体替换过程中裂缝密度和岩石孔隙度随孔隙压力的变化情况;
图7描述流体替换过程中裂缝密度随孔隙压力和CO2饱和度的变化情况,其中孔隙压力变化范围是7MPa~24MPa,CO2饱和度变化范围是0%~100%,图中曲线为不同孔隙压力和CO2饱和度下储层裂缝密度的等值线图,从图中可看出在孔隙压力保持一定时,随着CO2饱和度的变化,储层孔隙裂缝密度始终保持不变,而当CO2饱和度一定时,随着孔隙压力增加,储层裂缝密度不断增加,并且孔隙压力越大,在相同的压力梯度下裂缝密度变化越小。
图8(a)为裂缝密度随孔隙压力的变化曲线图;图8(b)为储层总孔隙度随孔隙压力的变化图;图8(c)为储层总孔隙度随裂缝密度的变化关系图。图8(a)中随着孔隙压力不断增加,储层裂缝密度不断变大,裂缝密度与孔隙压力呈一次函数关系变化;图8(b)中随着孔隙压力不断增加,储层总孔隙度不断变大,储层总孔隙度与孔隙压力也呈一次函数变化;图8(c)中储层总孔隙度与储层裂缝密度也呈一次函数变化。
Tod(2002)的公式表示为:
Y c f = Y c 0 { 1 - P d - P f P d - 1 2 e - C r ( P d - P f ) * π C r P d * e r f [ C r ( P d - P f ) ] } - - - ( 8 )
其中,Pd是储层围压,Pf是孔隙压力,Yc0是储层原始裂缝密度,π是圆周率,Cr是中间变量,可表示为
其中,vDRY是压力校正后干岩石的泊松比,μDRY是压力校正后干岩石的剪切模量,ar为储层裂缝孔喉比;
式(8)所求Ycf为压力变化过程中裂缝密度,换算成裂缝所代表的孔隙度ficf
fic f = 4 3 * π * a r * Y c f - - - ( 10 )
重复运用Batzle-Wang公式和Gassman方程,求取流体替换过程随孔隙压力和流体饱和度变化的混合流体体变模量,混合流体密度,进而求取饱和岩石的体变模量(见图9)、剪切模量(见图10),依照岩石物理参数之间的关系,求取饱和岩石的纵波速度、横波速度、密度、体变模量、剪切模量,以及考虑裂缝变化后的岩石总孔隙度(见图8),表4为流体替换后不同孔隙压力和流体组成下物性的参数变化情况;
图9描述了饱和岩石的体变模量随储层孔隙压力和储层CO2饱和度的变化情况。其中,储层孔隙压力从7MPa~24MPa变化,CO2饱和度从0%~100%变化,图中曲线为饱和岩石的体变模量的等值线。从图中可看到,当CO2饱和度一定时,随着储层孔隙压力的增加,饱和岩石的体变模量逐渐减少,但减小幅度很小,相反的,当孔隙压力不变时,在CO2饱和度较小时(20%以下),随着CO2饱和度的增加,饱和岩石的体变模量迅速减小,当CO2饱和度超过40%后,随着CO2饱和度的增加,饱和岩石的体变模量逐渐减小。
图10描述了饱和岩石的剪切模量随储层孔隙压力和储层CO2饱和度的变化情况。其中,储层孔隙压力从7MPa~24MPa变化,CO2饱和度从0%~100%变化,图中曲线为饱和岩石的剪切模量的等值线。从图中可看到,当孔隙压力一定时,随着储层CO2饱和度的增加,饱和岩石的剪切模量始终不发生变化,而当储层CO2饱和度不变时,随着储层孔隙压力的增加,饱和岩石的剪切模量不断减小,并且随着空隙压力越来越大,饱和岩石的剪切模量的变化幅度越来越小。
第七,引入Thomson弱各向异性介质理论,结合第六步流体替换过程产生的各项岩石物理参数,计算储层各向异性参数Epsilon、Gamma、Delta,同时,结合Thomson各向异性参数,求取沿着裂缝方向的纵波速度和横波速度;
沿裂缝方向的纵波速度a0可表示为:
其中,Vpsub为流体替换后储层的饱和岩石的纵波速度,im是Thomson各向异性参数Epsilon与流体替换过程中考虑孔隙度变化后的泊松比vf的函数,可表示为:
im=2*Epsilon*(1-vf)*(1-vf)*(1-vf)(12)
沿裂缝方向的横波速度b0可表示为:
式(12)中,im是Thomson各向异性参数Epsilon与流体替换过程中考虑孔隙度变化后的泊松比vf的函数;
式(13)中,Vssub为流体替换后储层的饱和岩石的横波速度,Gamma是Thomson各向异性参数。
引入Rüger弱各向异性介质下方位AVO理论,结合流体替换后饱和岩石的纵波速度、横波速度、密度,各向异性参数Epsilon、Gamma、Delta以及沿着裂缝方向的纵波速度和横波速度,计算PS1波和PS2波方位AVO;
Rüger新的方位各向异性参数可表示为:
E p s i l o n _ v = - 1 * E p s i l o n 1 + 2 * E p s i l o n - - - ( 14 )
G a m m a _ v = - 1 * G a m m a 1 + 2 * G a m m a - - - ( 15 )
D e l t a _ v = D e l t a * E p s i l o n * ( 1 + E p s i l o n f ) ( 1 + 2 * E p s i l o n ) * ( 1 + 2 * E p s i l o n f ) 其中, f = 1 - ( b 0 a 0 ) 2 - - - ( 16 )
式(14)、(15)、(16)中Epsilon、Gamma、Delta为Thomson各向异性参数,a0、b0分别为沿着裂缝方向的纵、横波速度;
依照Rüger方位AVO理论,PS1波和PS2波反射系数Rps1和Rps2可表示为:
Rps1=Rpsa*cos(fry)+Rpsb*sin(fry)(17)
Rps2=Rpsa*sin(fry)+Rpsb*cos(fry)(18)
式(17)和式(18)中Rpsa和Rpsb为横波沿着裂缝方向以及垂直裂缝方向震动时的反射系数,fry为横波极化角;
R p s a = V 1 * sin ( i * π 180 ) * cos ( i * π 180 ) + V 2 * sin ( i * π 180 ) cos ( j ) + V 3 * sin 3 ( i * π 180 ) * cos ( i * π 180 ) + V 4 * sin 3 ( i * π 180 ) cos ( j ) + V 5 * sin 3 ( i * π 180 ) cos ( j ) - - - ( 19 )
R p s b = H 1 * sin ( i * π 180 ) + H 2 * sin ( i * π 180 ) * cos ( i * π 180 ) cos ( j ) + H 3 * sin 3 ( i * π 180 ) + H 4 * sin 3 ( i * π 180 ) * cos ( i * π 180 ) cos ( j ) - - - ( 19 )
( 20 )
f r y = sin - 1 ( - 1 * sin ( s i t a ) 1 - sin ( j ) * sin ( j ) * cos ( s i t a ) * cos ( s i t a ) ) - - - ( 21 )
其中,V1、V2、V3、V4、V5、H1、H2、H3、H4均为Rüger方位各向异性参数以及反射面上下层岩石的物性参数的函数;
运用式(19)和式(20)所求反射系数,绘制不同孔隙压力和流体饱和度下的PS1波和PS2波AVO曲线,其结果如图11~图18;
图11~图14描述了在一定孔隙压力和CO2饱和度下,PS1波和PS2波反射系数随入射角和方位角的变化情况。图11描述了各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随方位角变换的PS1转换波的AVA曲线图;其中图11(a)为孔隙压力为9MPa,CO2饱和度为0%时,方位角分别为0°、30°、60°、90°时PS1波的AVA曲线图;图11(b)为孔隙压力为15MPa,CO2饱和度为20%时,方位角分别为0°、30°、60°、90°时PS1波的AVA曲线图;图11(c)为孔隙压力为21MPa,CO2饱和度为40%时,方位角分别为0°、30°、60°、90°时PS1波的AVA曲线图。
图12描述了各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随入射角和方位角变化时PS1转换波反射系数的等值线图;其中图12(a)为孔隙压力为9MPa,CO2饱和度为0%时,PS1波反射系数随方位角和入射角的变化图;图12(b)为孔隙压力为15MPa,CO2饱和度为20%时,PS1波反射系数随方位角和入射角的变化图;图12(c)为孔隙压力为21MPa,CO2饱和度为40%时,PS1波反射系数随方位角和入射角的变化图。
图13描述了各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随方位角变换的PS2转换波的AVA曲线图;其中图13(a)为孔隙压力为9MPa,CO2饱和度为0%时,方位角分别为0°、30°、60°、90°时PS2波的AVA曲线图;图13(b)为孔隙压力为15MPa,CO2饱和度为20%时,方位角分别为0°、30°、60°、90°时PS2波的AVA曲线图;图13(c)为孔隙压力为21MPa,CO2饱和度为40%时,方位角分别为0°、30°、60°、90°时PS2波的AVA曲线图。
图14描述了各向异性(HTI)介质模型中,不同孔隙压力和CO2饱和度(SCO2)下,随入射角和方位角变化时PS2转换波反射系数的等值线图;其中图14(a)为孔隙压力为9MPa,CO2饱和度为0%时,PS2波反射系数随方位角和入射角的变化图;图14(b)为孔隙压力为15MPa,CO2饱和度为20%时,PS2波反射系数随方位角和入射角的变化图;图14(c)为孔隙压力为21MPa,CO2饱和度为40%时,PS2波反射系数随方位角和入射角的变化图。
从图11~图14中可看出,对于不同压力和CO2饱和度,PS1波和PS2波反射系数随入射角和方位角的变化趋势大致相同,对于PS1波,在方位角为90°时,其反射系数恒为零;在任意孔隙压力与CO2饱和度下,当方位角一定时(不为90°),PS1波反射系数随着入射角的增加先减小再增大,PS1波反射系数的最小值所对应的入射角随孔隙压力与饱和度变化;当入射角较小时,PS1波反射系数随方位角的增大而增加,当入射角增加到一定程度后,PS1波反射系数随方位角增大而减小,同时,在入射角较小,且当在入射角一定时,PS1波反射系数随方位角的增加而减小。对于PS2波,在方位角为0°时,其反射系数恒为零;在任意孔隙压力与CO2饱和度下,当方位角一定时(不为0°),PS2波反射系数随着入射角的增加先增大再减小,PS2波反射系数的最大值所对应的入射角随孔隙压力与饱和度变化;当入射角较小时,PS2波反射系数随方位角的增大而增加,当入射角增加到一定程度后,PS2波反射系数随方位角增大而减小,同时,在入射角较小,且当在入射角一定时,PS2波反射系数随方位角的增加而增加。
图15和图16,分别描述了当方位角为30°,纵波入射角为15°时,随着孔隙压力和CO2饱和度的变化,PS1波和PS2波反射系数的变化情况,为了描述方便,将PS1波和PS2波的反射系数校正到正极性,从图中可以看到,PS1波和PS2波的反射系数的变化趋势近似相同,但PS2波的反射系数整体小于PS1波,在孔隙压力保持不变时,随着CO2饱和度的增加,PS1波和PS2波的反射系数有着略微减小的趋势,但变化幅度很小,几乎为一常量;而当CO2饱和度一定时,随着孔隙压力的增加,PS1波和PS2的反射系数有着明显的增加。
图17是一定孔隙压力下,不同CO2饱和度时PS1波和PS2波的AVA曲线。在CO2饱和度和孔隙压力一定时,PS1波和PS2波的反射系数均随着入射角的增加先增大再减小,并且在相同的入射角达到最大值,在相同的入射角下,PS1波反射系数总是大于PS2波反射系数(均为正极性时),并且在二者达到最大值时,PS1波反射系数与PS2波反射系数之间的差异达到最大;同时,从图中可以看到,当孔隙压力不变时,不同CO2饱和度下PS1波和PS波的AVA曲线基本重合,并且随着孔隙压力增大,不同CO2饱和度下的PS1波和PS2波反射系数重合性越好。图18是一定CO2饱和度(SCO2)下,不同孔隙压力时PS1波和PS2波的AVA曲线。描述了当方位角为30°时,在CO2饱和度(0%、20%、40%)一定时,不同孔隙压力(9MPa、15MPa、21MPa)下的PS1波和PS2波的AVA曲线,同图17,为了描述方便,将PS1波与PS2波极性均调整为正极性。横向比较图18中3幅图,在相同CO2饱和度下和一定入射角时,PS1波与PS2波反射系数均随着孔隙压力的增加而增加,在不同孔隙压力下PS1波和PS2波的反射系数相对差异较大;但在不同CO2饱和度下,不同压力之间的PS1波和PS2波反射系数的差异基本相同,PS1波与PS2波反射系数变化趋势大致相同(见图17)。
第八,求取不同注入压力条件下、CO2流体替换前后井模型PS转换波AVO反射系数,并以褶积模型为基础分别制作井模型的各向同性介质和各向异性(HTI)介质转换波人工合成地震记录。对于各向同性介质模型,将测井资料的深度域采样间隔如0.1米或0.125米看作各向同性介质,从测井曲线起点,以Zoeppritz方程计算不同入射角度平面波转换波反射系数,然后褶积获得合成地震记录。对于各向异性(HTI)介质,在储层顶面按照Rüger简化的方位AVO计算公式计算不同方位的PS转换波AVO反射系数,而储层之外则仍然采样各向同性介质方法计算PS转换波AVO反射系数,进而模拟不同注入CO2阶段的转换波地震响应及四维地震转换波差异地震响应,为准确解释CO2地质封存中四维转换波信息奠定基础。
图19描述了各向同性介质模型中,CO2饱和度为0%时,不同孔隙压力(9MPa、15MPa、21MPa)下的入射角度道集人工合成地震记录,左侧三列分别为纵波、横波以及密度测井曲线,中间三列为一定CO2饱和度下不同孔隙压力时的转换波人工合成地震记录,右边三列为孔隙压力下转换波人工合成地震记录的差异。从图19中可以看出,在相同的CO2饱和度下,在储层上部(2040ms以上),不同孔隙压力下的转换波人工合成地震记录几乎没有差异,不同射线参数下的差异都非常接近0,而从储层段开始,不同孔隙压力下的转换波人工合成地震记录的差异开始出现,差异从转换波人工合成地震记录的储层部位就开始出现,随着深度的增加,差异越来越明显,横向上看,孔隙压力变化幅度较大时(9MPa与21MPa之间的差异),差异相对更加明显,另外,在相同的压力梯度下,15MPa~21MPa之间的差异比9MPa~15MPa之间的差异大。
图20描述了各向同性介质模型下,孔隙压力为15MPa时,不同CO2饱和度下的入射角度道集转换波合成地震记录及其差异,图左侧三列测井曲线分别为纵波、横波、密度曲线,中间五列为孔隙压力为15MPa时,不同CO2饱和度下的入射角度道集转换波人工合成地震记录,右边四列为不同饱和度下转换波人工合成地震记录的差异。从图中可以看出,在相同的储层压力下,在储层上部(2040ms以上),不同CO2饱和度下的转换波人工合成地震记录几乎没有差异,不同射线参数下的差异都非常接近0,而从储层段开始,不同CO2饱和度下的转换波人工合成地震记录的差异开始出现,随着深度的增加,特别是强反射轴附近,差异越来越明显,并且不同CO2饱和度所对应的转换波人工合成地震记录之间的差异都相近。
结合图19和图20,可以看到,在各向同性介质的井模型中,孔隙压力的变化对转换波人工合成地震记录的影响更大,是地震记录发生变化的主要因素。
在各向异性(HTI)介质模型AVO的基础上,我们以井模型和褶积模型为基础,构建各向异性(HTI)介质条件下,PS1波和PS2波的人工合成地震记录,结果如图21和图22。图21描述了各向异性(HTI)介质模型中,方位角为30°时,CO2饱和度分别为0%时,不同孔隙压力(9MPa、15MPa、21MPa)下PS1波的人工合成地震记录,图21左侧三列测井曲线分别为纵波、横波、密度曲线,中间三列为不同孔隙压力和CO2饱和度下的入射角度道集人工合成地震记录,右边三列为不同饱和度下人工合成地震记录的差异。
从图21中可以看出,对于PS1波之间的差异,在相同的CO2饱和度下,在储层上部(2040ms以上),不同孔隙压力下的入射角度道集人工合成地震记录几乎没有差异,不同射线参数下的差异都非常接近0,而从储层段开始,不同孔隙压力下的人工合成地震记录的差异开始出现,但差异都不明显,横向上看,孔隙压力变化幅度较大时(9MPa与21MPa之间的差异),差异相对更加明显,另外,在相同的压力梯度下,15MPa~21MPa之间的差异比9MPa~21MPa之间的差异大。
图22是各向异性(HTI)介质模型中,当方位角为30°,孔隙压力为15MPa时,不同CO2饱和度下入射角度道集的PS2波人工合成地震记录及其差异,图左侧三列测井曲线分别为纵波、横波、密度曲线,中间五列为孔隙压力为15MPa时,不同CO2饱和度下的入射角度道集人工合成地震记录,右边四列为不同饱和度下人工合成地震记录的差异。从图中可以看出,在相同的储层压力下,在储层上部(即测井曲线1200米~1398米),不同CO2饱和度下的人工合成地震记录几乎没有差异,不同射线参数下的差异都非常接近0,而从储层段开始,不同CO2饱和度下的人工合成地震记录的差异开始出现,而从储层段开始,不同CO2饱和度下的人工合成地震记录的差异开始出现,并且差异主要发生在合成地震记录中储层下部的强反射层位,储层段的差异相对不太明显,并且不同CO2饱和度所对应的人工合成地震记录之间的差异都相近。图23是人工合成地震记录与实际转换波叠偏资料的对照结果,左边三列测井曲线分别为纵波、横波、密度曲线,两列入射角度道集转换波人工合成地震记录分别为孔隙压力为15MPa,CO2饱和度为0%以及孔隙压力为15MPa,CO2饱和度为10%的PS1波人工合成地震记录,实际资料分别为1999年和2001年井附近的实际转换波叠加剖面地震资料,依照标定结果,工区储层大致在2050ms左右,如图中所示Marly和Vuggy储层,转换波人工合成地震记录与实际转换波叠偏资料显示了比较好的匹配,最右边两列分别为入射角度道集转换波合成地震记录的差异与实际转换波资料的差异,合成地震记录的差异与图20中差异类似,在储层上部几乎没有差异,在储层部位开始出现明显差异。对比两年转换波实际地震资料,两年资料在剖面上均可划分出明显的储层,并且与合成地震记录能进行较好的标定,但因两年实际资料的采集处理差异,两年实际转换波地震资料的差异稍显凌乱,但仍可依照井资料做出标定。

Claims (1)

1.CO2地质封存中四维多分量地震监测的转换波AVO计算方法,其特征在于,包括以下步骤:
1)从测井曲线中,得到CO2注入前的纵波速度、横波速度、密度、孔隙度参数的测井曲线,结合阿尔奇公式得到含水饱和度和度曲线,从岩心的岩石物理实验中获取干岩石弹性模量随压力变化的储层岩石物理参数;
2)以储层岩石物理参数和测井曲线为基础,运用Batzle-Wang公式计算未发生流体替换时,未注入CO2,储层条件下油气水混合流体的体变模量和密度,然后通过Gassmann方程,获得储层段干岩石随深度变化的岩石物理参数曲线;
3)将岩心干岩石的岩石物理参数,对步骤2)通过测井曲线求出的干岩石随深度变化的岩石物理参数曲线进行校正,并带入干岩石弹性模量随压力变化关系,获得储层段随压力变化的干岩石弹性模量曲线,即干岩石弹性模量随深度变化曲线;
4)对于各向同性的孔隙介质,以Gassmann流体替换理论为基础对储层做注入CO2后的流体替换,并将随压力变化的干岩石体变模量和剪切模量带入Gassmann方程,计算孔隙压力和油气、水、CO2混合流体饱和度变化,及不同温度、矿化度、气油比、API值条件下的储层弹性参数;
5)对于各向同性介质,在步骤4)流体替换的基础上,以精确的Zoeppritz方程或者Zoeppritz近似公式计算转换波AVO;
6)对于各向异性介质,采用Tod理论计算压力变化造成的裂缝密度变化及岩石孔隙度变化,及模拟注入CO2前原始储层压力、注入CO2过程中,注入CO2饱和度增大、压力增大及生产井压力小条件下的压力变化导致的裂缝密度及孔隙度变化,再将孔隙度变化带入Gassmann公式,加入混合流体饱和度变化参数后,计算CO2注入前、后注入井及生产井的储层弹性物性参数;
7)以Thomsen弱各向异性理论为基础,求取储层各向异性参数以及沿着裂缝方向的纵、横波速度;
对于各向异性HTI介质,以Rüger简化的方位AVO理论为基础,在Thomson各向异性参数的基础上计算方位AVO下的各向异性参数,以新的各向异性参数为基础,求取不同入射角、方位角下的PS1波和PS2波两层介质模型AVO曲线,模拟不同CO2注入压力和混合流体饱和度下的PS1波和PS2波AVO曲线;
8)求取不同注入压力条件下、CO2流体替换前后井模型AVO反射系数,并以褶积模型为基础分别制作井模型的各向同性介质和各向异性(HTI)介质转换波人工合成地震记录,进而模拟不同注入CO2阶段的转换波地震响应及四维地震转换波差异地震响应,为准确解释CO2地质封存中四维转换波信息奠定基础。
CN201510607222.4A 2015-09-22 2015-09-22 Co2地质封存中四维多分量地震监测的转换波avo计算方法 Active CN105607118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510607222.4A CN105607118B (zh) 2015-09-22 2015-09-22 Co2地质封存中四维多分量地震监测的转换波avo计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510607222.4A CN105607118B (zh) 2015-09-22 2015-09-22 Co2地质封存中四维多分量地震监测的转换波avo计算方法

Publications (2)

Publication Number Publication Date
CN105607118A true CN105607118A (zh) 2016-05-25
CN105607118B CN105607118B (zh) 2018-01-09

Family

ID=55987194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510607222.4A Active CN105607118B (zh) 2015-09-22 2015-09-22 Co2地质封存中四维多分量地震监测的转换波avo计算方法

Country Status (1)

Country Link
CN (1) CN105607118B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110441817A (zh) * 2019-06-27 2019-11-12 西北大学 孔隙介质中基于4d pp-ps波反演ccus压力和饱和度变化的方法
CN111337980A (zh) * 2020-04-16 2020-06-26 中国矿业大学(北京) 基于时移全波形反演的二氧化碳封存监测方法和系统
US11402530B2 (en) 2018-09-30 2022-08-02 Petrochina Company Limited Method for acquiring converted wave, electronic device and readable storage medium
CN115093846A (zh) * 2022-08-09 2022-09-23 杭州汇蓝气体设备有限公司 用于二氧化碳浓度检测的材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292754B1 (en) * 1999-11-11 2001-09-18 Bp Corporation North America Inc. Vector recomposition of seismic 3-D converted-wave data
CN103576196A (zh) * 2013-10-28 2014-02-12 西北大学 一种随压力变化的孔隙介质横波速度预测方法
CN103576195A (zh) * 2013-10-28 2014-02-12 西北大学 一种随压力变化的裂隙介质横波速度预测方法
CN104678438A (zh) * 2015-03-27 2015-06-03 西北大学 一种co2地质封存中四维地震资料co2分布预测的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292754B1 (en) * 1999-11-11 2001-09-18 Bp Corporation North America Inc. Vector recomposition of seismic 3-D converted-wave data
CN103576196A (zh) * 2013-10-28 2014-02-12 西北大学 一种随压力变化的孔隙介质横波速度预测方法
CN103576195A (zh) * 2013-10-28 2014-02-12 西北大学 一种随压力变化的裂隙介质横波速度预测方法
CN104678438A (zh) * 2015-03-27 2015-06-03 西北大学 一种co2地质封存中四维地震资料co2分布预测的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李琳,等: "孔隙裂隙型砂岩横波速度预测方法", 《地球物理学进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11402530B2 (en) 2018-09-30 2022-08-02 Petrochina Company Limited Method for acquiring converted wave, electronic device and readable storage medium
CN110441817A (zh) * 2019-06-27 2019-11-12 西北大学 孔隙介质中基于4d pp-ps波反演ccus压力和饱和度变化的方法
CN111337980A (zh) * 2020-04-16 2020-06-26 中国矿业大学(北京) 基于时移全波形反演的二氧化碳封存监测方法和系统
CN115093846A (zh) * 2022-08-09 2022-09-23 杭州汇蓝气体设备有限公司 用于二氧化碳浓度检测的材料及其制备方法

Also Published As

Publication number Publication date
CN105607118B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN103576195B (zh) 一种随压力变化的裂隙介质横波速度预测方法
CN101551466B (zh) 一种利用与偏移距有关的地震属性提高油气储层预测精度的方法
CN103258091B (zh) 非常规油气藏水平井段三维岩体力学模型建立的方法及装置
CN102253415B (zh) 基于裂缝等效介质模型的地震响应模式建立方法
CN101329407B (zh) 一种快速p-sv转换波直接模拟以确定地层岩性、岩相变化的方法
CN102852516A (zh) 用于油气藏开发的全缝长三维压裂数值模拟的方法和装置
CN103135135A (zh) 一种基于疏松砂岩模型进行烃类定量预测的方法和装置
CN104155693A (zh) 储层流体流度的角道集地震响应数值计算方法
CN102156297B (zh) 基于砂岩油藏叠后地震数据的流体替换方法
CN107843927A (zh) 基于井震联合速度的页岩地层压力预测方法及装置
CN105607118A (zh) Co2地质封存中四维多分量地震监测的转换波avo计算方法
CN107728205B (zh) 一种地层压力预测方法
CN103576196A (zh) 一种随压力变化的孔隙介质横波速度预测方法
CN106842326B (zh) 无横波速度测井时砂泥互层co2地质封存时移地震正演模拟方法
CN104975851B (zh) 用于振幅随炮检距变化道集分析的油藏模型优化方法
Iyare et al. Brittleness evaluation of Naparima Hill mudstones
CN110441817A (zh) 孔隙介质中基于4d pp-ps波反演ccus压力和饱和度变化的方法
Kadkhodaie et al. Pore throat size characterization of carbonate reservoirs by integrating core data, well logs and seismic attributes
CN104181610B (zh) 一种射线路径弹性反演方法以及系统
CN103257362B (zh) 基于压噪密度差异反演的碳酸盐岩高效井预测方法
CN104516021B (zh) 一种同时提高解析式稳定性和精度的射线弹性参数反演方法
Keller et al. Correlation of azimuthal velocity anisotropy and seismic inversion attributes to Austin Chalk production: A south central Texas case study
Ji Integrating 4D seismic data into dynamic characterisation of an HPHT reservoir
CN106096187B (zh) 一种构造-成岩强度的定量评价及储层质量评价方法
CN107764697A (zh) 基于孔隙介质渐进方程非线性反演的含气性检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant